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Abstract. This survey aims to attract the attention of engineers and applied scientists,
eager to discover new useful analytical techniques for treatment of real mathematical
models, to some applications of the fractional calculus (FC) and of the Mittag-Leffler
(M-L) type functions as a class of special functions of FC, to fractional-order control
systems and other fractional-order mathematical models. We introduce multi-indices
generalizations of the M-L functions and discuss their properties, relations to the
generalized FC, corresponding Laplace type transforms. An unexpectedly long list of
examples is given, for mathematical special functions (some of them - well known) with
use in solving problems arising from applied science, including control theory.
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1. CONTROL SYSTEMS OF FRACTIONAL ORDER AND MODELS OF PHYSICAL PHENOMENA
DESCRIBED BY MEANS OF FRACTIONAL ORDER DIFFERENTIAL EQUATIONS

The classical operational calculus (of Heaviside-Mikusinski) and the method of Laplace
transform are well known tools in treating problems in control theory, linear systems and
circuits, signals, etc. They are used in natural way for solving problems modeling
integer-order systems, basically in terms of the exponential and trigonometric functions.
Indeed, most of the basic characteristics of the control systems (as the unit-impulse
response, the unit-step response, the unit-ramp response, etc) can be found from the
transfer functions by means of integral operators like the Laplace transform and its
inversion:
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by successive integer order integrations and differentiations, and by other (integer-order)
integro-differential operators. The integer order control systems usually considered, are
related to transfer functions: G(s) — of the controlled system, or G.(s) — of the controller,
of the form
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However, fractional (non-integer) order dynamic systems have been already considered
that allow more efficient control and more appropriate description of the real processes,
taking account of the memory and hereditary properties of different substances. For
examples, see: Caputo [6], Caputo and Mainardi [7], Rabotnov [48], Bagley and Calico
[5], Podlubny [44], [46]; an extensive list of papers published the FCAA journal [25]; the
number of such works nowadays is extremely increasing. These studies are based on
model differential equations involving the Fractional Calculus (FC) operators (fractional
derivatives, semi-integrals, integrals of fractional order), for a popular idea about this —
see http://en.wikipedia.org/wiki/Fractional calculus , and for detailed theory — the books
[51], [46], [23], etc. In the classical FC, we deal with the Riemann-Liouville (R-L)
operator of fractional (i.e. arbitrary, not necessarily integer) order & >0 of integration
(called also R-L fractional integral):
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This is an extension of the known formula for »-fold integration, when 7! is replaced by a

I' — function for n€ N — & € R, . The R-L fractional derivative of order & 20 is

then defined as a composition of integer order derivative and fractional order integral (3),
with asuitable neN:n—-1< 0 <n,
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Another, alternative definition of derivative of fractional order, that includes the initial

conditions of integer order and happens to be more suitable in applications, has been
introduced by Caputo [6], see also [7], [46], the so-called Caputo derivative:
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In general, D" R™° # R"° D" and therefore, the difference between the above two

definitions is evident when the passage of the »-th derivative in (4) under the sign of
integral is legitime. In this case,
z

D°f(z)=D! f(z)+ Z P +0) m )

The R-L definition (4) is preferred in the mathematically oriented papers, but the Caputo
one (5) allows consideration of easily interpreted conventional initial conditions,

expressed in terms of integer order derivatives: f(+0)= £, /'(+0)= f,,..., and its
Laplace transform is given by (see [46]):

L{D? f(z);s) = s° L{f(z);s}—nz_:f(k)(+0) s"* . n—-1<8<n ,neN.
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Moreover, a Caputo derivative of a constant is 0 (as in the classical calculus!), while the

R-L derivative of a constant does not vanish if & is not integer, for example:
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z
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The fractional order transfer functions are powerful instrument for description
of the memory and hereditary properties of substances and systems, since in the integer
order models these effects are neglected. In fact, the fractional order systems happen to
play the role of “reality” in the “fractal world”, while the integer order “approximations”
play the role of a simpler, but not so suitable model (see Podlubny, [44], [46]). The
fractional order transfer functions of a controlled system can have the form

1
G,(s)= (6)
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with arbitrary real exponents £, > f |, >---> B >, >0 and real coefficients. In

the time-domain, they correspond to fractional order differential equations of the form
a,Dl" (1) +a, DI y(0) + -+ a Db y() +a, DI y(t) =u(t), ()

where y(#) = L' {Y(s)} is the output of the system and u(¢)=L"'{U(s)}- the

controller's output; DY is the Caputo derivative, as in (5).

Until the "era of applicable fractional calculus", fractional order systems have
been used and studied only sporadically, mainly due to absence of suitable mathematical
tools, or in fact — due to poor knowledge (both of pure mathematicians and applied
scientists and engineers) on them. To deal successfully with fractional order systems and
controllers, the problem to know the inverse Laplace transformation of functions like
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needed to have explicit analytical solution. However, in the handbooks containing tables
of the Laplace transforms, such functions have not been presented as known images,
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except for some very special cases when o, P = %, 1, 2, corresponding to the
exponential and trigonometric functions, error functions, incomplete gamma functions,
etc. Until recently, the M-L functions have been almost totally ignored therein, and even
in the AMS Subject Classification, http://www.ams.org/msc/classification.pdf, were
missing until the 2000-edition (now classified as 33E12).

Recently, a rapidly increasing number of authors have switched to considering
systems and phenomena described by fractional-order state equations, involving the
operators of fractional calculus (FC). The successful use of Laplace transform techniques
and of the FC operators in such studies is based on the class of M-L type functions, as
fractional-indices analogues of the exponential, trigonometric and error functions in the
case of fractional order integro-differential equations modeling fractional order systems.
In their terms, it is possible to find out explicit analytical expressions not only for the
basic characteristics of some fractional-order control systems (like the corresponding
systems' responses) and solutions for automatics problems, but also for the solutions of
mathematical models of problems in various other areas of applied sciences and
engineering, like: fractional viscoelastic materials, mechanics, diffusion and wave
processes in porous media, transfer processes in fractals, quantum physics, free electrons
motions, electrical circuits, electroanalytical chemistry, biology, mathematical economy,
traffic regulation, temperature fields in oil strata, etc. Only for some of these applications,
we mention the works of: Nigmatullin [36], [37]; Podlubny [46] (Chapters 4, 9, 10);
Gorenflo and Mainardi [18]; Mainardi et al. [31], [32]; Hilfer [19]; Kilbas, Srivastava
and Trujillo [23]; Nikolov’s extended collections [38], [39]; Scherer, Kalla, Boyadjiev
and Al-Saqabi [53], etc. That is why, the interest into M-L type functions from both
analytical and numerical points of view, has become nowadays one of the powerful
engines for development of the applied fractional calculus.

Let us consider only a few examples of fractional order differential equations
concerned with some models from mechanics, as ultraslow and intermediate processes,
and diffusion-wave phenomena. The fractional differential equations of order a > 0:

du

ta

+u(t)=0 , t>0, ©)

with initial value conditions of the form u(k)(+0) =c,,k=0,12,...m;meN:
m—1<a < m, are usually referred to as the fractional relaxation (if 0 <o <1), or

fractional oscillation (if 1< a <2) equations, see Mainardi [32]. For integer order
o, the IVPs for equation (9) can be solved by elementary functions (o=1: eq. of

relaxation, u(f)=c,e'; a=2: eq. of oscillation, u(t)=c,cost+c, sint). In the

fractional order cases, (9) has been investigated and solved, for example by Mainardi et
al. (see details in [32]), showing the key role of the Mittag-Leffler function.

One of the partial differential equations (PDE) of fractional order that deserves
special attention is obtained from the classical diffusion or wave equations by replacing
the first—, or resp. the second—order time derivative by a fractional derivative of order
awith 0 < a < 2. It has the form
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where z, ¢ denote the space-time variables (in one-dimensional space) and u(z,#) is the
response field variable. Equation (10) has been introduced in physics, with 0 < o <1,

Du(z,t)=1 , (10)

by Nigmatullin [36],[37] to describe the diffusion process in media with fractal
geometry, and for 1< o <2, by Mainardi (see [31]) to describe the propagation of

mechanical diffusive waves in viscoelastic media which exhibit a power law creep. These
types of equations, called as fractional diffusion-wave equations, have been treated by
several authors by means of different approaches, but all of them finally leading to use
of, what we call now, special functions of fractional calculus: either by Mellin transforms
techniques and solutions in terms of H-functions of Fox, or by Laplace transform
allowing to obtain for (10) the fundamental solution of the IVP as the so-called Green
function. In this case it is represented by a special function called recently the Mainardi
function and closely related to the Wright function W from [56], [57] (see for example
Podlubny: [46] and http://people.tuke.sk/igor.podlubny/USU/03_specfun.pdf):

M(z; p)=W(-z;=p.1- ), f=all.
As a fractional index generalization of the Bessel function, the Wright function
W(z; u,v+1) is also often denoted by J/(—z)and called Bessel-Maitland function

(misnamed after the second name of E. Maitland Wright). More details will be given in
the last section.

The FC is as old as the classical calculus, and like many other mathematical
ideas, has its origin in the striving for extension of meaning. In differential and integral
calculus the question of extension of meaning was asked by 1’Hospital: ”What if 7 be

% in d % » 27 Leibnitz, in 1695 replied, “It will lead to a paradox, but one day from
X

this apparent paradox useful consequences will be drawn...” Despite its old origin, FC
had a rather controversial development. Although the honour of its first application
belonged to Abel in 1823, for explicit solution of an integral equation (now called Abel
equation), related to the practical isochrone (tautochrone) problem, for a long time FC
was considered as an abstract play with symbols. It took 279 years from the I’Hospital —
Leibniz correspondence, for a text to appear entirely devoted to the topic of FC and
specialized conferences to start. Each of the Proceedings of the first three international
conferences on FC (that took place in: Univ. of New Haven (USA) in 1974; Univ. of
Strathclyde (Scotland, UK) in 1984; Nihon University (Tokyo, Japan) in 1989) was
ended by a section of open problems. Therein, the following pessimistic conjecture,
originally stated by B. Ross (initiator of the first conference) was continuously repeated:
Conjecture. Is there a geometrical representation of a fractional derivative? If
not, can one prove that a graphical representation of a fractional derivative does not
exist? ... The consensus of the experts ... is that there is, in general, no geometrical
interpretation of a derivative of fractional order ... It can be asked, however at least for a
geometrical meaning or a physical phenomena that can be represented by means of

equations involving a derivative of a particular order such as ¥2 ... ?
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The Fractal Geometry gave an answer for the geometrical meanings. Let us note
that the first book on FC was written in 1974 by a chemist (K. Oldham) and applied
mathematician (J. Spanier) and included applications of so-called semi-derivatives and
semi-integrals (i.e. of order 0 =1/2)to electrochemistry! Recently, along with other

authors, Podlubny [47] contributed in some explicitly written form for the failure of the
above-said long-standing (more than 300-years old) conjecture. Namely, he provided
some interesting geometrical interpretations of fractional-order integrations, of Riesz and
Feller potentials, as well as physical interpretations of the R-L integrals, Stijeltes integral,
R-L and Caputo fractional derivatives, etc. The details of this paper, published in the
FCAA journal and already cited hundreds of times by applied scientists, can be seen also
online, at: http://people.tuke.sk/igor.podlubny/pspdf/pifcaa_r.pdf .

2. MITTAG-LEFFLER FUNCTIONS

The M-L functions seem to be unknown to the majority of applied scientists and
mathematicians, even now. A description of their basic properties however appeared yet
in vol.3 of the Bateman — Erdélyi Project [14], in a chapter devoted to “miscellaneous
functions”. They were introduced by Mittag-Leffler [35] and extended to two indices by
Agarwal [4]. Now their definition and properties can be found in many recent books and
surveys on fractional calculus, integral and differential equations, mechanics, control
theory, etc. like: Podlubny [45], [46]; Gorenflo and Mainardi [18]; Kiryakova [24];
Kilbas, Srivastava and Trujillo [23]; etc., as seen for example, in the 10—years contents of
the journal “Fractional Calculus and Applied Analysis” [25]. To repeat Gorenflo and
Mainardi from [18], “the M-L function exited from its isolated life as Cinderella of the
SpecialFunctions, to become the Queen of Fractional Calculus”!

The Mittag-Lefﬂer functions E (Z) ([35]) and Ea B(Z) ( [4]), defined by

E,(z)= Zr( o Far®)= Zr( Y ,a>0,8>0, (1)

are “fractional index” extension of the exponential and trigonometric (resp. hyperbolic)
7k k _2k
-1
Z )z , satisfying ODEs of the
“T(k+1)° “T(2k +1)
form D" y(Az)=A" y(z),n=1,2,...0f 1" and 2™ (in general, integer) order.

Indeed, in the case of (11) we have fractional order (FO) differential equations, for
example like this:

Dy(z)=Ay(z) with y(z)=za'1Ea’a(/”Lz“) , a>0.

More complicated FO differential and integral equations solved by M-L functions can be
seen as examples, in: Samko, Kilbas and Marichev [51]; Podlubny [46]; Kilbas,
Srivastava and Trujillo [23]; Saqabi and Kiryakova [52]; and in series of other papers in
the FCAA journal, [25].

functions exp(z) = z
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Each Mittag-Leffler function £ (z),E, 5 (z), @ >0, is an entire function of

order p =/ and of type 1; in a sense, the simplest entire function of this order. In the
P @ yp p

limit case for a —> 40, the analyticity in the whole complex plane is lost, since
k] , .
E\(z2)= Zz =15 | z|< 1. Many of the properties of the M-L functions follow
—Z

from their integral representations, differential relations, including such in terms of
fractional calculus operators, and their asymptotics, as

| z7
r(p) T(B-a)
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For | z |—> o0 the asymptotic behavior of the M-L function in the complex plane is quite

z—>+40,

E, ;(-4z%) ~
Z—>

different, depending on the angle sectors and the values of the parameters; a fact
analogous to the known Stokes phenomenon for the Airy functions. The fundamental
role of the M-L function in FC and in solving problems by means of Laplace transform
method, is due to the general form of its Laplace transform image (see [45], [46], [18]):

aﬂ y
L{z"E, j(-Az° )s}— 'R Re(s)>| A . (12)

As more general, the following special functzons of M-L type are often used in FC, see
Podlubny [44] — [46]:

¢ (z i, B)=z""""ES (A7), k=0,1,2,... (13)
They satisfy more general fractional differential relations and have Laplace images,
allowing to interpret, after suitable decomposition, almost all the rational functions of §

(for Re(s) 5| A1/, k=0,1,2,...):

o0 ' a—ﬂ
LI, (2. 250, f)is) = [exp(=s0) €, (2, thsar, fdds = —o

0 (s“FA)
Most of the basic properties of the M-L functions are contained, for example, in:
Erdélyi et al. [14], vol. 3; Dzrbashjan [13]; Gorenflo and Mainardi [18]; Podlubny [44] —
[46]; Kiryakova [24]; Kilbas, Srivastava and Trujillo [23]; etc. Earlier numerical results
and plots of M-L functions for basic values of indices can be found, e.g. in Caputo and
Mainardi [7], Gorenflo and Mainardi [18], and for some recent ones, see in the FCAA
journal [25]. A generalization of the M-L function (11) with additional parameter p has

(P i
[(ak+p) k!

. (14

been considered by Kilbas et al. [21], [23] in the form E? ,(z) = Z
=0
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Examples of M-L functions:

° 01(z)— — s B (z)=expz; E21(z )=coshz,
E, (-z’)=cosz, E%‘1 (\/;) =expz[l+ erf(\/z_]: expz erfc(—\/z_)

=expz[l+ L 7(%,2)] (the error functions and the incomplete gamma function);

N
. :E1,2<z)—e"pz Ey (@)= sz Ezz()—si’/\é;:ef&

It is useful to discuss the place of the M-L functions among the other special
functions of mathematical physics. Most of them (all the classical orthogonal
polynomials, the Bessel type and cylindrical functions, the Gauss and the generalized

hypergeometric functions qu , etc), together with all their special cases and the basic

elementary functions, can be represented in terms of the qu -functions and of the so-
called Meijer's G-functions (see e.g. Erdélyi et al. [14], vol. 1). However, the M-L
functions of irrational index & # % are examples of special functions that do not fall

even in this general class of special functions. Thus, they require further generalizations

like the Wright’s generalized hypergeometric functions p b 4 p and the H-functions of Fox:

B LD L 0,1)
Ea,p‘(z)_l L ﬂ)| } H1,2{ |(0,l),(1—ﬂ,a)} . (15)

We remind the following definitions of special functions. By a Fox’s H-function
we mean a generalized hypergeometric function, defined by means of the Mellin-Barnes
type contour integral

ol ] 1 g Hk:]r(bk—Bks)Hl_:]r(l—aj+Ajs) (16)
LN prd = ; o ds,
s By CHk:mHl"(l—bk+BkS)H‘/_:n+ll"(aj—Ajs)

where C is a suitably chosen contour in C (one of three possible types); the orders
(m,n, p,q) are integers 0<m<gq, 0<n<p and the parameters a; eR,4; >0,

j=L..,p;beR B >0,j=1,...,g are such that Aj(bk+l);tBk(aj—l'—l),

1,I'=0,1,2,...For the various type of contours and conditions for existence and

analyticity of H-function (16) in disks {|z|< p}c(c whose radii are
-B
p= H, A H B, >0, one can see the books [49], [22], [23], [24], etc. For

4 =..=4,=1,B =..=B,=1, the H-function (16) is reduced to the simpler G-

function of Meijer, which can be seen also in Erdélyi et al. [14], vol. 1, Ch. 5. The
Wright generalized hypergeometric functions ([56], [57]; see also [49], [22], [23], [24]):



Some Special Functions Related to Fractional Calculus and Fractional (Non-Integer) Order Control Systems and Equations 87

(b1, B)ss (b B,) < (b, +kB))..I (b, + kB,) k!
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p-q+1
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0,D,(1=b,,By),

together with the M-L function and its generalizations considered in the next sections,
will be termed as special functions of fractional calculus. These are examples of special
functions, which in contrary to the known special functions of mathematical physics, are

not represented as » F:] - functions and Meijer G-functions:

. (a));-(a,); zF
FalGieepibyenbyic) = Z(bl)k (b)) K
e | {(al,l),...,(ap,l) 1

o (18)
Hler(aj) P (blsl)s---,(bq,l)

Ty 700 | G {— |1—al""’1_“p}

patl| 9
@) 0.1=by,.l =,

and do not satisfy differential equations of mathematical physics of integer order.

In [27] we proposed a general procedure for introducing classes of special
functions by means of generalized fractional calculus operators of some basic
elementary functions. As simplest example, most of the classical orthogonal polynomials
can be defined by means of Rodrigues type formulas including integer order
differentiations. The idea to extend them by means of fractional order differentiations and
so to obtain “fractional index” classes of special functions has already a long history.
Recently, it has an extension in the papers of Boyadjiev et al. [17] and [20], where
fractional Jacobi polynomials, fractional Gauss functions and Caputo-type fractional
Laguerre functions have been considered. We like to mention also the functions
introduced by Virchenko [55], as other typical cases of special functions of fractional
calculus of the form (17), recently studied towards applications by many other authors.

3. MULTI-INDEX MITTAG-LEFFLER FUNCTIONS

We give here a brief survey on a new class of special functions, introduced in our recent
papers [28],][29], closely related to the generalized fractional calculus (GFC, Kiryakova
[24]). They are applicable for operational calculus techniques for some operators of the
GFC, as well as for solving differential and integral equations of fractional multi-orders,
as in Kiryakova et al. [3],[2]. These functions generalize simultaneously the M-L

functions — with respect to number of indices (we replace the indices & = %) ,P=u,

by 2 sets of indices (%71 %)m),( Hysees i) ), and the hyper-Bessel functions of
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Delerue [8] (see also Kiryakova [24], Ch.3, Ch.4; [27]) — with respect to fractional
indices (instead of the same number 7 of integer ones).
Namely, let # > 1be an integer, and Pls-s P > 0and g,..., 1, be arbitrary real

parameters. By means of these “multi-indices”, the multi-index Mittag-Leffler functions
(multi-M-L f.) are defined as follows:
k

E (2)=E) ()=, z (19)
/o)) /o) >
o o i Dy + %l)r(ﬂm + %m)

the upper index (m2) usually omitted, unless we like to specify the multiplicity m.
In [29] it is proved that (19) are entire functions of order p and type o , with:

Vot ot Yo @ = OO,

(note that only for m=1, the classical M-L functions have type ¢ =1), from where also

an asymptotic estimate follows for every positive & and 7, (&) sufficiently large:
P
| E(%)[)’(yi)(z) |< exp((c7+g) | z| ), |z [=27(£)>0. 20)

A more exact asymptotics follows for large | z | from the representation below of the

multi-index M-L functions as H - and q‘-I" 0" functions, namely (see [3]):

1 m

) o
By @ EM 2] exp(o]z1) . |zl

Similarly to (15), the multi-index Mittag-Leffler functions (19) are #ypical

representatives of the fractional calculus’ special functions: the generalized Wright
hypergeometric functions, and in general — the Fox H-functions, see Kiryakova [28],[29]:

Eon@= Ve g O e
z)= z |=H —z m |-

A7 ) () 15 m (/uﬁ%)i :ﬂ Lm+l (0’1)’(1_’ui’%)i)l

This yields, from the known facts for the H-functions, a series of properties and rules

how to operate and calculate with the multi-M-L functions, as well as the Mellin-Barnes

type integral representation:

L[ TG0 gy (2

E -
Sopw D 2a AT = )

In the last section we shall provide a long list of special functions of fractional
calculus that happen to be particular cases of the multi-M-L functions (19).

Now we continue the exposition on this class of functions with stressing to their
relations to the operators of the generalized fractional calculus (GFC) and to the
Gelfond-Leontiev operators for generalized differentiation and integration.
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4. GENERALIZED FRACTIONAL CALCULUS OPERATORS RELATED TO THE
MULTI-INDEX MITTAG-LEFFLER FUNCTIONS

In the generalized fractional calculus (GFC, Kiryakova [24]) we introduce generalized
operators of integration and differentiation of fractional order, based on compositions of
finite number (m>1) of classical fractional integration and differentiation operators, but
written in terms of single integrals involving special functions as kernels. Let m > 1 be
an integer and (9, 20,...,5,, 2 0),(7;,....¥,,) be two sets of real parameters. Instead of the

repeated integral representation for a commutable product of Erdélyi-Kober (E-K)
fractional integrals

m I L
1) =T [ a5, with denotation 15° £(z) = J-(l —0)Y o’ fzoP)do,  (23)
k=1 0

(for y=0,=1, 1 ;”5reduces to the R-L fractional integral (3)), we consider the

generalized fractional integral of multi-order (0, >0,...,0, = 0) defined by

11
(g +0f +1-————)

1
1) =150 1) = [Hy| o e P f(zo)do, @)

0 Yk ‘H—E,E)
if 6+0,+..4+9,>0, and by the identity operator 7f(Z) = f(z), if
0, =0, =...= 0, =0.The kernel-function is a specially chosen Fox’s H-function (16).

The corresponding generalized fractional derivatives in GFC, [24] are defined
analogously to the idea of the R-L fractional derivative (4), as

D(Yk (%) D [(M +6).(7 =6, )

Bom L gom with integers 7, >J;,k=1,..,m, and differential

operator Dn being a polynomial of zdi, for the details of the theory one can see
z

Kiryakova [26],[24], [27], etc.

In [24], Ch.2, we considered the so-called Gelfond-Leontiev (G-L) operators of
generalized integration and differentiation (see [16]), generated by the classical M-L
function (11). Then it happened that these operators are special cases of the E-K

fractional integrals (as defined in (23)) and the E-K fractional derivatives D;"s, and the
corresponding analogue of the Laplace transform was called as Borel-Dzrbashjan
transform. By means of suitable convolution operation and inversion formulas, elements
of a respective operational calculus for the E-K operators have been demonstrated.

Now, we consider G-L operators for generalized integration and differentiation,
related to the multi-index M-L functions (19). Let f{z) be an analytic function in a disk

Ap = {| z|< R},R >0,and p,...,p, >0and g,..., 4, be arbitrary parameters (the indices

of function (19)). The correspondences:

F@=Ya > DfE)=Dy o f@ L) =1, /@) @5
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) B SRR L)
Df(z):Zak Al p’f 7,

= k=1
k=t T(+——)..L(up+—)
Pl Pm

k k (26)
- i [ +E)...r(ﬂm +p_) o
Lf(z)= a, m_ Gk
k=0 T +E)~T(ym +E)
Al Pm

we call multiple Dzrbashjan-Gelfond-Leontiev (multi-D-G-L) differentiations, resp.
integrations, or: G-L type operators of generalized differentiation and integration
generated by the multi-M-L functions (19).

Operators (26) can be analytically continued outside the disks of
convergence A, , in spaces of holomorphic functions in starlike domains, as elements of

the GFC, namely we have shown (see [28],[29]) them to be generalized fractional
integrals and derivatives in the sense of (24) (see Kiryakova [24]):

e f(0) )

L1 =217 1y | By =D foy- @7)

2= ——)
Pi

It is very important to note that the multi-index M-L function (19) satisfies the following
fractional order (exactly said, “multi-order” (L,...,L)) differential equation (FODE):
o Py

1

Diyviir Earppiuy (A2 =AE 0y (A2), A#0, (28)

where the D-G-L generalized fractional derivative I

symbolically in terms of composed R-L fractional derivatives, in the form
m 1 1 1 1
1+(1=2) p; -1
=z AR L AR B S ) LIS ) Le- Ll ) L AL I 1)
" z z'2 zrm
k=1

can be written also

D(p )84 ) ;

Looking on the operator L in (26),(27) as a linear (integral) operator mapping a linear
space into itself, and following the general scheme of Dimowvski for convolutional calculi
(started by his paper [9], see also Dimovski and Kiryakova [10],[11], Kiryakova [24]) we

were able to construct a family of convolution operations for L, the simplest one of
them having the representation (in terms of the GFC operators (24)):

(F28) @ IG5 (Fo ), where

(feg)a)= I IH[t (1-1 )] {zﬁt,;} g{zﬁ(l—ti);}dt]...dtm .

0 i=1

(30)

In terms of this convolution operation, which is a linear, bilinear and commutative
operation for which L satisfies L(f % g) = (L f)%g , we have the following “product” of

two multi-M-L functions (evident analogue of the convolution properties of the
exponential and classical M-L functions!):
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“E @D TPE )P
m
(a—=p) 1 7)
i=

For the details and proofs, see Kiryakova et al. [29], [2] and [3].

E%y_),w,-)mz)*E%i),(m)('Bz) = »a=f. G

5. LAPLACE TYPE INTEGRAL TRANSFORM

In [11] we have shown that the role of the Laplace transform for the D-G-L operators

D,,,L,, (m=1)related to classical M-L function £ Yo (z) can be played by the Borel-
Dzrbashjan integral transform: B, , {z akzk} = ak’j] F(u+ %), in general:
k=0 k=0 S

©

B, {f(2):s}=ps* [exp(-s°2") 27 f(2) s, (32)

1
fe)=5— j E, (s2)B,,\f3s)ds.

In the case of the multi-index M-L functions, the new Laplace type integral transform is
the H-transform (for the H-transforms, in general, one can see [22]) introduced and
studied by Kiryakova et al. [28],[29], [3], with a H-function (16) as a kernel-function:

B(s)=B,,, \f@)s}= [ H {sﬂ o %_ v )} f(2)dz, (33)
0 i Pi’ / Pi

called multiple Borel-Dzrbasjan (multi-B-D) transform, corresponding to the D-G-L
operators (25),(26). In case of functions analytic in a disk, (33) has the more visible form

CEDWER OF is”k’; [Tre+5,)-
k=0 k=0 i=1

It is interesting to list the following properties relating (32) to multi-M-I functions and
multi D-G-L operators, analogous to the relations of the Laplace transform to the
exponential function and to classical integration and differentiation operators:

1
B(p,»).(/t,») {E(l/p,)»(ﬂ;)(z)’s} = s—1 >

1 ) .
B {L<p,)~(u,>f (Z)?S} = ;B(p,m(u,-) {f(2);s} (integration law),

Bl { P/ G)is} = 5 By L1 @i} = 1O [ [T () (@i taw),

i=l1

Z*’i

@)=

— dg { _[ s B(s) ds} (complex inversion formula).
c Hi:]r(ﬂf —-q/p)

0
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For the details and proofs, the space of transformable functions, images of some basic
originals, a Post-Widder type real inversion formula, special cases, see in [28], [29], [3].
Let us note only one nontrivial special case, widely known recently as the

Obrechkoff integral transform (Dimovski and Kiryakova [10]; Kiryakova [24], Ch.3.;
Kiryakova [30]), represented both as a G-transform (with a Meijer’s G-function as

kernel) and as a generalized Laplace type transform:

(7;"'1_/51.)

=B j K [(s2) | fz) e, with kernel-function (34)
0

O{f(2ys}=ps" [ Gy {(sz)ﬁ | } f()dz

K(z)= J....Jexp(—ul —Uy — .. — U, | — JHuiy"""_] du,..du,, .

0 0 i=l
This integral transform plays the role of the Laplace transform in the operational calculus
for the so-called Ayper-Bessel differential operators of arbitrary order m> 1, considered
first by Dimovski [9] and studied further by Dimovski and Kiryakova (see [10], [24],

[30]) and representable in the alternative forms:

d d d 2 od
Bz L m L o Lo (2
el &t & TF lk:l[(zdz Pr)

z
Uy

m

m m-1 (35)
- m d m-1 d d
=z z"—+az —+..ta,z—+a, |, 0<z<o,
dz dz dz
as natural extensions of the 2™ order Bessel differential operators, of the m-th order
differentiation and of many linear singular differential operators with variable

coefficients, appearing often in problems of mathematical physics and engineering.

6. EXAMPLES OF MULTI-INDEX MITTAG-LEFFLER FUNCTIONS
° : This is the classical Mittag-Leffler function E,, ,(z) with all its special cases
P

(see Sect. 2, and in the other References).

® The Rabotnov function, used by him (see e.g. [50]) in viscoelasticity to
describe the hereditary properties of materials (inexplicitly applying fractional calculus’
models and techniques) is a special case of the M-L function:
a X ﬁk Zk(aﬂ) a a+l
d, (B,z)=z ——=z"E_, .(Bz"), 36
a(ﬁ ) ;F((kﬂ-l)(]-r—a)) 1, l(ﬁ ) ( )
see Podlubny [46], p.19. There, one can see also for similar functions called fractional

sine and cosine, used by Plotnikov and Tseytlin, in solving BVPs of civil engineering.
k

z
¢ =2l E )@=, Gl ) = .6
(l k

o Uy +k p)U (1, + K/ py)
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This is the Dzrbashjan function, introduced and investigated in [12] in whole details,
analogous to the known facts for the classical M-L function. Dzrbashjan used this study
to develop a theory of integral transforms in the class L, There, he mentioned also as
special cases of this M-L type function the following (incl. M-L and Bessel functions):
2
@, (z1]) =ﬁ;@p,w(2;#,1) =E, ,(2); ( ) Q,(——;Lv+D=J.(2). (39
- P
It happens that we can enlarge substantially this list of known special functions,
obtained from the case m=2 of the multi-M-L functions:

® The functions usually called Bessel-Maitland functions (when denoted
asJ) (z)) or Wright functions (when denoted as W(z;a, f)), are typical examples of
special functions of fractional calculus:

hE= W(_Z;%),V = LV +1L,7) | _Z} ) Héo {Z | 0,1),(-v, r)} ) E(('iz)'(v+l’])(_2),

k

, x ) N @" o _
J(z)= zok'r(v+rk+1) W(za,f) = ZO r=a>-1,v+l=L£>0.(39)

K\T(ak+ B)

Entire functions (39) were introduced by E.M. Wright in [56] and originally considered
for « >0 in the framework of the asymptotic theory of partitions, and only later also for
—-1<a <0, in [57]. Their definitions and properties could be seen, for example, in:
Marichev [33], Prudnikov, Brychkov and Marichev [49], Kiryakova [24], Podlubny [46],
Kilbas, Srivastava and Trujillo [23], etc. Wright’s function has been used in the scheme
of Laplace transform/operational calculus, by Mikusinski [34] and for integral transforms
of Hankel type involving (39) instead of the Bessel functions, by Stankovic [54], Gajic
and Stankovic [15].

® In a special case, Wright’s function (39) has become recently popular as the
Mainardi function, used in a series of his papers (as [31], [32], [18]) as an auxiliary
function, to represent the Green function in solving IVPs for the fractional diffusion-
wave equations (as already mentioned in Sect.1):
© k _k
M(za)=W(z-al-a)=3 D'z

———————  with some examples as:
kT (—ak+1-a)

(40)
M(z; /) exp( —) , M(z; /) 323 Ai( ]/3)) (the Airy function), etc.

Let us pomt out an interesting relation between the Wright function (multi-M-L
f. with m=2) and the M-L function (multi-M-L f. with m=1): namely, the Laplace
transform of the Wright function is expressed in terms of the M-L function (see [14], vol.
3, # 18.2; [46], p.39; [23], p.55):

L{W(z;a,B);s} =— ﬂ( ). 1)

Later, we shall comment an analogue of (41) in the general case m>1.

® The generalized Bessel-Maitland function, introduced by Pathak [43] is
defined by an additional parameter 1 € C :
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® 1V 2%
JJ;(Z):(Z/2)V+MZ D" (z/2) ,
” STWw+rk+A+DC(A+k+1)
for details see Marichev [33], Prudnikov, Brychkov and Marichev [49], Kiryakova [24].

This is a multi-M-L function with m=2; p, =1/r,p, =g, =v+A+1Lu, =4 +1:

(R} z?

2
E =@y ED “E @3
2 v+ A+1r), (ﬂ,+1)| 4 :| (z/2) (r,l),(v+/1+l)[ 4 J (43)

(42)

J:,/l (2)= (Z/Z)HM Y

e Let in (42), then (see [33], [24], Erdélyi et al. [14], vol.2):

22—2&—1'
J()=———— &, z), the Lommel function:
v,l( ) F(/I) 1"(& + V) -l+v—],v( ) f (44)
s @ ! a-v+3 a+v+3 2
o (a-v+D)(a+v+]) 7 2 7 2 7 4

e [f additionally, |4 =1/2]|, (44) and therefore, (42)-(43), becomes the Struve

1-v

T
Jr Tw+1/2) "

® The generalized Lommel-Wright functions, see de Oteiza, Kalla and Conde

function (see Erdélyi et al. [14], vol.2; [33], [28], [29]): H,(z) = (2).

[40], Prieto, de Romero and Srivastava [48], Paneva-Konovska [42], are defined by

o k k
Jrn _ /2 v+24 (_]) (2/2)
s (2)=G/2) ;(r(mmn)” C(v+rk+A+1)

=(z/2)" ¥, { (LD —Z—} (45)
A+LD,..,(A+LD),(v+A+Lr) 4

2
_ V424 (2) z
=(z/2) E(],l,,.A,],r),(l+l,/1+],,“,/1+],v+i.+l) (_Tj , ¥>0,neN,v,1€C,

and as seen, are also multi-index Mittag-Leffler functions with m=2.

Applications of functions (45) to fractional calculus and to problems of applied
science were commented in [40],[48]. Recently, Paneva-Konovska [41],[42] extended
her results concerning series in Bessel functions, to prove some theorems on the
convergence of series in the special functions of fractional calculus of the form (39), (42)
and (45), as analogues of the classical Cauchy-Hadamard, Abel and Tauber theorems for
power series.
® For arbitrary :

® Let Vp, = (i.e.l/p,=0)and Vg, =1,i=1,...,m. Then from definition (19),

. ST
EQy o n(@=22" = P
k=0 -z

® Consider the case m =2 with Vp, =1,i=1,...,m: then
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E((lml) num@ =Y L( i)| } H;IFM(I;y],...,ym;z)
#o T(p,)

reduces to, F, — and to a Meijer’s G". | — function. Denote w, =y, +1,i=1,...m and let

L.m+1

additionally one of x4, be equal to 1, for example, x, =1,i.e. y,, = 0. Then the multi-index

M-L functions become hyper-Bessel functions of Delerue [8]; see also Kiryakova [24],
Ch. 3 and Ch. 4; [27]:

S (@) = (2 m) ”"”[H,lr(h”)} Fy (7 + 1Yy + (27 m)")

= (z/m)" " E(m) —(z/m)™).
( ) (1,1,..‘,1),(;/1 +Ly, + LY +1)( ( ) )

Functions (46) are generalizing the classical Bessel functions J, with respect to number

(46)

of indices, as v = (7,,%35--»%,,,), M =2 —> arbitrary m >2. These functions, with a

permutaion of indices, form a fundamental system of solutions of the hyper-Bessel ODEs
of arbitrary order m, containg the hyper-Bessel differential operators (35). In view of the
above relation, the multi-index M-L functions can be seen as fractional-indices analogues
of the hyper-Bessel functions (46), related to the “fractional analogues” of the hyper-
Bessel operators of the form (29).

In general, for rational values of Vp,,i=1,...,m, the multi-M-L functions (19)
are representable via G-functions of Meijer, otherwise these are typical H-functions
related to generalized fractional calculus.

One more note is interesting, as a trial for extending relation (41). Let us take a
Laplace transform of an arbitrary multi-index M-L function. According to the formula
(2.5.16) from Kilbas and Saigo [21], p. 45, we get an analogue of (41):

. (0,1) ol
{ By @) s} {H]mﬂ{ |(0 D, (1= 4,1/ p, lm}s}_m

l 0,1) 1 ~ 1, .
=—H |— == E"D (2),if we tak =p =1,
s 1m {S |(1 11/ p)" s (l/p!),(‘u,)(s) wwetake 4. = p,

Continuing in this way, by taking V. =1, Vp, =1, we shall finally reach to (41) and to

special cases of (12),(13). On the other hand, the analogue (33) of the Laplace transform
corresponding to multi-M-L functions (19) and respective operators (26),(27), is nothing

47

. . 1 .
but the simplest expression B, , ., {E(”pr)!(#l)(z);s} =7 given in Sect. 5.

® And what about the multi-M-L functions, if we suppose Vu, =1,Vp, =1, as
above? We have the special function

E('" e @ = E,0GL. L)y = F, (551, 52) = Z (48)
k=0

k')’" ’
analogous to a Bessel function of index v =0 when m=2 in (46). It is seen from Erdélyi
et al. [14], vol.1, Ch.4, after skilled manipulations, that function (48) satisfies the singular
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ODE of the simple form: (Zdi) y(z) =0,related to the “hyper-Bessel” differential
/z

operator (35) of arbitrary order m>1, but of the simple form B, = l[zdi) ,m>1. For
z iz

it, operational calculi (as particular to one done by Dimovski [9] in the general case) and
Laplace type integral transforms (as later shown to be special cases of the earlier
introduced Obrechkoff transform (34)) have been developed in the years 1960-1965 by
several authors as Meller, Ditkin, Prudnikov and Botashev. Historical details can be seen
in Dimovski and Kiryakova [10], Kiryakova [24], [30]. A fundamental system of

solutions for the ODE with the operator (z di)"’ + z, has been proposed in terms of the
Z

functions (48) by Adamchik and Marichev [1].

Acknowledgement: The author would like to thank the organizers for the kind invitation to present
this survey paper at the conference SAUM 2007 at the University of Nis, November 2007.
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NEKE SPECIJANE FUNKCIJE KOJE SE ODNOSE
NA RACUN RAZLOMAKA I UPRAVLJACKE SISTEME
1 JEDNACINE RAZLOMLJENOG REDA

Virginia Kiryakova

Ovaj rad ima za cilj da privuce paznju inZenjera i naucnika koji se bave primenjenom matematikom,

a koji su voljni da otkriju nove i korisne analiticke metode za rad sa realnim matematickim modelima, od
aplikacija u kojima se srece racun razlomaka kao i M-L tip funkcija kao poseban tip FC funkcija, do

urpavijackog sistema razlomljenog reda i drugih

matematickih modela razlomljenog reda.)

Predstavljamo generalizaciju multi indeksa M-L funkcija i diskutuje se o njihovim osobinama, odnosu
prema generalizovanim FC kao i odgovorajaucem tipu Laplasove transformacije. Neocekivano dugacka
lista primera je data, za matematicke specijalne funckije (neke od njih — dobro poznate ) sa upotrebom
na resavanje problema koji prositicu iz primenjene matematike, ukljucujuci i teoriju upravijanja.

Kljucne reci: Mittlag-Leffler funkcije, posebne funkcije, racun razlomaka,diferencijalne jednacine i

sistemi razlomljenog reda, teorija upravljanja, masinstvo, upravljanje.
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