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Abstract. In this paper fuzzy-neuro-genetic control of an electromechanical actuator 
(EMA) system for aerofin control (AFC), with permanent magnet brush DC motor 
driven by a constant current driver, is investigated. In our previous papers, nonlinear 
model of the EMA-AFC system and different classical and hybrid classical-
computationally intelligent control systems have been designed and tested. In this 
paper we have proposed fuzzy and neuro-fuzzy control with genetic optimization. 
Proposed intelligent control systems, providing good transient response and system 
behaviour, have been validated by various numerical experiments and compared to 
previous results. 
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1. INTRODUCTION 

Due to the increased importance placed on maintainability, the use of electromechani-
cal actuation is becoming increasingly popular in aerospace industry and thus electrome-
chanical actuators (EMAs) are being used more in the actuation of flight critical control 
surfaces. Wide acceptance by the aerospace community and successful application for 
flight-critical actuation requires good understanding of the dynamic properties of these 
actuators, which drives forward extensive research, development and testing [1-4].  

In our previous research [7-9] we considered an electromechanical actuator system for 
aerofin control (AFC), driven by a permanent magnet brush DC motor. For this applica-
tion we developed a constant current motor driver. Control signal was pulse width modu-
lated (PWM). Physical realization of such solution is usually simpler and cheaper than the 
conventional voltage driver. 
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Also, in [7-9,13] we have introduced a simulation model of the EMA-AFC system, 
taking into account nonlinearities due to mechanical limitations of the fin deflection, lim-
ited motor torque and angular velocity, friction in gears and bearing, backlash in gears 
and lever mechanism, etc. We have also modelled the current motor driver, which was of 
the importance for understanding the behaviour of the system and the control algorithm 
synthesis. We have shown that the developed model matches the real EMA-AFC system 
dynamics, and is suitable for further investigation, thus it was also used in this study. 

Initially, in [8-9] we have developed control with conventional PID position controller 
and nonlinear NPID controller for EMA-AFC system, which were experimentally vali-
dated in testing system. In [13], computational intelligence techniques, namely genetic 
algorithms and fuzzy logic, have been introduced to propose control algorithm improve-
ments, resulting in hybrid fuzzy gain scheduling of PID controllers implemented as fuzzy 
supervisory control and genetic optimization of conventional controller parameters. In 
this paper we investigate pure computationally intelligent alternatives to previous solu-
tions, with the aim to investigate a full range of conventional, hybrid and computationally 
intelligent control solution. 

Therefore we propose fuzzy-neuro-genetic solutions for the aerofin control. Validation 
through numerical experiments is presented, results are compared to previous ones and 
advantages and drawbacks of intelligent approaches are commented on. 

2. AFC SYSTEM, TEST BENCH AND MODEL 

Aerofin control (AFC) system, considered here, is the control of the missile using four 
grid fins. The grid fins configuration is depicted in Fig .1. 

 

Fig. 1 Missile layout and principal actuator placement for aerofin control 

By deflecting grid fins, moments are generated about the centre of mass, which in turn 
rotate the airframe. The resulting incidence angles generate aerodynamic forces, which 
accelerate vehicle in the desired direction [4]. The missile autopilot sends roll, pitch, and 
yaw commands (x , y and z) to the AFC system, which are separated into individual fin 
commands, i.e. angles i, where i=0,1,2,3. Each actuator module requires independent 
position control of the surface deflection, usually less than 10. 
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Fig. 2 schematically illustrates fin actuator assembly, while Fig. 3 presents the EMA-
AFC test bench, designed to provide simulation of real load forces in the AFC system. 

 

Fig. 2 Fin actuator assembly                     Fig. 3 EMA-AFC test bench. 

The control computer is actually an onboard computer (OBC) providing control signal 
which is pulse width modulated, and 2 flags are forwarded to the motor driver [7,8]. To 
simulate inertial load, the grid fin has been mounted on the actuator assembly.  

Nonlinear simulation model of the EMA-AFC system has been presented in our pa-
pers [7-9], along with the effective approximation of the motor driver. According to me-
chanical design parameters and vendor motor specifications, model coefficients have been 
fully defined. 

3. CONTROLLER DESIGN 

As stated before, control systems presented here are extensions to our previous results 
published in [7-9,13]. There we have considered PID position controller [6], its nonlinear 
modification NPID [5] as well as fuzzy supervisory control as a form of PID gain sched-
uling [11]. Moreover, we have applied genetic algorithms for optimization of all proposed 
controllers [12] in that way exploring efficiently hybrid conventional-computationally 
intelligent [14,15] solutions. Contrary to that, we have explored here pure soft computing 
alternatives to our previous results. 

3.1. GA optimized Fuzzy PD controller  

The most-used classical direct fuzzy PD controller has been designed, as fuzzy alter-
native to our previous classical solutions indicating that proportional and derivative terms 
could stabilize the system and provide good performance. 

Universes of discourse of the input and output variables have been selected on the ba-
sis of previous extensive experience with the system. For example, fin deflection that is 
allowed is 10 (although maximal error that could be expected is in the interval [-20, 
20] since from one extreme fin position the opposite one could be commanded), while 
control output is limited to the range [-2.5V, 2.5V]. To provide for efficient performance 
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optimization, input values of the error and its derivative and output value are multiplied 
with corresponding gains KP, KD and KU. 

Fuzzy partitioning of the input and output controller variables has been performed by 
choosing 5 primary fuzzy sets for each variable which are marked with corresponding 
linguistic terms that occur in fuzzy control rules, and are shown in Figure 4. 

  

Fig. 4  Choice of the primary fuzzy sets and membership functions defined on the appropriate 
universes of discourse for one of two input variables and controller output 

Rule base applied is complete and conservative, i.e. it has 25 rules and resembles 
common solution for fuzzy PD controller. The rule base and corresponding controller 
surface are presented in Figure 5. 

1. If (e is NB) and (de/dt is NB) then (u is NB)  
2. If (e is NB) and (de/dt is NS) then (u is NB)  
3. If (e is NB) and (de/dt is ZO) then (u is NS)  
4. If (e is NB) and (de/dt is PS) then (u is NS)   
5. If (e is NB) and (de/dt is PB) then (u is ZO)   
6. If (e is NS) and (de/dt is NB) then (u is NB)  
7. If (e is NS) and (de/dt is NS) then (u is NS)  
8. If (e is NS) and (de/dt is ZO) then (u is NS)  
9. If (e is NS) and (de/dt is PS) then (u is ZO)   
10. If (e is NS) and (de/dt is PB) then (u is PS)  
11. If (e is ZO) and (de/dt is NB) then (u is NS) 
12. If (e is ZO) and (de/dt is NS) then (u is NS) 
13. If (e is ZO) and (de/dt is ZO) then (u is ZO) 
14. If (e is ZO) and (de/dt is PS) then (u is PS)  
15. If (e is ZO) and (de/dt is PB) then (u is PS) 
16. If (e is PS) and (de/dt is NB) then (u is NS) 
17. If (e is PS) and (de/dt is NS) then (u is ZO) 
18. If (e is PS) and (de/dt is ZO) then (u is PS) 
19. If (e is PS) and (de/dt is PS) then (u is PS)  
20. If (e is PS) and (de/dt is PB) then (u is PB)  
21. If (e is PB) and (de/dt is NB) then (u is ZO) 
22. If (e is PB) and (de/dt is NS) then (u is PS)  
23. If (e is PB) and (de/dt is ZO) then (u is PS)  
24. If (e is PB) and (de/dt is PS) then (u is PB)  
25. If (e is PB) and (de/dt is PB) then (u is PB)  

Fig. 5 Rule base and controller surface for conservative Fuzzy PD controller 
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Applying Mamdani's minimum operation as fuzzy implication function, the firing 
strength and i-th rule control decision are given by the expressions: 
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Since it was not possible to linearize the current motor driver due to two-level current 
output, extensive simulation was necessary. Input/output gains of the controller were ex-
pected to be around unity since domains of the controller variables were chosen realisti-
cally on the basis of previous experience. Experimental fine tuning provided KP = 1, 
KD = 0.9 and KU = 1. To provide for less obvious but possibly optimal value set of con-
troller gains, genetic optimization technique has been used to fine tune KP and KD, pro-
viding simple and robust alternative to experimental parameter adjustment. Since control 
output is limited to the range [-2.5V, 2.5V] which corresponds to domain of the output 
fuzzy variable, value KU = 1 was fixed. 

 

Fig. 6 Offline fuzzy controller input gains optimization 

Genetic algorithms are one of the evolutionary computational intelligence techniques 
[10], inspired by Darwin’s theory of biological evolution and pioneered by Holland. GAs 
provide solutions using randomly generated bit strings (chromosomes) for different types 
of problems, searching the most suitable among chromosomes that make the population in 
the potential solutions space. It is an alternative to the traditional optimal search ap-
proaches in which it is hard to find the global optimum for nonlinear and multimodal op-
timization problems. Thus, GAs have been successful in solving combinatorial problems 
[10] as well as in many control applications such as parameter identification and control 
structure design [12].  
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Here we have implemented GA for controller gains tuning in offline approach, as it is 
presented in Figure 6. Therefore, we defined the cost function to minimize tracking error. 
Designed cost function was defined as: 
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where r is reference variable, y is controlled output, e is control error and N is number of 
patterns. GAs performance depends on its parameters values, so GA parameters were 
selected by making numerous experiments. 

Finally, the obtained GA optimized Fuzzy PD controller gains were KP = 0.689 and 
KD = 0.5, while the best obtained fitness value was J = 284308. 

3.2. GA optimized modified Nfuzzy PD controller  

With the aim to further improve the controller performance, we have proposed modi-
fications of the conventional Fuzzy PD controller. Actually, the EMA AFC system per-
formed well with GA optimized Fuzzy PD when the error signal was large, i.e. the tran-
sient response is fast, but when the error approaches zero, the system becomes too slow. 
This is quite reasonable, because for large values of the reference input angles αr, the load 
torque from aerodynamic force is maximal. In addition, there are effects of friction and 
gear backlash.  

Modifications to input/output membership functions and rule base, as well as resulting 
improved controller surface are presented in Figs 7 and 8. 

  

Fig. 7 Modified membership functions of NFuzzy PD controller  

Input gains of the modified Nfuzzy PD controller were determined by the same offline 
optimization with GAs as with conventional Fuzzy PD. Parameters have been adopted as 
KP = 0.69 and KD = 0.57, while resulting performance index was J = 277690. 

3.3. Neuro-fuzzy PD controller 

To further improve performance of the designed fuzzy PD control systems, a powerful 
tuning strategy has been used. Namely, by converting output fuzzy membership functions 
to singletons, Mamdani fuzzy PD controller has been made theoretically equal to Takagi-
Sugeno-Kang controller with constants in the consequent rule parts. Further, obtained 
TSK fuzzy system has been trained using powerful and well-known neuro-fuzzy ANFIS 
strategy [16]. 
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1. If (e is NB) and (de/dt is NB) then (u is NB)  
2. If (e is NB) and (de/dt is NS) then (u is NB)  
3. If (e is NB) and (de/dt is ZO) then (u is NS)  
4. If (e is NB) and (de/dt is PS) then (u is NS)  
5. If (e is NB) and (de/dt is PB) then (u is ZO)  
6. If (e is NS) and (de/dt is NB) then (u is NB)  
7. If (e is NS) and (de/dt is NS) then (u is NS)  
8. If (e is NS) and (de/dt is ZO) then (u is NS)  
9. If (e is NS) and (de/dt is PS) then (u is ZO)  
10. If (e is NS) and (de/dt is PB) then (u is PS)  
11. If (e is ZO) and (de/dt is NB) then (u is NS) 
12. If (e is ZO) and (de/dt is NS) then (u is NS) 
13. If (e is ZO) and (de/dt is ZO) then (u is ZO) 
14. If (e is ZO) and (de/dt is PS) then (u is PS)  
15. If (e is ZO) and (de/dt is PB) then (u is PS)  
16. If (e is PS) and (de/dt is NB) then (u is NS)  
17. If (e is PS) and (de/dt is NS) then (u is ZO)  
18. If (e is PS) and (de/dt is ZO) then (u is PS)  
19. If (e is PS) and (de/dt is PS) then (u is PS)  
20. If (e is PS) and (de/dt is PB) then (u is PB)  
21. If (e is PB) and (de/dt is NB) then (u is ZO)  
22. If (e is PB) and (de/dt is NS) then (u is PS)  
23. If (e is PB) and (de/dt is ZO) then (u is PS)  
24. If (e is PB) and (de/dt is PS) then (u is PB)  
25. If (e is PB) and (de/dt is PB) then (u is PB) 

 

Fig. 8. Rule base and controller surface of the modified NFuzzy PD controller 

ANFIS structure. Consider a first-order Takagi-Sugeno-Kang (TSK) fuzzy inference 
system [16] that consists of two rules: 

 Rule 1: If X is A1 and Y is B1 then 1111 ryqxpf    

 Rule 2: If X is A2 and Y is B2 then 2222 ryqxpf   (04) 

Fig. 9 illustrates the fuzzy reasoning mechanism and the corresponding ANFIS archi-
tecture, respectively. 

 

Fig. 9  First-order TSK fuzzy model using trapezoidal membership functions and  
corresponding ANFIS architecture 

Node functions in the same layer of ANFIS are of the same function family, as de-

scribed below where j
iO denotes the output of the ith node in layer j. 
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Layer 1: Each node in this layer generates membership grades of a linguistic label. 
For instance, the node function of ith node might be  
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where u1 is the input to node I, Ai is the linguistic label (small, large, etc.) associated with 
this node, and {a, b, c, d} is the parameter set that changes the shape of the trapezoidal 
membership function. Parameters in this layer are referred to as the premise parameters. 

Layer 2: Each node in this layer calculates the firing strength of each rule via multipli-
cation  
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Layer 3: The ith node of this layer calculates the ratio of the ith rule’s firing strength to 
the sum of all rules firing strength 
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Layer 4: Node i in this layer has the following node function:  
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Where iw  is the output of layer 3 and {pi, qi, ri} is the parameter set. Parameters in 

this layer are referred to as the consequent parameters. 
Layer 5: The single node in this layer computes the overall output as the summation of 

all incoming signals, producing the classification result:  

 

 

i

ii

i
iii w

yw
ywoutputoverallO5  (09) 

The hybrid learning algorithm. The hybrid learning algorithm of ANFIS consists of 
two alternating parts:  

 Back propagation/gradient descent (BP/GD) which calculates error signals (defined 
as the derivative of the squared error with respect to each node output) recursively 
from the output layer backward to the input nodes, and 

 the recursive least squares estimation (RLSE) method, which finds a feasible set of 
consequent parameters. Given fixed values of premise parameters, the overall output 
can be expressed as a linear combination of the consequent parameters 

 22222212111211112211 )()()()()()( rwquwpuwrwquwpuwywywy   (10) 

Here, as it was explained, ANFIS version with constant consequent parts instead of 
linear combinations of inputs was used, making it equivalent to Mamdani Fuzzy PD con-
troller with singleton consequent output variable fuzzy sets. 

Using ANFIS hybrid learning algorithm, starting Fuzzy PD controller has been fine 
tuned to replicate behaviour of the GA optimized nonlinear PID controller we have pro-
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posed in our previous paper [13], being referent in the sense that it provides superior 
closed loop performance. To facilitate for that, NPID controller has been reduced to NPD 
controller, GA optimized and used as a role model for neuro-fuzzy controller fine tuning. 
Such a controller uses modified error signal as input:  

 )())((sign)( tetetec  . (11) 

The error function (11) has a large gradient around zero, i.e. it behaves as scheduled 
parameters of the PD. Now, the modified PD controller becomes 

 )()()( teKteKtu cDcp  , (12) 

where GA optimized values KP = 1.765 and KD = 0.142 were used.  

 

Fig. 10 Control surface of the neuro-fuzzy trained PD controller 

Apart from ANFIS tuning, numerous elements of the neuro-fuzzy controller could be 
hand-tuned to correct some negative training consequences at the bordering areas of con-
troller surface. Finally, the obtained resulting control surface which provided best per-
formance is presented in Fig. 10.  

3.4. Comparison of proposed controllers performance 

In Table I the performances of all proposed controllers, namely classical Fuzzy PD 
controller, modified NFuzzy PD controller and Neuro-fuzzy trained PD controller, have 
been summarized. 
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Table I Comparison of controller performances 

Controller Fitness function J 
Fuzzy PD experimentally suboptimally tuned (Kp=1, Kd=0.9) 527000 
Fuzzy PD GA optimally tuned (Kp=0.689, Kd=0.5) 284308 
Modified NFuzzy PD suboptimally tuned (Kp=1, Kd=0.9) 522801 
Modified NFuzzy PD GA optimally tuned (Kp=0.69, Kd=0.57) 277690 
Neuro-fuzzy trained PD 249090 

Table I overviews fitness function values, i.e. overall error indices according to Eq. 
(03) for various controllers, for square reference of magnitude 10, lasting 4s with fre-
quency of 1Hz. Smaller fitness function values indicate better performance, i.e. smaller 
overall output error. 

Conducted simulation validations of the proposed GA optimized Fuzzy PD, GA opti-
mized modified NFuzzy PD, and neuro-fuzzy tuned PD controller in the EMA-AFC test-
ing system are presented in Fig. 11, using our simulation model. As during the genetic 
optimization, square wave reference input with the maximum allowed magnitude rmax =10 
was used for testing. 

 

Fig. 11. Comparison of the square wave responses for different controllers 

Since our simulation model has been experimentally validated in our previous publi-
cations, we concluded that the presented simulation results verified our strategy of im-
proving starting computationally intelligent control in order to enhance performance.   

4. CONCLUSION 

A nonlinear model of the electromechanical actuator system for aerofin control, pre-
sented in our previous papers [7-9], has been used as a starting point for results presented 
here. Also, our previous results regarding aerofin include both conventional PID position 
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controller and nonlinear modification of PID controller as well as hybrid conventional 
computationally intelligent approaches for the system. Namely, GA optimization of both 
PID controller and nonlinear modification of the PID controller as well as a form of fuzzy 
gain scheduling of PID controller combined with offline genetic optimization strategy 
have all previously been introduced [7-9,13]. 

Being motivated by those results, here we have explored pure computationally intelli-
gent control options for the EMA-AFC testing system, based on our experience from ex-
tensive experimentation with the system. Namely, we have developed conventional Fuzzy 
PD control and modified NFuzzy PD control with emphasized nonlinearity, and also ap-
plied GA optimization of crucial controller parameters. Finally, we have proposed neuro-
fuzzy PD controller and improved previous result by training it to mimic referent GA op-
timized nonlinear PD controller, which was developed on the basis of our previous results.  

The validity of the proposed approaches has been demonstrated in the EMA-AFC 
previously verified model, simulating real operating conditions. The obtained results 
show increased performances of the transient response and justify validity of the applied 
approaches. Results are comparable to conventional and hybrid control solutions we have 
proposed previously. Some of the previously developed top performing solutions for the 
system remain unchallenged in terms of performance, but on the other hand some other 
possibilities are opened by the controllers proposed here. Namely, fuzzy-genetic-neuro 
control solutions developed remain with understandable structure and with large number 
of modifiable parameters providing for endless tuning possibilities should such a demand 
occur. Also, some safety rules that could handle critical or otherwise special situations 
that might occur in the system could easily be handled by adding fuzzy rules designed to 
handle them.  
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FAZI-NEURO-GENETSKO UPRAVLJANJE AEROKRILA 

D. Lazić, Ž. Ćojbašić, M. Ristanović 

U ovom radu razmatrano je fazi-genetsko-neuro upravljanje elektromehaničkog aktuatora 
aerokrila za kontrolu leta projektila, pokretanim motorom jednosmerne struje sa četkicama i 
permanentnim magnetom koji je pogonjen drajverom sa konstantnom strujom. U našim 
prethodnim radovima, na osnovu razvijenog nelinearnog modela sistema, razvijena su i testirana 
različta konvencionalna i hibridna konvencionalno-inteligentna upravljanja. U ovom radu 
predloženo je fazi i neuro-fazi upravljanje sa genetskom optimizacijom. Predloženi inteligentni 
upravljački sistemi, koji obezbeđuju dobro ponašanje sistema, su verifikovani numeričkim 
simulacijima i upoređeni sa prethodnim rezultatima.  

Ključne reči:  upravljačko krilo, elektromehanički aktuator, drajver sa konstantnom strujom, fazi 
upravljanje, genetski algoritmi, neuro-fazi upravljanje 

 


