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Abstract. The conditions under which the three forms of Hamilon's principle were
derived for nonholonomic systems with linear constraints by Hélder, Voronets and
Suslov are analysed in the general case of nonlinear constraints. It is proved, that these
three forms are equivalent and transformable to each other.

The analogous questions are analysed for the case of nonlinear quasi-coordinates and
quasi-velocities. In addition the forms of Holder, Voronets and Suslov are excibited in
the case of Legendre transformation reducing the motion's equations to canonical form
in quasi-coordinates. Also the conditions under which Hamilton's principle for
nonholonomic systems has the characterictics of the principle of stationary action are
derived.

The conditions under which the three forms of Hamilon's principle were derived for
nonholonomic systems with linear constraints by Holder [1], Voronets [2] and Suslov [3]
are analysed in the general case of nonlinear constraints. It is proved, that these three
forms are equivalent and transformable to each other.

The analogous questions are analysed for the case of nonlinear quasi-coordinates and
quasi-velocities. In addition the forms of Holder, Voronets and Suslov are exhibited in the
case of Legendre transformation reducing the motion's equations to canonical form in
quasi-coordinates. Also the conditions under which Hamilton's principle for nonholonomic
systems has the characterictics of the principle of stationary action are derived.

It was also shown, that the same conditions are the necessary and sufficient ones for
applying generalized Hamilton — Jacobi method for integration of motion's equations for
nonholonomic systems.
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1. THE TRANSITIVITY EQUATIONS

1.1. Lagrangian coordinates and velocities

Let us consider a nonholonomic system with & degrees of freedom, whose Lagrangian
coordinates and velocities are ¢g;, g, (i = 1,...,n). The system is subjected to forces, defined
by the force function U(qg,,f), and constrained by ideal nonintegrable relationships

9,
9q;

. . . . _dg; .
which are generally nonlinear with respect to ¢, = % , where ¢ denotes time.
t

ﬁ(qiaq.i>t):07 121,...,r<n, rank =r (11)

Equations (1.1) can be solved to some » dependent velocities and represented in the
form

ﬁ(qi’qi’t) = qk+l ’ _¢l(q’q.l""’q'k’t) =0, (12)

where the velocities g, (s = 1,....,k, k =n —r) are assumed independent.
The basic principle of mechanics is the variational principle of d'Alembert-Lagrange

0L daL =0 (1.3)
; dtaq,»

l

where L(q,q,t) =T +U is the Lagrange function, 7(q,q,?) is kinetic energy, dg, are
virtual displacements that satisfy Chetaev's conditions

a—j?éqi =0, /[=1...,r, i=1...n (1.4)
aCIi

Throughout the paper we assume the summation condition over repeated indexes.
For constraints in the form (1.2) the conditions (1.4) are

0¢
Oqs) =—10q, [ =17 (1.5)
04
The Hamilton's principle can be obtained by integrating the equation (1.3) within

some constant limits #, and #,
L _d oL
0 0 %qidt =0
4q; dt aql

on the assumption that the functlon 8q; 0 C* satisfy the conditions: 8¢, =0 for = t,
t(i=1,..,n).
This equation is reduced to one

I o ;’L ;’téq,%r:o (1.6)
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in which the time derivatives ddg, /dt appear. Two equivalent points of view exist in
analytic mechanics on the relation of these derivatives with variation of generalized
velocities [4].

1) According to Holder [1] the commutation relationships

A g =8, i=l..n, (1.7)
dt
are valid for all coordinates.
With this definition of &g, the variation of function (1.1) over virtual displacements,
with (1.4) taken into account, are of the form

&= - LY, i=1 (1.8)
q; dt 9q;

If Egs. (1.1) are integrable, expressions (1.8) are identically zero, and if they are not
integrable, then although not identically zero, they may become zero in the case of their
nonlinearity on the strength of the motion equations [5]. Note, that the identities ;=0
(I=1,...,r) and conditions (1.7) are compatible in the case of holonomic systems.

For relationships (1.2) formulas (1.8) assume the form

&) =84, —0¢, = A8q, , 1=1,..,r (1.9)
where

AR _ 400, 09, 09, 09y Lyv=1,..r (1.10)

’ dt aqs aqs aqk+v aqs ’

2) According to Appel and Suslov [3] the identities 8f;=0 (/= 1,...,r) are valid and
this implies that formulas (1.7) are correct only for the independent velocities

d .
Eéqs =84, s=1l....k (1.11)

Expressions for the variations of dependent velocities ¢;,;(/ =L,...,r), defined by
Egs. (1.2), are obtained from conditions &f; = 0 in the form

101 ~Ber = A8, 1=y (1.12)
where the symbol & denotes the variation in the Appel - Suslov sense.
Note that in the case of linear relationships (1.2) when
$,(q,9,t) = ai,(q,0)q, +a,(q,t), | =L..,r, s=1..k (1.13)
the coefficients in (1.10) are of the form [2]
Ak”:ﬂ—%' _0q; Haaﬁ - 0q, H

: q; a.. q;
’ dt a('I.s l aq.s ” EP('I/C+J‘ l aq1c+jH

and the right-hand of equality (1.12) can be represented in the form [3]

f+l _ . .
As * 6615' - a/.96q.9 _qs6a15 _éa/ .

Jl=1...r
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1.2. Quasi-coordinates and quasi-velocities

Hamel [6] has determined quasi-velocities for a holonomic system by equalities
N = £1(4.4.0). det%;’i%;c 0, i,j =l (1.14)
q;

where in general case f;(q,q,t) are nonlinear arbitrary functions. When the Eqs. (1.14)

are solved
q: = Fi(g,n,7) (1.15)
and (1.15) are inserted to (1.14), they satisfy them identically. Obviously
SfFy = fiFy =9, - Kronecker symbol (1.16)
where
fsi S afs , I, Eﬂ, Lr,s=1,...n.
aqi an;
Quasi-coordinates T, are determined by conditional notations 1; =1); and moreover
) 0o 0 0
P e (1.17)
o, 0q;  0g, om,

The virtual displacements in Lagrangian coordinates and quasi-coordinates satisfy the
relationships

&q; = F,d1, OT = £,0q; . (1.18)

Using the equalities (1.18) it is easy to transform the tratsitivity equations (1.7) to the
forms

@—&]i =W'dm. or dory

~ 0N, ==y T/ET, i jor =L (1.19)

Comparing the equations, we see that are valid equalities
w,=-f,;T/, i,j,r=1..n (1.20)

where we use the notations [5]

) ) : dF,;
Wiz=F. Yir _ i T! z_’f—ai (1.21)
P "Hdt dq,q T dt o

J

In the case of nonholonomic system with constraints (1.1) we pose last » of quasi-
velocities (1.14) equal to left-hand side of (1.1): ng =0 (0 =k + 1,...,n) at the same time
the first k of (1.14) ny (s = 1,...,k) are arbitrary.

The first k of both groups Egs. (1.19) retain their form for nonholonomic system on
condition that one has 8T, =0 (00 =k + 1,...,n) in their right-hand sides according to (1.4)
while the remaining equations assume the form

BNy = W8T, = fo, 1,3, (1.22)
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For the special form (1.2) we pose
nu = q.a _¢l(q,q.1,~~~,q'kat) = Oa r]s = q's (123)

In this case the Egs. (1.22) turn into Egs. (1.9), moreover 4% =W , and the another
Egs. (1.19) become identities.

2. THE FORMS OF HAMILTON'S PRINCIPLE IN GENERALIZED COORDINATES AND VELOCITIES

Let the relationships (1.7) be satisfied for all coordinates. Substituting (1.7) into (1.6)
we obtain the Holder form [1] of Hamilton's principle

i
J’6Ldt =0, &g, =0 at t =ty (2.1)

fy

The position of the system on real trajectory gff) is compared in (2.1) with
simultaneous position obtained by moving from real motions position by virtual
displacements dg; which define a momentarily configuration. The sequence of displaced
positions ¢(¢) + &¢q; may be considered an roundabout path which generally does not
satisfy the Egs. (1.1). Indeed, if the roundabout path satisfies Egs. (1.1), the equalities

s ... 0 of; .
J1(q+3q,q+8q,t) = fz((],q,t)+ai5q,» +46qi +..=0
4q; 9q;

are correct; these equalities give &f; = 0, that are accurate to smalls of the first order. But
these conditions are not satisfied for nonholonomic system, hence Hamilton's principle
(2.1) does not generally represent the principle of stationary action [7]

4
6ILdt =0, 8q; =0 at t =¢,,1 (2.2)
ty

as in the case of holonomic systems.
The equations of motion for nonholonomic system are derived from (2.1), for
example, in the form of Lagrange equations with factors

doL_oL_ o

o Cizlon, 23
aroq, og, "o @

which together with Egs. (1.1) form a closed system of n + » equations with the same
number of unknowns. The generalized solution of these equations depends on 2n —r
arbitrary constants.

If ©(q,4¢,.--.qx-t) denotes the kinetic energy 7(q,q,t) from which the dependent

velocities ¢ are eliminated by means of formulas (1.2), there valid the relation [§]

5T = 50 + :_T By —80,), A =k+1, [ =11 (2.4)
q

a
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Substituting the right-hand side of (2.4) for 87 into (2.1) we obtain the Voronets form
of Hamilton's principle

f(5©+U)+ (;’qT (4o ~B,)]dr =0, 8g;=0 at 1 =1y, 25)

established by P. Voronets [2] in the case of linear constraints. The form (2.5) was neither
substantiated nor named in [2].
The Voronets equations of motion for nonholonomic system are derived from (2.5)

d 90 _0(0+U) _9(©+U)dp, _ 0T

. A% =0, s=1k, a=k+L..n. (2.6
dt 94, 0q 09, 04, 0qq

s

The general solution of Egs. (2.6), (1.2), as well as of Egs. (2.3), (1.1) depends on
2n — r arbitrary constants.

Now we substitute expressions (1.12) into (1.6) and obtain Hamilton's principle in
Suslov's form [3]

fo_
JIoL + aqT A%8q,1dt =0, &g, =0 at t =ty,t, 2.7
ty a

which was originally got by Suslov for the case of linear constraints (1.13) and called the
modification of d'Alembert principle by him.

It is necessary to stress that the variations of Lagrange functions in (2.1) and (2.7) are
calculated differently: allowance in (2.1) is made for equalities (1.7), but in (2.7) — for
equalities (1.11) and (1.12). Note also that since in the last case the conditions ;= 0 are
satisfied, the roundabout paths ¢,(¢) + dg; in (2.7) the conditions (1.2) satisfy in the first
approximation. But (2.7), as well as (2.1), does not represent generally the principle of
stationary action.

We point out that in conformity with Suslov's method of variation the formula (2.4)
turns into 37 =30, the equality (2.7) assumes the form

f 3
I [0(O+U)+

fo

T

— A%8q,1dt =0, &g, =0 at t =ty,t, (2.8)

094

which with equalities (1.9) taken into account evidently represents the Voronets form (2.5).
Thus it has been shown that formulas (2.1), (2.5), (2.7) are equivalent and convert to

each other by means of the considered transformations [8].

3. THE FORMS OF HAMILTON'S PRINCIPLE IN QUASI-COORDINATES AND QUASI-VELOCITIES.

Motion's equations in nonlinear quasi-coordinates were first deduced by Hamel [6]
from the central Lagrange equation using the transitivity equations, which were also
derived by Hamel. Novoselov [5] has deduced such equations from Hamilton's principle
(2.1) also using transitivity equations. Without last equations the motion's equations were
derived by Rumyantsev [10] from Maggi's equations
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L L

da—.—a— =0, i=L..,n, s=L..k. 3.1
1 0q; Og;

Indeed, replacing the velocities ¢, in L(q,q,t) by expressions (1.15) we obtain

generalized Lagrange function L'(¢,n,).
Since

oL _oL oLy, oL _oL
aqi Qi anr aqz ’ aQt an; "

0
d oL _ d [ar” ol df, . _
=== L t——, i,r=1,.,n,
dt 9q; dton, on, dt

we receive from (3.1) the motion's equations for nonholonomic system in nonlinear
quasi-coordinates and quasi-velocities in the notations (1.21)

a 0 0
do o . oL

Lo O -2 20, =0, s=1,..k,a=k+1,..n 32

dton, on, ° om Ma (3-2)
O O O

or dOL 0L pr Ol ) n.=0,i=ln, s=1..k (3.3)
dt on, 9n; T,

The Egs. (3.2) and (3.3) are identical with Hamel's equations (I) and (II) [6].
Novoselov [5] has named these equations of Voronets-Hamel and Chaplygin type,

, , ot . oL
respectively (with the factor I [, in(3.3) replaced by % ).
n

Note that one can set Ny =0 in Egs. (3.2), (3.3) only after expressing them in explicit
oL ,r=1,
an,

The Egs. (3.2) or (3.3) enable one to deduce the Holder form of Hamilton's principle
in quasi-coordinates. Indeed, multiply the Egs. (3.2) or (3.3) by 0T, sum over all
s = 1,....,k, integrate the result with respect to #, then using the Egs. (1.19) and set 8T, =0
at t = ty, t; we obtain

form, since they generally involve all derivatives cees M.

h
[8Ldr =0, BT, =0 at 1 =1,1;. (3.4)
fy

Of course the (3.4) is equivalent to (2.1).
Using the generalized Legendre transformation [9]
_OL 0
ys_H’ H (qsyat)_ysr]s_l‘ (qanat) (35)
we are able [11] to bring the Eqgs. (3.2) or (3.3) to the canonical form of equations in
quasi-coordinates
H" " "
R S L L (3.6)
dt 0 0y

s

us ay,
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dy

. . 0H" oH" oH"
or —5 - T +——=0, = = =
ety am n

s ays > Ng = aya

The coefficients W, , T, in these equations must be expressed in terms y,.

The Egs. (3.6) or (3.7) enable one to deduce the second Holder form of Hamilton's
principle

. 0 3.7
dt r s ( )

h
[8(N,y, ~H )dt =0, 8T, =0 at 1 =1y,1 (3.8)
to

In turn the Eqgs. (3.6) or (3.7) may be derived from the principle (3.8).

It should be noted that the principle (3.8) is significant in it's own right, considering
the assumption that variations dy, are arbitrary and independent of the &7t in the interior
of the interval (y,t) [9].

We now proceed to derive Voronets equations in quasi-coordinates. To do this, we
replace the kinetic energy 77(¢,n,f) of a holonomic system, which figures in L"(g,n,?) in
Egs, (3.2), (3.3), by the kinetic energy ©'(g,N;.....Nk?) of nonholonomic system with
constraints Ng = 0. Since the relations

ar_ae" o’ _a@"su) o _fpr
on, on, o, oM, o, PN

(3.9)

== o,B=k+1,..,n, it follows that the first £
Na aﬂa nB =0,

equations (3.2) or (3.3) may be transformed to the Voronets equations in quasi-
coordinates [8]

O 0
hold when ny =0, where T E =T

0 O,
d 09" 0@ +U) +H6T W, =0, s=L..,k,i=1,..,n, (3.10)
dt on; or, ;
d 00" a@"+u) [Dor O,
or —_— =0, s=1,.,k, i=L..,n, (3.11)
dt an.s ans q;
where aT gdenotes the result of replacement ¢, by (1.15) in the expressiong_T
qi q;
(i=1,..,n).

The Eqgs. (3.10) or (3.11) imply the Voronets form of Hamilton's principle in quasi-
coordinates

t |
1[5(9D+U)—%EWS5T[S]WZO, OT, =0 at ¢t =1),4 (3.12)
n
to a
i o7 [
or I[ES(@D+U)—E?T T, 01 ]dt =0, T, =0 at t =¢,¢. (3.13)
t, q;

The Egs. (3.10), (3.11), in turn, may be deduced from (3.12), (3.13) respectively [12].
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Using the Legendre transformation

00"
¥ =5 HH@r0=pn, ~0g.n0-Ulg.n (3.14)
.. 92" .
by condition s 20, one can reduce the Eqgs. (3.10) and (3.11) to the canonical
N0

form in quasi-coordinates

) [} )
by OH | %Ew“ =0, n, =‘Zi, s=lok,a=k+1,...n, (3.15)
Ne

dt 0T, ;
HY [T H, HE .
and Do O OT i g g =9 oy kL i=1n (3.16)
dt  om, Hog, dy,

The Egs. (3.15) or (3.16) enable one to obtain the second Voronets form in quasi-
coordinates
f

o
J13(ysN; —HD)—%EWférg]dz =0, O, =0 at =ty 3.17)
a

fo

g

or [13(y,n; —HD)+%§TS"5T[S]dt=O, O, =0 at £ =1y,1. (3.18)

to

Using the relations (3.9) it is not hard to verify the truth of the equalities

0_ x/a0 _ 7" A — s/l oT H.i
0L =8O~ +U) 0 wJom =@ +U)+H—HT,/om,,
a q;

which prove the equivalence of the Voronets forms to Holder's form of Hamilton's
principle in quasi-coordinates.

In conclusion we consider a special case (1.2) the nonholonomic constraints (1.1) and
we pose

Ng E496 —9,(q:G155G1-1) =0, N, =¢,, s=1..,k, a=k+][

In this case the Voronets form of Hamilton's principle has the form (2.5), and the
Voronets motion's equations — the form (2.6). '
Using the Legendre transformation
00

Ps _ﬁ’ H(qapat):psq.s_e(q’qsat)_U(q’t) (319)
s

we reduce the Egs. (2.6) to the canonical form

'Note that in [12] formula (5.1) which is equivalent to (2.5), and Section 6 were incorrectly referred to as
Suslov's principle; the latter has the form (2.7).
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dp. (O, OH [P0 _HPT \olf_ da. O (3:20)
dt g, 0qq 104, a dt  Op,

where () denotes an expression of  in terms of p,.
The Egs. (3.20) lead to second Voronets form of Hamilton's principle in quasi-
coordinates and momenta

g
I[é(psqs—HwE;"’qT A7 g]dz:o, 87, =0 at =1, (3.21)
Z a

4. A COMPARISON WITH THE LAGRANGE PROBLEM

Let us compare the Hamilton's principle (2.1) with the Lagrange problem of
stationary value of the action integral (2.2) in the class of curves that satisfy Eqgs. (1.1).
The introduction of indeterminate multiplies X;(f) reduces that problem of conditional
extremum to the Lagrange problem of variations

6J1’(L X, f)dt =0 (4.1)

to

The Euler's equations for the problem (4.1) are

ia—.L—a—L:x, o —i%% ',ai_ [ =1,..,n, [=1,..,r. 4.2)
dt 9g; 0g; q; dt 0q 0g;

Obviously the motion's equations (2.3), (1.1) are not equivalent to Egs. (4.1), (1.1).
However the nonequivalence of these two systems of equations does not exclude a
possibility some of their solutions being the same. Let the general or some particular
solution ¢,(¢) of Egs. (2.3), (1.1) be also a solution of Egs. (4.2), (1.1) for the same initial
conditions.

Evidently the equalities

. 0f of, d 9f,
+y )AL = - 43
(M +X1) 3, Xi "t 0, (4.3)
are now valid. Taking into account (1.4) we multiply Eqgs. (4.3) by d¢; and summing over
all i's , we obtain the condition

of, d 9f,
-———g, =0, 4.4
X/ 4 dt aq, i ( )

which is necessary if two systems have the same solution g(?).

This condition is also sufficient. For proving this, let us assume that some solution of
Egs. (4.2), (1.1) satisfies (4.4) for any &g; compatible with (1.4). Multiplying Egs. (4.2)
by &g, and Egs. (1.4) by W, and summing over all i’s and /s with allowance for (4.4) and
(1.4) we obtain the relationship
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d 0L oL )
o i,
10q; 0q; 0q;

which shows that the considered solution ¢,(¢) also satisfies Egs. (2.3), (1.1).

Thus condition (4.4) is necessary and sufficient for solution g«#) of Egs. (2.3), (1.1) to
be among solutions of Eqs (4.2), (1.1) [8].

Thus when condition (4.4) is satisfied, the equations of motion (2.3) of nonholonomic
system have the form of Euler's equations (4.2). Owing to this we say that Hamilton's
principle (2.1) for the motion of a nonholonomic system defined by such solution has the
characteristics of the principle of stationary action (2.2).

For relationship of the form (1.2) equality (4.4) reduces to conditions

XA =0, s=1.,k, =11 (4.5)

Note that Suslov's form (2.7) has also the characteristics of the principle of stationary
action then and only then when the condition

h
Ia—.TAféqsdt =0, a=k+!
toaqa

is satisfied. Since &g, are arbitrary and independent, this condition is satisfied only when
[13]

a—TA;‘ =0, s=1,...k. (4.6)

0dq
We stress that conditons (4.4)—(4.6) are seldom satisfied in the case of nonholonomic
systems.
Two examples are given below. In the first one these conditions are satisfied for the
general solution, in the second one only for some particular solutions of motion's
equations of the nonholonomic system

Example 4.1. For Appel's example [4] from equations of the form (2.3) and (1.1)
qs

m; = —Ha———=,
Vit +d3

iH g Ho s=12

e
which show that the conditions (4.4)—(4.6) are satisfied for all motions of the material
point.

mgy = —mg + |

we have

Example 4.2. For a disk the Lagrange function is

L= %{[)& — r(cos Bsin §O + sin B cos 9)]* +[ 7 + r(cos Bcos §O + sin Bsin dd)]*} +

+%[A('62 + ¢ cos? 8) + C( + P sin 0)>]— mgrcos O



1046 V.V.RUMYANTSEV

The conditions (4.6) assume the form

oT or

AT = —mr*0dcos®=0, —

A3 = mr*BPcosB =0
043+, q3+1

which are satisfied either when 6=0, or ¢=0=0.

Hence in the case of motion of the disk whose plane form a constant angle 6 to the
vertical, as well as some highly special motions for which ¢ =) =0, Hamilton's principle

has the characteristic of the principle of stationary action, while for another motions this
is not so.

5. CONDITIONS OF APPLICABILITY OF THE GENERALIZED HAMILTON — JACOBI METHOD
OF INTEGRATION

Preceding results are closely related to the problem of extending to nonholonomic
systems the generalized Hamilton — Jacobi method of integration for canonical equations
of motion

dq; OH dp; H
dg; (OH —dpi o OH O oy ai=k4lm, (5.1)
dt  Op; dt 0q; 0g;

1 1

that are equivalent to Egs. (2.3), (1.1). Here

oL . . .
pi = 6_" H(q,p,t) = p;q; —L(q,q,t), i=1,..n. (5.2)

In essence the Hamilton — Jacobi method consists in the following [14,15,8].
The variables

6)
m=p N 2L izl (5.3)
0g;
are introduced and used for reducing (5.2) to the form
L=T1gq; - H,, (5.4)
where function
of; .
Hl(qan—at):H(qapat)-'-)\lﬁqi (55)

is obtained by substitution into its right-hand side of functions p;(q,T0¢) and A, (g,TL¢)
derived from Egs. (1.1) and (5.3) and of the first group of Egs. (5.1).

It is advisable to construct function (5.5) as follows. Using (1.2) we represent the
Lagrange function in the form g,,....,,d;,....4s-¢) =©+U and introduce the generalized
momenta and the Hamiltonian

aL” a9,

s=£=ps+pk+,a;‘l_’, HYq,P,t)=Pg,-1", s=1,..k, [=1..,r. (5.6)

The function H'(q,P,?) is connected with H(g,p,?) by the formula

N N
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HD(q’P’t) = H(qap’t) +pk+l%és _¢l E = 1""”" (57)
Since Eqgs. (5.3) imply for relationships (1.2) the equalities

¢
— _ — /
N =Ty = Prays B =T +T[k+la_.

N

the function (5.5) with allowance for (5.7) assumes the form

N 09, .
H(qg,t)=H (CI’PJ)“T/(HE?/ _%Q‘SE

The generalized Hamilton — Jacobi equation

9 h,5. 95 =0 (5.8)
ot 0g;

has characteristic equations of the canonical form

. H . H
dq; _OHy dmy _ _OH, ._y (5.9)
dt o dt 0q;
According to Jacobi's theorem the relationships
oS oS
—=1, —=0;, i=L..,n,
0g; K oa; P

represent 2n integrals of Egs. (5.9), if S(¢;,0,,f) is a complete integral of Eq. (5.8) with
arbitrary constants a; and [3;.

It was shown in [16] that the solution of Egs. (5.9) is also the solution of motion's
equations (5.1) if and only if it satisfies the condition

AEYL A o izn, 1= (5.10)
q; dt 0g;

Hence (5.10) is a necessary and sufficient condition for the considered generalized
Hamilton — Jacobi method to be applicable to nonholonomic systems.
The condition (5.10), with (1.4) taken into account, follows from equations [16]

@#’—H:)\, O _d 9 )'\,a—f’, i=lon, [=1..r (5.11)
dt 0g; q; dt 0q; 9q;

obtained by differentiating the expressions (5.3) with respect to ¢ on the basis of (5.9).
When A;=x, (I=1,...,r) Egs. (5.11) evidently match to Euler's equations (4.2) of the
variational problem (4.1).

Hence the generalized Hamilton — Jacobi method of integrating Egs. (5.1) of
nonholonomic systems is applicable if and only if Hamilton's principle has the
characteristics of the principle of stationary action
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A
O[(Tqg; —H,)dt =0, 0g; =0 at 1 =4y,1,
fo

which with allowance for (5.4) is equivalent to the principle (2.2).

Example 5.1. The equations of motion in Appel's example and the equations of
motion of the disk in case §=0 were integrated in [14] and [17] accordingly by the
generalized Hamilton — Jacobi method.
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OBLICI HAMILTONOVOG PRINCIPA
ZA NEHOLONOMNE SISTEME

Valentin Vitalievich Rumyantsev

Analiziraju se uslovi pod kojima su izvedena tri oblika Hamiltonovog principa za neholonomne
sisteme sa linearnim ogranicenjima po Holder-u, Voronets-u i Suslov-u u opstem slucaju
nelinearnih ogranicenja. Dokazano je da su ova tri oblika medusobno ekvivalentna i da se mogu
transformisati jedan u drugi.

Analizirana su i analogna pitanja za slucaj nelineranih kvazi-koordinata i kvazi brzina. Sem
toga oblici Holder-a, Voronets-a i Suslov-a su prikazani u slucaju Legendre-ove transformacije re-
dukovanjem jednacina kretanja na kanonicki oblik u kvazi-koordinatama. Takode su izvedeni i
uslovi pod kojima Hamiltonov princip za za neholonomne sisteme ima karakteristike principa
stacionarne akcije.



