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Abstract. The famous Gauss principle states that an actual motion is the one among
conceivable motions that deviates least from the released motion. Herz based his
forceless dynamics on this principle [1]. Gauss called the deviations of the conceivable
motions from the released one the constraint. An explicit expression of the constraint in
generalized coordinates was obtained first by Lipshitz [2].

In this paper, two new theorems are pointed out.

1. The famous Gauss principle states that an actual motion is the one among
conceivable motions that deviates least from the released motion. Herz based his
forceless dynamics on this principle [1].

Gauss called the deviations of the conceivable motions from the released one the
constraint. An explicit expression of the constraint in generalized coordinates was
obtained first by Lipshitz (see [2}).

Let z = (£1,...,%x,) be generalized coordinates of a mechanical system, let T'(z, z,%)
be the kinetic energy, and let F = (F,...,F,) be generalized forces. We suppose
that the constraint

<I>(a':,a:,t) = 0, (1)

is also imposed on the system. This constraint is considered being nonintegrable
in the general case. Everything to be said below readily transfers to the case of
several constraints that have the explicit form (1). We suppose that the constraint
(1) is regular, i.e. 9%/0¢ # 0. The virtual velocities dz are defined by the Chetaev
equation
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One can find the actual motions from the equations of motion with the Lagrange
multipliers

oe
az’

ory or
T=|(%) -5
7] ( oz ) Oz
is the variational, or the Lagrange derivative of the function T'.
Let &4, 5, &, be the accelerations of the actual, released and conceivable motions
respectfully. One should calculate them in a fixed moment of time and a fixed state

of the system.
According to Lipshitz, the constraint is determined by the following expression:

[T]=F+ & =0. (3)

Here

Z(%e,8p) = ATIA A, A = A(E: — &) (4)
Here .
A= 5a7

is a positively defined symmetric n X n-matrix. In these notations the Gauss principle

takes the form
Z(&E0,3r) < Z(Zey3r)- (5)

Lipshitz has used coordinate representation, and not the matrix one. His formula
can be written more concisely:

Z(%c,ir) = A(Ec — &r) - (Bc — Er).
However notation (4) is “more correct” from the point of view of the generalization

of the Gauss principle that is to be presented below.

2. Let t — z(t) be some smooth path being defined in the time interval £; < <.
Its variations §z are smooth functions of time ¢, which satisfy equations (2). We should
point out that we do not require the variation dz turning to zero at the ends of the
interval [t1,%2].

Let us calculate the value of the covector

R(t) = ([T] = Fa

on this path.

Theorem 1. The path z(t) is a motion of the system if and only if for every variation
of this path dz(t) the inequality

to 12
! / (AR + A2)) - (R + Adn) dt > — / A'R.Rdt  (6)
to — 1 Jy, ta —t1 Js
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holds.

We now prove the necessity. Let z(¢) be a motion of the mechanic system. Then
from equations (3) and (4) we have R - dz = 0 for all values of t. Consequently,

t2
/ b dt = 0. (1)

131

But in this case the left-hand part of inequality (6) differs from the right-hand part
by
1 ¢

2
Adz - dzdt > 0.
iy — 11 Jy,

Proof of sufficiency. If inequality (6) holds for all variations (2), then relation (7)
readily follows. Since it holds for all smooth functions dz(t) that satisfy (2), then
along the path z(t) the equality

o9
R= /\5—:&—.
is valid. Hence the path z(t) is a motion of the system. The theorem is now proved.

Let us derive the usual Gauss principle from theorem 1. To this end we turn the
interval of integrating ts — #; in inequality (6) to zero. Then (6) becomes equivalent
to local inequality

A1 (R+ Adz)) - (R+ Adz) > A'R-R. (8)
Since
[T] = A% + P(2,z,1),
then
R=A%, +P—-F 0= A%.+P - F.
Hence,

R = A(, — &,). (9)

Further, since the actual and the conceivable motions satisfy the same constraint

equation (1), then
de =%, — &, (10)

is a virtual velocity.
Substituting (9) and (10) in inequality (8), we obtain the desired inequality (5).

3. Theorem 1 differs from the classical Gauss principle only formally. However one
can apply the same idea to more interesting cases, when equations (3) are substituted
by the equations of the Lagrange variational problem:

t2
5/ Ldt = 0, ® =0, z(t1) = const, z(ts) = const. (11)
1
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Here L is some function (the Lagrangian) of £, z, ¢, moreover we suppose again that
the matrix of the second derivatives
8L

A= 5z

is positively defined.
In the Lagrange problem the varied paths also satisfy the constraint equation, Thus
the equation for variations dz takes more complicated form:

. )
68 = Z-(0z) + 5-(02) = 0. (12)

Theorem 2. The path t — =z(t), t1 <t < i3, is the extremal of the variational
problem (11) if and only if for all variations of this path with fixed endpoints inequality

2 12

AY([L] + Abz) - (L] + Abz) dt > / AL - (L] dt. (13)
t 4
holds.

Here the covector [L] and the elements of the matrix A are calculated along the
path z(t).
ProofLet t — z(t) be the extremal. Then

ity to
5/ Ldt:—/ [L]-dzdt =0 (14)
1 151

for all variations with the fixed endpoints which satisfy {12). From this inequality
(13) readily follows.
The opposite statement can be derived from the condition of minimum of the

functional .
J[dz] = / ATY[L] + Aéz) - ([L] + Adz) dt

131
when dz = 0 on the linear space of functions dz that satisfy (12). We use the method
of Lagrange multipliers: considering A being new coordinates we write down the
Euler-Lagrange variational equations with the Lagrangian

£ = A"Y([L] + Adz) - ([L] + Abz)/2 - \3®.

These equations take the following form:

(L) -2 -0, (%) - %
8(dz) ) ~ Béz ~ " \BA)  OX



Integral Analogue of the Gauss Principle 1059

The second equation gives the equality & = 0, which is already known, and the first
one can be transformed to the following form (where dz = 0):

[L] = - (,\g%)# Ag’—;. (15)

But this equation together with equality (1) is the equation for the extremals of the
Lagrange variational problem.
The theorem is proved now.

Since the equations for variations (12) contain derivatives (dz)', then (in contrast
to theorem 1) one cannot reduce theorem 2 to local variational principle.

4. In conclusion we make some remarks.

a) As one can notice, in inequalities (6) and (13) the matrix A can be replaced
by any positively defined symmetric matrix B. Then, for example, the local Gauss
principle takes the form of the general inequality

B7 (A(8, — &5) + B(E: — £r)) - (A&, — B5) + B(Z. — £)) 2
> B A(i, — &) - Alir — 84).

It reduces to (5) when B = A.

b) When the forces are potential, nonholonomic equations (3) cannot be reduced to
variationl equations (15). However as [3] states, extremals of the Lagrange problem
come out of some passage to limit in ordinary equations of motion of the “free”
mechanical system. Being more precise, we consider the equations of motion with the

modified kinetic energy
[Tn] = F, (16)

where T = T + N®2%/2, N being a positive parameter. For example, if ® is a
linear function of &, then T is a positively defined quadratic form. In problems of
dynamics the modificatior of the kinetic energy is usually connected with the effect

of the adjoint masses.
It turns out that as N — oo solutions of equation (16) tend to solutions of the

following variational equations:

8P\’ o
[T}:F———(A%) +A5 =0,

The mathematical model of a motion based on these equations of motion is called

vakonomic model by the author (see also discussion in [4]).
¢) The passage to limit in (b) assumes the generalization. We substitute equation

{(16) by the more general one:

6%

. 1)

[In]=F -
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where Ty = T +aN®2?/2, &y = SN$?/2 (a, > 0). The function ®x has the sence
of the Rayleigh’s dissipative function for anisotropic friction. It turns out (see [3})
that as N — oo solutions to equations (17) tend to solutions of the following system:

, & =0. (18)

[T)=F - ~a (}‘6@)' 0% o0

Ty +QAE ——/3)\—6—5’:—

These equations depend on the parameter k = 8/a. When a = 0 (k — o), we
get the usual nonholonomic model, and when 8 = 0 (k = 0) we have the vakonomic
model.

Theorem 2 is valid also for equations (18), equations (12) for variations éz being

substituted by

o® ) o o®
aa;,:—((fa:) + a5;§x +[3E—5x = 0.

If, for example, a = 0, then we get theorem 1.

This work was carried out with financial support from the Russian Found for
Fundamental Research (N 99-01-01096 and N 00-15-96146).
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INTEGRALNA ANALOGIJA GAUSOVOG PRINCIPA
Valery V. Kozlov

Cuveni Gausov princip kaze da je stvarno kretanje ono shvatljivo kretanje koje najmanje
odstupa od oslobodjenog kretanja. Herc je zasnovao svoju dinamiku bez sila na tom principu. Gaus
je nazvao odstupanje shvatljivog kretanja od oslobodenog kretanja ogranicenjem. Eksplicitni izraz
ogranicenja u generalisanim koordinatama prvi je dobio Lipshitz.

U ovom radu se isticu dve nove teoreme.



