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Abstract. Results pointed out in this paper, are inspired by papers of O. A. Goroshko
and N. P. Puchko (see Ref. [13] and [14]), about Lagrange's equations for the
multybodies hereditary systems, and rheological models of the bodes properties
presented in the monograph written by G.M. Savin and Ya.Ya. Ruschitsky (see Ref.
[24]), as well as a monograph on rheonimic dynamics written by V.A. Vujičić (see [6]).
By using rhelogical body models for designing deformable rheological hereditary
elements with hybrid rheological elastoviscosic and/or viscoelastic properties (see Ref.
[23], [24] and [18]), discrete oscillatory systems with hereditary elements as
constraints, are designed, as systems with one degree of freedom as well as with many
degrees of freedom. For these oscillatory hereditary systems, the integro-differential
equations of the second and/or third kind are composed. The solutions of these integro-
differential equations are studied.
Equations of dynamics of a disrete system with finite constraints and standard
hereditary elements are composed.
Covarinat integro-differential equations of the motion of the discrete hereditary system
are composed.
The rheonomic coordinate method is applied to dicrete hereditary systems, and the
modified system of the covarint integro-differential equations of motion of discrete
hereditary systems with rheonomic constraints are composed.
For example, the rheological pendulum on the wool's thread with changeable length is
modeled by rheonomic coordinate as well as by rheological hereditary element. By
using defined rheological pendulum basic properties of the rheonomic coordinate in the
sense of the Vujičić's, rheonomic coordinate are introduced. The force, as well as the
power of the rate of rheological and rheonomic constraints change are determined.
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For the designed discrete hereditary systems with corresponding rheological and
relaxational hereditary elements the integro-differential equations second and/or
differential equations of the  third order are composed. On the basis of the analysis of
the discrete hereditary oscillatory systems the Goroshko's definition on dynamically
determinated or indeterminated discrete hereditary systems was confirmed.

Key words: Discrete hereditary system, standard hereditary element, oscillatory
hereditary systems, rheological elements, rheonomic coordinate,
rheonomic coordinate method, rheological pendulum,
rheological and relaxational kernels, covariant coordinate.

1. INTRODUCTION

The paper of academician Goroshko (see Ref. [13] and [14]) was an inspiration for
research in the area of hereditary discrete systems, as well as a mutual work on the
monograph: Analytical Dynamics of the Discrete Hereditary Systems which is to be
published both in Serbian and English. Some examples were considered in the following
papers: [27], [28], [32], [33] and [34].

For active constructions we can use various types of control and regulation of
dynamical system parameters. In the modeling of an active construction, different kinds
of active elements can be used. Some of these elements are active hereditary elements
with different kinds of viscoelasticity or hereditary elasticity, with different time
relaxation, as well as time retardation (see Ref. [23], [24], [25] and [18]. See also [29],
and [30].). Active properties of construction can arise by active force or external
excitations, active temperature fields, active electrical or optical fields, or by changeable
distances between bearings, as a rheonomic coordinate, as well as by changeable rigidity.
Active construction can be realized by a subsystem as an active element with external
excitation.

As in the active constructions is not possible control without sensors as well sensors
work by modulations of amplitude, phase as well as by modulations of frequency it is
necessary to introduce the sensors parameters as an active excitation into active elements
as well into active construction. Par example, optical sensors work by modulations of
amplitude, of phase as well as by modulations of frequency of light waves, which arises
with changeable optical parameters of material in the changes of stress and strain state in
the material of construction during the way of the light waves.

Active elements are elements by the use of which we can observe and control stress
and strain states in construction, as well as a temperature field state, by the use of sensor
observed active parameters of the dynamical state of construction.

Active elements can be designed by the use of properties of dynamical adaptations, as
an electromechanical, termomechanical or mechanical. In a mechanical way the
construction rigidity of the defined sections can be made changeable.

In this paper we would like to investigate the equations of dynamics of active discrete
hereditary elements as well as systems by introducing rheonomic coordinate in the standard
hereditary element.

We will consider [10, [11], [12], [16], [17], [4] and [15] as well as [20], [21], [22] and
[31] to be our basic literature.
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2. EQUATIONS OF DYNAMICS OF A DISCRETE SYSTEM WITH FINITE CONSTRAINTS
AND STANDARD HEREDITARY ELEMENTS

We will investigate a dynamical system (see Figure No. 1) of N material particles with
masses mv, v = 1,2,3,...,N, the vector positions of which are ;3,2,1, == νν ieyr i

i !!  v = 1,2,3,...,N.
Material particles are constrained by S finite constraints (see [1], [2], [3], [26], [16], [17],
[11], [10] and [12]):

),...,,(),...,,( 321
21

N
N yyyfrrrf µµ =
!!!

 S,...,3,2,1=µ (1)

and where we introduce the following notations: ;3,2,1 ,: )3(3 == −−ν
ν kyy kk  m3v−k

 = m3v,
k = 1,2,3, v = 1,2,3,...,N ; as well as by K standard hereditary elements neglected mass and
material properties parameters of which are: n(v,v+1)k, k = 1,2,3,...,K, are times of relaxation,
and kc )1,( +νν  and kc )1,(

~
+νν . are an instantaneous rigid stifness modulus as prolonged ones.

Fig. 1. Model of discrete hereditary system with rheonomic constraints
and with N material particles
a* Hereditary and rheonomic elements in series
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Relations between reactions and deformations of the hereditary element in the discrete
system can be defined in one of the following ways:

* in the relaxational forms by using integral stress strain state relations:

ν

+νν+νν+νν+νν+νν

==ν

ττρτ−−ρ= ∫

KkN

dttcP
t

kkkkk

,....,3,2,1     , ,...,3,2,1

])()()([
0

)1,()1,()1,()1,()1,( R
, (2)

where

kn
t

kk

kk
k e
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t )1,(

)1,()1,(

)1,()1,(
)1,(

~
)( +νν

τ−−

+νν+νν

+νν+νν
+νν

−
=τ−R , N,...,3,2,1=ν , ν= Kk ,....,3,2,1  (3)

are kernels of relaxation ( see Ref. [15] and [13], [14]), and

||  || )()1()1,()1,( kkkk rr ν+ν+νν+νν −=ρ=ρ
!!!

     and

0)1,()()1(0)1,()1,()1,(  ||  || kkkkkk rr +ννν+ν+νν+νν+νν ρ−−=ρ−ρ=ρ
!!!

. (a)

and ρ(v,v+1)k0 is the natural length of a hereditary element in natural stress-strain state,
when the strain and stress in the element are equal to zero.

* in the retardation forms by using integral stress strain state relations:

ν

+νν+νν+νν
+νν

+νν

==ν

τττ−+=ρ ∫
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, (4)

where
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is a kernel of rheology, and ||  || )()1()1,()1,( kkkk rr ν+ν+νν+νν −=ρ=ρ
!!!

.
* in differential form:

ν

+νν+νν+νν+νν+νν+νν+νν+νν

==ν

ρ+ρ=+

KkN

ccntPtPn kkkkkkkk

,....,3,2,1   , ,...,3,2,1
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""

 (6)

Finite constraints (1) must satisfy the following velocity condition:
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∂
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α
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µ ∑ y
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f
N

"" ,    N3,....,3,2,1=α ,     S,....,3,2,1=µ (7)

as well as the acceleration conditions:
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As this finite constraints are independent the differential determinate of matrix is
different from zero:

0 || ≠
∂

∂
=∆=∆ α

µ
µα y

f
, N3,....,3,2,1=α , S,....,3,2,1=µ (9)

By using previous velocity conditions we can write ortogonality conditions
0),( =ν

µν vfgrad ! , N,...,3,2,1=ν , S,....,3,2,1=µ  between mass particles and gradients of
the finite constraints, for ideal constraints reactions we can write the following:

),...,( 1
1

N

S
rrfgrad !!!

µν

=µ

=µ
µν ∑λ=R , N,...,3,2,1=ν  (10)

in which the λµ are Lagrange's multiplikators of the finite constraints, as well as
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!!!

(10*).

The resulting reactions of the K standard hereditary elements into v-rd (v + 1 with
opposite direction) mass material particle are:

∑∑
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Resulting reaction forces of finite constraints and hereditary elements in the observed
system are:

TN

S
tPrrfgrad ν+ννµν
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µν ++λ= ∑ RR

!!!!
)(),...,( 1,1

1
 (12*)
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From a principle of the work on the virtual system displacements the initial equation
can be written in the following form:

0}RPRFI{
1

T =δ++++ ν
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ννννν∑ r

N !!!!!!
 (13*)

or:
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Dynamical Lagrange's equations of the first kind arise from previous equation in the
following form
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Let us define some relations by which the investigation and description of the
dynamics of this problem is simplified. For this reason the equations (14) are rewritten
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for ν  and v + 1 in the forms:
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By subtraction of the previous equations (15) result becomes:
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The last relation may be written as:
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By using the fact that distance, between any two material particles, from the system, is
changeable, a constraint is expressed by equation of the form 2

1
2

1, )( ν+ν+νν −=ρ rr !!! . By two
time derivatives of this constraint relation and knowing that ν+νν+νν+ν −== rrvvrel

"!"!!!
1,1),1(  is

relative velocity of v + 1 st material mass particle around v-st material mass particle in the
relative rotation, we can write the following relation (see Ref. [8]):

2
,1,1,1

2
,111 ),( ν+νν+νν+νν+νν+νν+ν −ρρ+ρ=−− vrrrr """""!""!!!

,    N,...,3,2,1=ν (17)

Having in mind the previous relations (16*) the previous relation (17) becomes:
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Into previous equation (18), the expression of the reaction-force of the standard
hereditary element by using relations (2) of the stress-strain state or coordinates of
deformation, or by using relations (4) should be introduced, or the corresponding
equations (6) should join these equations (18). The resulting system of equations can be
solved as an explicit independent system of equations in relation to the coordinates of
vector positions of mass particles. This is because that we separate only equations with
"internal" system coordinate by the use of which the internal relative positions between
material mass particles are defined. We must have in mind that stress-strain relations use
coordinates of hereditary element deformations 0)1,(1,1, +νν+νν+νν ρ−ρ=ρ#  which differ

between relative coordinate ρv,v+1 - distance between two material particles and their
distance ρ(v,v+1)0, in hereditary element natural state if it was in such state at the initial
moment.

We accept that, at initial moment, the hereditary element was in a natural state without
deformation, without stress as well as without strain. If we suppose that hereditary elements
have history than into stress-strain relations boundaries of integral are different: boundaries:
from zero to t changes into boundaries: from −∞ to t.

ν

+νν+νν+νν+νν+νν+νν+νν

==ν

τρ−τρτ−−ρ−ρ= ∫

KkN

dttcP
t

kkkkkkk

,....,3,2,1   , ,...,3,2,1

}])()[(])({[
0

0)1,()1,()1,(0)1,()1,()1,()1,( R  (19)

When we observe a system in space, then it is useful, that square 2
,1 ν+νv  of relative

velocity ν+νν+νν+ν −== rrvvrel
"!"!!!

1,1),1(  of relative motion v + 1 st material particle around v-
th material particle be expressed by sphere coordinate in relation to the relative pole.
Then the radius ρv,v+1, and circular and meridional angles: ϕ v+1,v and ψv+1,v  are used. For
the following coordinates of the material mass particle in relation to the previous mass
particle coordinate we can write:
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If we observe ν th set of coordinates of the ν th mass particle in relation to the set
coordinates of first mass particle we can write:
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]}sinsincoscoscos[{ ,1,1,1,1,11,2
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1 ν+νν+νν+νν+νν+ν+ννν+ν ψ+ϕψ+ϕψρ+= kji
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!!!""!""! (22)

Now in the pair from the system (15) and by using system (21) we can write:
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We can see that a system can be obtained from which the Descartes coordinate
;3,2,1 ,: )3(3 == −−ν

ν kyy kk  by the use of which absolute positions of mass particles of the
system are defined, are eliminated. These equations contain a system of generalized
coordinates without absolute coordinates of the first mass particle. These chosen
coordinates are internal coordinates of the system by the use of which the internal relative
positions between mass particles of the system are determined.

For example, by using (16) or (16*) and the last relation (22) we can obtain:
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in which only internal coordinates of the system are contained: mutual distances of mass
particles ρv,v+1, and circular and meridional angles: ϕ v+1,v and ψv+1,v, relative rotation
motion v + 1 st material particle around v-th mass particle. Square of the relative velocity
of the relative rotation motion v + 1 st material particle around v-th mass particle is:
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In the case when we have plane discrete system motion the previous relation becomes:
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In a similar way as in the case of the space system motion the relation became:
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For that case we suppose that all active forces are in the same motion plane of the
discrete mass particle system.

The previous relations, now, are an explicite function only of the internal coordinates:
mutual distance ρv,v+1, between two mass particles and circular angles ϕv+1,v of the relative
rotation motion v + 1 st material particle around v-th mass particle in the motion plane.
Square of the relative velocity of the relative rotation motion v + 1 st material particle
around v-th mass particle is:
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The system of N relations (26) is expressed in vectorial forms, and obtains the form of
2N scalar relation in which appear S ≤ N reactions Pv,v+1(t) of the stressed hereditary
elements and (N − 2) internal system coordinattes: mutual distance between mass particles
ρv,v+1, and circular angles ϕv+1,v of the relative rotation motion v + 1 st material particle
around v-th mass particle in the motion plane. The square of the relative velocity of the
relative rotation motion v + 1 st material particle around v-th mass particle in the motion
plane is the same as (27).

If we have a dynamicaly determined system it is possible to eliminate reactions
Pv,v+1(t) of the stressed hereditary elements and obtain independent system of the internal
system coordinates. By these equations we obtain functional relations between internal
coordinates: angle rotation motion ϕv+1,v and distance ρv,v+1, between mass particles.

EXAMPLE 1. For the system of two mass particles (see Figure No.2 ) constrained by one hereditary
element in the space from system of the relations (16**) by elimitation reaction of the stressed hereditary
element we can obtain the following relations between internal system coordinate ρ, ϕ and ψ in the
following forms:
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from which we obtain:
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The last system equations yield relation between angles velocities components ψ"  meridional and ϕ"
circular of the relative rotation motion of the second material particle around the first mass particle in the
space of the dynamic of this discrete mass particles system. We can see that these angle velocity
components of the relative rotation motion of the second material particle around first mass particle in the
space are coupled as functions of distance ρ between these mass particles.

Fig. 2. Model of a discrete hereditary system with rheonomic constraint and with two materials particles
a* Hereditary and rheonomic elements in series

Square of relative motion velocity of the relative rotation motion second material particle around first
mass particle in the space is:

22222 ]cos[ ψρ+ψϕρ+ρ= """rv (e)
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By introducing expression (e) of the square relative velocity motion into expression (18) for the
rheological reaction P1,2(t) = P(t) as a force of the internal influence between mass particles, we can
obtain the following expression:
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By introducing the previous expression (f) of the mutual influence force into integral relation (2)
rheological-hereditary relation for the case of the forced motion of the system in space rheological
relation becomes the following integro-diferential form:
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The system of coupled differential and integrodiferential equations can be transformed into the
following system of equations of the first kind:
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EXAMPLE 2. For the system of a mass material particles couple by one hereditary element in a
plane (see Figure No. 3), by using relation (16**) and by eliminating the reaction of the hereditary
element we can obtain the following relation between internal system coordinates ρ and ϕ:
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The solution of the previous equation (b), which has the form of differential equation of the first kind
of )(tϕ"  depending of the internal coordinate ρ(t), takes the following form:
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The last differential equation (c) gives a relation between angular velocity )(tϕ"  of the relative
rotation second material particle around first of the system dynamics of these mass particles and internal
coordinate ρ(t)-distance between mass particles, in the motion plane.

Fig. 3. Model of a discrete hereditary system with rheonomic constraint and with two materials particles
a* Hereditary and rheonomic elements in series

Fig. 4. Hereditary-rheonomic oscillator, excited by F(t)

We can see that the angular velocity )(tϕ" of relative rotation of the second material particle around
first of the system dynamics is composed of two members: one is opposite proportional to the square of
the distance ρ, and the second member is in the integral form and is dependent on the external excitation
force. The first componet of velocity that corresponds to proper free motion, arises as the result of the
initial conditions perturbation of the equilibrium position.

The square relative velocity of the relative rotation of the second mass particle around first is:
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By introducing the expression (d) of the square relative velocity of the relative rotation of the second
mass particle around first into expression (18) for the force P1,2(t) = P(t) of the mutual influence between
mass particles, and after this result has been introduced in relation (2) of the rheological-hereditary
relation for the case of the forced system motion in the plane, and the rheological relation becomes:
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This rheological relation (e) is integro-differntial equation from which we can determine relative
distance ρ(t) between mass particles as a time function and as a soluttion of this equation. After solving
the previous equation we have the main part of defined problem solution.

EXAMPLE 3. For the case of the three mass particles connected by the three hereditary elements in
the plane, for the relations between internal system coordinate we obtain the following:
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The third relation is similar to the previous, for permuted index. The following relations are obtained
as well as:
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These equations must be solved as a system of coupled equations expressed by internal coordinates
and must be solved together with corresponding of (2) (or (4) or (6)) and (18). This is a system with
complete equations with coresponding number to the unknown coordinates.
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3. COVARIANT INTEGRO-DIFFERENTIAL EQUATIONS OF THE MOTION
OF THE DISCRETE HEREDITARY SYSTEM

By using principle of the work on the virtual displacemet we can write (see Ref. [5]):
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Now, the virtual displacement can be expressed by using generalized coordinates in the

form: α
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 and introduced into the previous equation (13) for the work of the

active and reactive forces on the virtual displacements, and we obtain the following:

0R
||

)(),...,()(F
11

T
1 )()1(

)()1(
)1,(1

1
=δ

∂
∂













−
−
−

−λ−− α
=α

=α
α
ν

=ν

=ν
ν

=

= ν+ν

ν+ν
+ννµν

=µ

=µ
µννν ∑∑ ∑∑

ν
q

q
r

rr
rr

tPrrfgradtrm
nN Kk

k kk

kk
kN

S !!
!!

!!
!!!

""! (27)

Now, by changing the order of sumarizing we can obtain:

0,R
||

,
)(

),,...,(,(F,

T
1 )()1(

)(
)()1(

)1,(

1
1

11

=




















∂
∂

−
−








∂

∂
−

−







−






∂
∂

λ−






∂
∂

−






∂
∂

δ

α
ν

ν

=

= ν+ν

α
ν

ν+ν

+νν

=ν

=ν
α
ν

µν

=µ

=µ
µα

ν
να

ν
νν

=α

=α

α

∑

∑ ∑∑

ν

q
r

rr
q

r
rr

tP

q
r

rrfgrad
q
r

t
q
r

rmq

Kk

k kk

k
kk

k

N

N

Sn

!!
!!

!
!!

!
!!

!!!
""!

(27*)

By analysing the member from previous expression we have the following fictive,
active and reactive forces:
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A system of dynamic equations in the covariant coordinates can be written in the
following form:

0QPQI * =+++ αααα     SNnn −==α 3   ;,...,3,2,1 (34)
or:

ααα

β

αβ ++= PQQ *

dt
qDa
"

   SNnn −==α 3   ;,...,3,2,1 (34*)

4. THE RHEONOMIC COORDINATE METHOD APPLIED TO DISCRETE HEREDITARY SYSTEMS.
MODIFIED SYSTEM OF THE COVARIANT INTEGRO-DIFFERENTIAL EQUATIONS OF MOTION

OF A DISCRETE HEREDITARY SYSTEM WITH RHEONOMIC CONSTRAINTS

Let us consider K, ∑
=ν

=ν
ν=

N
KK

1
 standard hereditary elements of neglected mass and

rheological properties defined by material parameters: n(v,v+1)k, k = 1,2,3,...,Kv times of
relaxations; coefficients of rigidity c(v,v+1)k  and kc )1,(

~
+νν  are an instanteneous rigidity and

a prolonged one. Relations between reaction and deformation of the stressed and strained
hereditary element in the discrete system can be expressed by the following different
forms:

* in the relaxational forms by using integral relation:
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where:
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a kernel of relaxation, and

.  ||  ||

||  || 

0)1,()()1(0)1,()1,()1,(

)()1()1,()1,(

kkkkkk

kkkk

rr

rr

+ννν+ν+νν+νν+νν

ν+ν+νν+νν

ρ−−=ρ−ρ=ρ

−=ρ=ρ
!!!

!!!

  (a)

ρ(v,v+1)0 is the natural state length of the hereditary element without stress and strain, and
without history of stresed and strained states.

If now, between of hereditary elements and one of the two material particles of the end
of hereditary element we put a rheonomic constraint in the form of the exactly defined
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length segment as a function of time in the form )()()( 0
1,1,1, qatat +νν+νν+νν =Ω=$  we defined

a hereditary discrete system with rheonomic constraints. In this case we made a new
hereditary element with rheonomic modifications. Hereditary element and rheonomic
element are connected in series.

This rheonomic modification we can introduce into hereditary element simply in
parallel, or serial conection, as well as in other ways, as an element introduced into the
complex system of the conected hereditary elements.

For that reason, into reserch of the system defined in that way, we introduce a time
function as a rheonomic coordinate in the sence of V. Vuji~i}. As a rheonomic coordinate
we can choose for example the following: q0 = Ωt.

Follows the idea of V. Vuji~i} (see Ref. [6], [7], for the description of system dynamics
we choose the generalized coordinate, of which number n = 3N − S is a difference between
number of 3N positions coordinates and number S of the finite constraints, and we join a
rheonomic coordinate q0 as a more them n = 3N − S. This rheonomic coordinate q0 must be
chosen depending on functions introduced by rheonomic segment of lenght, as it is possible
to see in the figure.

In this case we can choose as a rheonomic coordinate q0: time, or lenght, or for example
q0 = Ωt where Ω is parameter as a frequency. This rheonomic coordinate can be chosen as
dimensionless, or lenth, or an angle in radians. This depends on the concrete introduced
rheonomic constraints into hereditary system. The next research is for different kinds of
rheonomic coordinates and we have not defined the type of chosen rheonomic coordinate.

In acordance with introduced rheonomic lenth in series connected with hereditary
element we must correct some relations for the stress-strain state of the hereditary
element. For that reason we composed the following relations:

. )( || )( || 

and     ||  ||
0

1,0)1,(11,0)1,(1,1,

11,1,

qarrt

rr

+νν+ννν+ν+νν+νν+νν+νν

ν+ν+νν+νν

−ρ−−=Ω−ρ−ρ=ρ

−=ρ=ρ
!!

$
!

!!!

 (a*)

For the compositon of dynamical equations of the discrete hereditary system with
rheonomic constraints -lenght as it is defined, we can use the equation of virtual work in
the form:

0}RPRFI{
1

T =δ++++ ν

=ν

=ν
ννννν∑ r

N !!!!!!
 (13*)

or:
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S !!
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""!  (13)

Now, the virtual displacement must be expressed by n generalized coordinates with
joined rheonomic coordinate q0, as a system of n + 1 coordinates qα, α = 0,1,2,3,...,n,
n = 3N − S.

Now we have a modified - extended system of n + 1 coordinates, and virtual

displacement is: α
=α

=α
α
ν

ν δ
∂
∂

=δ ∑ q
q
rr

n

0

!
!

. By introducing this expression into initial vector

equation (13), this equation takes the following form:
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(38)

Now by changing the order of summarizing we obtain the following:

( ) ( )

( ) 0,R

,

                     

,,,...,,F,

T
1 )()1(

)(
)()1(

)1,(

1
1

10

=
























∂

∂
−

−












∂

∂
−

−







−










∂

∂
λ−











∂

∂
−











∂

∂
δ

α
ν

ν

=

= ν+ν

α
ν

ν+ν

+νν

=ν

=ν
α
ν

µν

=µ

=µ
µα

ν
να

ν
νν

=α

=α

α

∑

∑ ∑∑

ν

q
r

rr

q

r
rr

tP

q
r

trrfgrad
q
r

t
q
r

rmq

Kk

k kk

k
kk

k

N

N

Sn

!!
!!

!
!!

!
!!

!!!
""!

 (39)

For the generalised active and reactive forces in the extended forms we must vrite:
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 (44)

0]QPQQ[I
0

* =δ++++∑
=α

=α

α
ααεαα

n
f q (44)

The equations of system dynamics into covariant coordinates are written in the
following form:

0QPQQI * =++++ ααεαα
f     SNnn −==α 3   ; ,...,3,2,1,0 (45)

or,

αααα

β

αβ +++= PQQQ *f

dt
qDa
"

   SNnn −==α 3   ; ,...,3,2,1,0 (45*)
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The generalized inertia force is
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and kinetic energy is
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The basic initial equation of the motion is in the form:

0QPQQ
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






−−−−

∂
∂−

∂
∂∑

=α

=α

α
ααεααα

n
fkk q

q
E

q
E

dt
d

"
(48)

From the last equation we can write the extended and modified system of Lagrange's
differential equations of the first kind with n + 1 equations. These equation contain
generalized rheological reaction of hereditary elements, rheonomic constraints reactions,
and other usually active and reactive forces.

By using extended coordinate system which consists of the n!  generalized coordinates
extended with rheonomic coordinate, the extended and modified system of Lagrange's
differential equations of the first kind with n + 1 equations. must be named as a Lagrage-
Vujičić-Goroshko system of differential equations for the discrete hereditary system with
rheonomic constraints. These equations are in the form:

0QPQQ * =−−−−
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∂
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, SNnn −==α 3   ; ,...,3,2,1,0  (49)

Now, we are focused on the analysis of generalized forces work. Generalized
reactions work of the rheonomic constraints (42) is not equal to zero, as in the case of the
scleronomic finite constraints. By using velocity conditions we can write:
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We can see that generalized rheonomic reaction work different them zero, and that is
the function of rheonomic coordinates in the form:

0),,,...,(Q
1

1
1

≠





∂
∂λ= ∑ ∑

=ν

=ν
α
ν

µν

=µ

=µ
µα

N

N

S
f

q
rtrrfgrad
!

!! (53)



 Rheonomic Coordinate Method Applied to Nonlinear Vibration Systems with Hereditary Elements 1129

The generalized rheological constraint reaction can be expressed by using (43) and
rheological reaction of the stress-strain state of the hereditary element (35):
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The generalized rheological constraint reaction can be expressed by two componets:
one as an elastic properties reaction, and one as a rheological properties reaction of the
hereditary element:
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By multiplying with dqα and by summarizing by index α, an after integrations by
νrd! , we can write the following expressions:
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Now we introduce a function as a rheological potential which corresponds to elastic
properties of the hereditary element:
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 Also, we introduce a function as a rheological potential which corresponds to the
rheological properties of the hereditary element



1130 K.S. HEDRIH
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By using derivatives of these funtions as a rheological potential we can express
generalized rheological reactions:

αα ∂
Π∂−=
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c
cP    αα ∂
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q

c
c

%
%

P (61)

EXAMPLE 4. Rheological rheonomic oscillator [27] is presented in figure. 4 and 5. Generalized
coordinte is x(t), and rheonomic coordinte is change x0(t) of lenght:

The initial equation is:
)()( tFtPxm =+"" .

Fig. 5. Classical (a*), hereditary (b*) and hereditary-rheonomic (c*) oscillator, excited by S(t)

For the standard hereditary element stress-strain relation is:

)]()([~)]()([)()( 00 txtxctxtxnctPtPn −+−=+ """

Dynamic equation of the rheological-rheonomic oscillator is:
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)](~)([)]()([)(~)()()( 00 txctFtxctFntxctxnctxmtxnm +++=+++ """"""""

and rheonomic reaction is:
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Potential function of the hereditary element and rheological reactions which correspond to elastic
properties are:
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Rheological potential function of the hereditary element and rheological reactions which correspond
to the rheological properties are:
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Kinetic Energy is:
2

2
1 xmEk "=

EXAMPLE 5. Rheological pendulum (see Figure No.6) [28] with a thread which increases its length
on one of its segments (for example the unfolding of unstreachable segment and tied to the segment by a
hereditary thread). The system has three degrees of motions which are defined by coordiantes: rheonomic
coordinate ρ0(t) and generalized coordinates, ρ and ϕ. Rheological connection does not decrease the
number of degrees of freedom. The rheonomic constraint decreases the number of degrees of motion
freedom and that is because it assigns one degree of motion as enforcement.

Fig. 6. Rheological-rheonomic hereditary pendulum (Pendulum with a thread which increases
its length on one of its segments (for example the unfolding of  unstreachable segment and tied
to the segment by a hereditary thread))

The potential function of the herediatary element and rheological reaction component which correspond
to elastic properties are:
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Rheological potential as a function of the hereditary element and rheological reactions which
correspond to the rheological properties of the hereditary element are:
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The expanded system of equations is:
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By using previous equations for each of the coordiantes we determine an equation:

EXAMPLE 6. Motion in the plane of two material particles tied to one another by a hereditary
element and a rheonomical constraint as a connection in a que (series). We are using the earlier discussed
example.

For a system of two material particles on interdistance of ρ in the plane of the system motion of
relations (16**), by eliminatng the reaction of the hereditary element we obtain the following relation
between internal coordinates ρ and ϕ of the system.
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The solution of the last differential equation (b) which can be observed as a differential equation of
the first order by )(tϕ" , so that we obtain:
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The last differential equation (c) gives the connection between angular velocity )(tϕ"  of the relative
rotating of the second material particle around the first one in the plane of dynamics of that system of
material particles and distance ρ between those particles. We can see that angular velocity )(tϕ"  of the
relative rotating of the second material paritcle around the first consists of two parts, and that one of the
components is opposite proportional to the square of their interdistance ρ, and that the second component
is in an integral form and depends on the external enforcement excitation force.The first component
corresponds to the case of the own-free motion of material particles connected with a hereditary element,
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when there is no external enforcement force, while the other is the result of enforced relative rotation as a
consequence of external enforcement force.

The square relative velocity of the relative rotation of the second mass particle around first one is:
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By introducing the expression (d) for the square of the relative velocity of the second material
particle in relation to the first one in the expression (18) for force P1,2(t) = P(t) of interaction of material
particles, and then the obtained expression we introduce into the expression for force of interaction of
material particles into the integral realtion (2) of rheological hereditary connection in series with the
rheonomic costraint for the case of enforced motion of the system in the plane of rhological -rheonomic
connection which comes down to the following integro-differential relation which has the form:
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This rheological-rheonomic connection is an integro-differential nonlinear equation from which we
determine the relative distance ρ(t) of material particles as the function of time, in which way we in fact
solved the basic problem.

Everything else is simple.
Instead of the previous connection we can write:

* for the standard hereditary element in series (que) with a reheonomical segment of the thread:
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While from dynamic equations of force of material particles interaction it is:
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By eliminating the force P(t) from the last two realtions we obtain:
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For the case of free motion without the effects of an external force, only under the influence of the
initial disturbance of equilibrium system position, and the excitation by a rheonomic constraint-
conncection the previous equation for determining the distance between the material particles is:
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5. CONCLUDING REMARKS

In this paper we derive the covariant integro-differential equations of the discrete he-
reditary systems with rheonomic constraints between mass particles and hereditary element.
In this paper we show applications of the rheonomic coordinate method to the dynamics of
the discrete hereditary system. By introducing rheonomic coordinate in the sense of V.
Vuji~i} we derive an extended system of differenttial equations in covariant form and core-
sponding generalizer reaktive forces for generalized coordinates in extendend form. We
consider some special examples of the discrete hereditary systems. We introduce expres-
sions of the rheological potential which correspond to elastic and hereditary properties.
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METODA REONOMNE KOORDINATE
U PRIMENI NA NELINEARNE OSCILATORNE SISTEME

SA NASLEDNIM ELEMENTIMA
Katica (Stevanović) Hedrih

Rezultati prikazani u ovom radu inspirisani su radovima O. A. Goroshko i N. P. Puchko (vidi Ref.
[13] i [14]), o Lagrange-ovim jednačinama za nasledne diskretne sisteme (više tela) i reološkim
modelima tela koji su prikazani u monografiji G.M. Savin-a i Ya.Ya. Ruschitsky (vidi Ref. [24]), kao i
monografijom V.A. Vujičić-a (vidi [6]). Koristeći modele reoloških tela za opisivanje deformabilnih
reoloških, naslednih elemenata sa hibridnim reološkim-elasto-viskoznim i/ ili visko-elastičnim
svojstvima, postavljeni su modeli diskretnih naslednih sistema sa jednim i više stepeni slobode kre-
tanja. Za takve oscilatorne nasledne sisteme integro-diferencijalne jednačine drugog, i/ili diferenci-
jalne jednačine trećeg reda su sastavljene.

Sastavljene su jednačine dinamike diskretnog sistema sa konačnim vezama i standardrnim na-
slednim elementima. Sastavljene su integro-diferencijalne jednačine kretanja diskretnog naslednog
sistema u kovarijantnom obliku. Prikazana je metoda reonomne koordinate u primeni na diskretne na-
sledne sisteme. Izveden je prošireni sistem integro-diferencijalnih jednačina kretanja, u kovarijant-
nom obliku, naslednog sistema sa reonomnim vezama.

Dat je veći broj primera reološko-reonomnog oscilatora, kao i reološko-reonomnih klatna.
Ključne reči: Diskretni nasledni sistem, standardni nasledni element,

oscilatorni nasledni sistem, reonomna koordinata, reološka koordinata,
metoda reonomne koordinate, reološko-reonomno klatno,
reološko i relaksaciono jezgro, kovarijantne koordinate.


