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Abstract. In this paper we investigate the asymptotic behavior, in the (2k)-th moment
sense, of the non-linear oscillator amplitude subjected to small parametric perturbations
and random excitations of a Gaussian white noise type. Since this problem is essentially
connected with the stochastic differential equation of the Ité type, the present paper deals
with the asymptotic behavior of the solution of the Ité's differential equation with small
perturbations, by comparing it with the solution of the corresponding unperturbed
equation. Precisely, we give conditions under which these solutions are close in the (2k)-
th moment sense on intervals whose length tends to infinity as small perturbations tend to
zero.

1. INTRODUCTION

Non-linear differential equations subjected to deterministic and random excitations
have been extensively investigated both theoretically and experimentally over a long
period of time. In mechanics, and much more in engineering practice, an important
role is played by non-linear differential equation of the form

§+9(y) g+ hit,y)y =0,
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which represents mathematical models of elastic systems motion with one degree of
freedom, or discredization of the dynamic model of an elastic body in the basic form
of the dynamic equilibrium. The researcher’s interest is concentrated on exploring the
bifurcational behavior of the solution and on conditions of stability or instability of
various elastic equilibrium forms under deterministic and stochastic influences. Spe-
cially, during the last years stimulating research have been undertaken in the field of
descriptions of amplitudes of non-linear oscillators subjected to random excitations of
a Gaussian white noise type. Many authors, Ariaratnam [1, 2], Caughey [6], Ibrahim
[8], Kozin [19], Wu and Lin [25], for instance, have studied various problems of the
motion of elastic oscillator systems under random excitations of a Gaussian white
noise type, which is mathematically described as a Gaussian stationary wide-band
random process of small intensity and correlation time, with matematical expectation
equal to zero. Note that white noise is, at least, a tolerable abstraction and is never
a completely faithful representation of a physical noise source.

The stochastic averaging principle, introduced by Khas'minskii, encouraged several
rechearchers to investigate the random behavior of dynamic systems under random
and parametric excitations. However, they have used a number of techniques, basi-
cally connected with the stochastic averaging principle, for instance, the Markovian
method based on the Kolmogorov— Fokker-Planck equation, the Gaussian moment
function methods, the spatial correlation method, and others. Having in view that a
Gaussian white noise is an abstraction and not a physical process, at least mathemati-
cally described as a formal derivative of a Brownian motion process, all the previously
cited methods are essentially based on stochastic differential equations of the Ité type
[11].

In the present paper we consider the stohastic differential equation of the Itd type
with small perturbations, by comparing its solution, in the (2k)-th moment sense,
with the solution of a simpler unperturbed equation of the equal type. Note that
the form of perturbations is motivated by the one from paper [22]. We generalize
the result of paper [22], which could be treated here as illustrative examples. The
similar problems are also studied in [15, 16]. Remember that the problems treating
stochastic perturbed equations have been studied by several authors in the past years,
for example, in papers and books [3, 5, 9, 12, 13, 17, 21, 23] and, clearly, in the
previously cited works.

Our paper is organized as follows: In the next section, starting from the main re-
sult of paper [22], from the global estimation for the (2k)-th moment closeness of the
solution of the perturbed and unperturbed equation on finite fixed time-interval, we
give conditions ensuring the closeness in the (2k)-th moment sense on intervals whose
length tends to infinity as small perturbations tend to zero. In Section 3 we illustrate
the preceding results on the example of the non-linear oscillator subjected to para-
metric and random excitations of a Gaussian white noise type. We give some useful
conclusions and we point to possible applications of the preceding considerations.

Finally, let us suppose that all random variables and processes considered here are
given on a complete probability space (2, F,P). We should mention that we shall
restrict ourselves to scalar—valued processes in this paper. For applications, extension
to vector-valued process is of great importance and it is not difficult in itself, but is
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rather complicated in details and involves complex notations.

2. FORMULATION OF THE PROBLEM AND MAIN RESULTS

We shall consider the following scalar stochastic differential equation of the It

type
dz; = a(t,z;) dt + b(t,z¢)dw,, t€[0,T), z,=n,

or, in equivalent integral form,

t t
=17 +/ a(s,z,)ds +/ b(s,z,)dw,, tel0,T], (2.1)
0 0

where w = (wq,t > 0) is a scalar-valued normalized Brownian motion with a natural
filtration {F;,t > 0} (i.e. F: is a smallest o-field on which all random variables
w,, s < t are Fy~ measurable}, the initial condition 7 is a random variable independent
of w, a(t,z) and b(t,z) are given scalar real functions satisfying fOT la(t, )| dt <
00, fOT [b(t,z)|?> d¢ < oo (under these conditions Lebesgue and It6 integrals in (2.1)
are well defined), and = = (z¢,¢ € [0,T]) is a scalar stochastic process adapted to
{Fi,t > 0}.

It is well known that there is a number of papers and books in which various,
essentially diferent sufficient conditions of the existence and uniqueness of a solution
of Eq. (2.1) are given (see [3, 7, 9, 14, 20, 24], for example). In fact, on the basis of
classical theory of stochastic differential equations of the Itd type one can prove that
if the functions a(t,z) and b(¢,z) satisfy the global Lipschitz condition and the usual
linear growth condition on the last argument, i.e. if there exists a constant L > 0

such that
la(t, ) — a(t,y)l + {b(t,z) — b(t7 y)| < Ljz ~ yl

la(t,2)* + b(t,#)* < L(1+ |z]*) (22

for all z,y € R, t € [0,T] and if Ej5|> < co (Eln|* is a mathematical expectation of
[7]%), then there exists a unique solution z = (z4,t € [0,T]) of Eq. (2.1), continuous
with probability one, satisfying E{sup,¢pp 77 |z¢|?} < 0o. Moreover, if E|n|** < co for
any fixed integer k € N, then E{sup,cpo n |z¢|**} < o0.

Together with Eq. (2.1) we consider the following equation of the equal type,
depending on parameters,

£
25 = + /0 [a(s,5) + (s, 25 €1)] ds (23)
t
+/ [b(s,z%) + B(s,z5,e2) dw,, t€(0,T],
0

in which eg,e1,€2 are small parameters from the interval (0,1). Because the solu-
tion depends on them, we adopt the shorter notational convention, introducing the
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superscript € in x; and emphasizing that ¢ also depends on them. The initial value
nee, satisfying E|n®°|?* < oo, is independent on the same Brownian motion w, and
a(t,z,e1) and B(¢,z,€2) are given scalar real functions. In accordance with paper [22],
the functions a(t,z,e1) and B{t,z,c2) are called the perturbations, while Eq. (2.3) is
naturally called the perturbed equation with respect to the unperturbed equation (2.1).

We suppose that there exist a non-random value ép(cg) and bounded continuous
functions 6;(¢,¢1) and d2(t,2), such that

Eln® —n|** < do(e0), (24)

sup [a(t, :8,61)! _<_ Jl(t,el), sup |ﬁ1(t,z,sz)| S éz(t,ﬁg). (25)
zER zER

In view of our previous discussion, if the conditions (2.2), (2.4) and (2.5) are
satisfied, then both equations (2.1) and (2.3) have unique solutions z; and zf, re-
spectively, continuous with probability one and satisfying supcjg 1 E|z** < oo,
sup,epo,1) B2 [*F < oo. Moreover, if the values do(eo), 01(t,£1), d2(¢, €2) are small for
small g9, €1, €2, then we could expect that the solutions z; and ¢ are close in {2k)-th
moment sense. In connection with these requirements, the name small perturbations
is logically kept for the perturbations a(t,z,e1) and B(¢, z,€2).

In paper [22] the following estimation of the (2k)-th moment closeness for the
solutions z; and z¢ is obtained: for all ¢ € [0, T,

1
E|zf — 2,)** < (53/k(50) -exp{Mt +2/ 51(3,51)48} (2.6)
0
E

+/0t [261(s,€1) + (26 — 1)83(s,€2)] 'exp{Mt + Z/At(fl(u,el)du} d.s) ,

where M = 2L + 2(2k — 1)L?. Starting from this estimation, some special types of
perturbations are considered in paper [22]. In the present paper we shall observe a
general case of perturbations and we shall give conditions under which these solutions
are close on fixed finite intervals or on intervals whose length tends to infinity when
the small parameters tend to zero.

First, following partially the ideas of papers [15, 16], taking into consideration that
the size of the perturbations is limited in the sense (2.4) and (2.5), we shall require
that dg(€o), 81 (£, 1) and da2(t,62) monotonously tend to zero as small parameters tend
to zero, uniformly in [0, T].

Let us denote

8i(e1) = tes[l(l’%'} fi(tyer),  S2(ex) = tes[gl?l'] d2(t,2)

and let us define

#(e) = max {85/ (c),51(€), 8 (£)}

where ¢ = max{eg,€1,¢2}. Obviously, ¢(e) — 0 as e — 0.
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Now, from (2.6) it is easy to obtain
2% +1 k
Elaf — z:f** < ¢*(e) (e(M“P)‘ T 1)) , teo,T).

M+2p

—_— k
where p is a constant such that §:(e) < p for € € (0,1). If we take C = (1 + %r%) ,

we find
Elzf — 2,/ < C - ¢*(e) - HMI 1 €[0,T].

If T > 0 is a fixed finite number, it follows immediately that

sup Elzt — z,2* < C - ¢F(e) - FMHIT 40 as e 0. (2.7)
tef0,T)

Therefore, for sufficiently small parameters €g,e; and &3, the solutions z§ and «,
are close in (2k)-th moment sense on a fixed finite time-interval [0,T]. But, if the
time-interval is infinite, i.e. T = oo, then the previous assertion is generally not
valid, Because of that, similarly to papers [15, 16], our intention is to construct finite
time-intervals which depend on ¢ and whose length go to infinity as ¢ goes to zero,
such that the solutions z¢ and z, are close in the (2k)-th moment sense on these
intervals. Remember that in [22] the construstion of such intervals is given only for
special classes of perturbations.

Let us take T' = T(c) and determine T'(¢) such that sup,ci 1y Blef — z,2F = 0
as ¢ — 0. From (2.7) we find

sup  Elef — 24 < C - ¢*(e) - FMH2TC) (2.8)
tef0,T(¢€)]

Obviously, we shall claim that the right hand side of this inequality tends to zero as
€ — 0. Since ¢(c) — 0 as € — 0, then there exists £ € (0,1) such that ¢(e) < 1 for
e < £. Now, we easily find T'(c) by taking (M + 2p) T'(e) = —r In ¢(¢) for any number
r € (0,1) and for ¢ < €. Thus,

T

T(e) = M+ 2p

In ¢(e) (2.9)

and, clearly, T(¢) = oo as ¢ — 0. It is easy now to conclude that

k(1—-7)

sup Elzf—z)?* < C. (¢()) —0 as €—0. (2.10)

t€[0,T(e)]
Note that the preceding relation gives us an important result, the rate of closeness
of the solutions z¢{ and z; for a fixed ¢. Namely, for a given small value 6 > 0, from

the relation C (¢())*" ™
small perturbations,

< 6 we can determine a limit for ¢(c) as the size of the

$(e) < (/C)H/HO=D
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and, after that, T'(¢) from (2.9), such that sup,ci ey El2f — T2k < 0.
Remember, also, that we have estimated only even moments of |¢f — x|, while odd
ones could be estimated by using the elementary property of mathematical expecta-

tion: (E|X [)2 < E|X|? for any random variable X. From that,
sup Elef —mi* < sup (Bl —2,f2*)'/" < OM2 (g(e)) T
t€[0,T(e)} t€(0,T(e)]

In connection with previous discussion, it is clear that the method exposed here
could be used to study stability properties in (k)-th moment sense for the solution
of the perturbed equation, by studying stability properties in the same sense for the
solution of the corresponding unperturbed equation, which will be illustrated in the
next section.

3. (2k)-TH MEAN BEHAVIOR OF NON-LINEAR OSCILLATOR AMPLITUDE
SUBJECTED TO SMALL PARAMETRIC PERTURBATIONS

In this section we shall apply the previous results to describe the behavior of any
non-linear oscillator under parametric and random excitations, by comparing its am-
plitude, in (2k)-th moment sense, with the one of the corresponding linear oscillator.
Precisely, we consider the non-linear oscillator motion, which is mathematically mo-
deled with the following random differential equation

G+ (a4 By*) 9+ (wh + 707 + f(t,w))y =0, (3.1)

earlier studied in [2]. Here f(t,w) is a Gaussian stationary wide-band random process
of small intensity and correlation time, with mathematical expectation equal to zero,
which is treated as a Gaussian white noise excitation in mechanics and in engineering
practice; a, 8 and 7 are linear and non-linear damping factors, i.e. positive constants
small comparing to one and of the same intensity order as the spectral density S{2wp)
of the Gaussian random process; wy is a natural frequency of the unperturbed system
oscillation. Obviously, the special problems mainly arize in the specification of the
infinitesimal character of the parameters involved in (3.1).

It is well known that Eq. (3.1) can be transformed in the following way (see, for
instance, [2, 8, 21]: First, we introduce the coordinate transformation y = y,y2 = g,
such that Eq. (3.1) may be rewritten into the system of the random differential
equations:

dy _

a -

d;

7:—’; = —(a +ﬂyf)y2 - (wg + '7?/% + f(tvw))yl'

By the representation of the variables y:(¢) and y2(t) in the standard form

v1(t) = a(t) cos 4(2),

y2(t) = —a(t) wo sin ¢(t), $(t) = wo t + 6(2),
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in which a(t) is a solution amplitude for elongation, whereas 6(¢) is a phase and ¢(¢)
is a phase angle, the preceding system is transformed into the form convenient to
the well-known Khas’minskii averaging principle (see [2, 8, 21] and first of all {18]),
which is based upon the ideas of Krilov-Bogoliubov-Mitropolsky. Without going into
details, as a final result of an application of the averaging principle, one can obtain
stochastic differential equations of the 1t6 type with respect to the averaged amplitude
@(t) and the averaged phase 6(¢). The stochastic differential equation with respect to
the averaged amplitude will be of interest to us,

3 S(2wo) _ 1 B _s\_ S(2we) _
dat“[fé o atdt—g(d"l’(lat a| dt + W“tdwta t>0, (3.2)

ag = 1.

Here w = (wy,t > 0) is a normalized Brownian motion, which is the outcome of
the effect of the random forces process. Since this equation cannot be effectively
solvable (see {7, 12, 13]), in order to describe its solution different methods are used.
For example, since the solution is a homogeneous Markovian process (see [3, 7, 9,
14, 20, 24]), the corresponding Kolmogorov-Fokker—Planck equation for a conditional
probability density is used for determining the stationary probability density of the
averaged amplitude (see {2, 8]). Likewise, a comparison method is presented in [12,
13] to estimate the mean square expectation of this averaged amplitude.
For the sake of simpler writing, we are introducing the following notations:

_ 3 S(2wg) « Y S(2wp)
=% @@ 2 A 8wz

Thus Eq. (3.2) becomes

d6¢ = (;&Et - g‘&‘z) dt + Vat d'wt, t> 0, E(] =1 (3.3)

In connection with the discussion in Section 2, together with the non-linear oscil-
lator motion mathematically described with Eq. (3.1), we consider the corresponding
linear one, mathematically described with the following equation

i+ oy + (Wi + f(t,w)y=0. (34)

In fact, the quadratic terms in (3.1) could be treated as perturbations with respect
to the linear equation (3.4).

By applying the stochastic averaging principle to Eq. (3.4), the corresponding
equation with respect to the averaged amplitude b(t) is that linear homogeneous
stochastic differential equation of the It6 type

dby = by dt + vbydws, >0, by =1. (3.5)
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So, Eq. (3.3) could be treated as the perturbed equation with the small perturbation
-—g a®, while (3.5) is the corresponding unperturbed equation.

Let us note the following important fact: By applying the comparison method
exposed in papers [12, 13], we conclude that @2 can be compared with the solution z,

of the linear stochastic differential equation
dzy = (2p + Vz)zt dt +2vzidwy, t>0, 2z = 172,

in the sense that
&% <z, t2>0 with probability one.

Since the solution of this equation may be written in the form ({3, 7, 8, 14, 20])

2
2 = 1726(2;4—11 )t+2nw,’ t> 0,

and according to the law of iterated logarithm, from which it follows that the sample
function of the Brownian motion approaches the limiting value /2tlog(logt) as t —
oo with probability one, it follows that 2 —2? < 0, or in terms of the original damping
ratio,

5(2uy)

i (3.6)

a >

is a necessary and sufficient condition for the equilibrium solution to be asympto-
tically stable with probability one. Therefore, it is reasonable to think, under the
condition (3.6), that the averaged amplitude a(t) is bounded with some constant,
with probability one. This conclusion will be important later on.

Remember that, stricily mathematically, the usual procedure for determining the
stationary probability density for the averaged amplitude from the corresponding
Kolmogorov-Fokker-Planck equation, requires that the drift and diffusion coeflicients
of Eq. (3.3) be bounded, which is a strong assumption. In practice there is an
abundance of examples (see {1, 2, 6, 8, 19, 24]) to show that this boundedness condition
is not essential. However, the situation remains unclear and the previous commentary
could be an acceptable argument.

Since it is reasonable to think that the averaged amplitude is bounded with a
constant g > 0 with probability one, determined in advance with the physical chara-
cteristics of the oscillator, then % lal® < %qs, and therefore,

Now, we could estimate the (2k)-th moment closeness of @; and b; by using (2.10),
but because of the linearity of Eq. (3.5) we shall obtain one better estimation.

We need the following Ito’s differential formula, so—called the Ité’s diferentiation
rule (see [3, 7, 9, 14, 20, 24], and first of all [10]): If the stochastic process (z:,t €
[0,T)) has the stochastic differential dz; = a;dt + b, dw, and if the non-random
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function f(£,=) is continuous together with its derivatives f;, f., fo/. , then the process

f(t, ;) has the stochastic differential
1
df(t,:ct) = (ft,(t,:ct) + ai f;(t,mt) + 5 bf a’:lz(t’ .'Bt)) dt + bt f;(t,l’g) dwt, t S [0, T]
Let us subtract the equations (3.3) and (3.5) in integral form,

t t
b}——i;,:/ (p(h’,—&)—- gh‘i) ds+/ u(ﬁ,~_5,)dw$, t>0,
0 [

and then apply the It6’s differentiation rule to f(z) = 22*:

t
(@ — b;)*F =2k / (p(&‘, —-b,) — gaﬁ) (@s — b,)2*1ds
0
t 1
+ k(2k — 1)2° / (@s — by)**ds + 2kv / (@ — b,)2*dw,, t>0.
0 0

From the basic property of the Itd’s integral it follows that E jg (@5 — b,)**dw, = 0,
and thus

1
Ef@, — Bif?* < [2k| + k(2k — 1)v7] / Efa, — b,[?*ds
0
t
+ _i.q%/ Elg, - b**'ds, t>0.
0

Since the mathematical expectation satisfies the well-known Hoélder’s inequality

ElX| < (E]X|p)1/p for any real number p > 1, by taking p = ;2% we obtain

Efa, — 5,1 < (Ela, — b,2*)®*7Y/®9 such that

t
Efa, ~ b, <[2Klp} + k(2k — 1)7] / Efa, —b,[**ds
0
t
+ g—qu‘/ (Ela, - b,2)** P, ¢ > 0.
0

To estimate E|a, — b;/?* from this integral inequality, we shall apply the following
version of the well-known Gronwall-Bellman’s lemma [4, pp. 39]: Let u(t), a(t) and
b(t) be nonnegative continuous functions in [0,7] and let ¢ > 0, 0 < v < 1 be
constants. If

u(t) < c+/0 a(s)u{s)ds +/; b(s)u7(s)ds, te[0,T],

then

1
T—

t t ¢ v
u(t) < (Cl—'v e foa()de 4 (g 7)/ b(s) e i (D) dr ds) , te[o,T).
0
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Because @; and b, are continuous with probability one, the expectation Ela, —b,|**
is also continuous. By taking u(t) = E|[a@, — b|?*, v = (2k — 1)/(2k) and by applying
the cited Gronwall-Bellman’s lemma, we find

Ela, - gt]zk <C 'ﬂ2k62k[|I‘|+(2k—1)/2'ug]t’ t >0,

3

2k
where C = ( Wﬁ?@%ﬂm) . In accordance with the considerations in Section 2,

for any number r € (0,1) let us determine T(3) from the relation [ |p] + (2k — 1)/2 -
VI T(B) = —rng,ie.

T
T = ez
Therefore, T(B) — oo as B — 0 and
sup Ela:—b2* <C-p*"" 50 as g —0. (3.7

t€[0,T(B)]

Moreover, this relation gives us the rate of closeness of the solutions @; and b, on the

interval [0, T(B)].

Let us give some concluding remarks: Since the (2k)-th moment of the solution b,
of the linear stochastic differential equation (3.5) may be written in the form (see |3,
7, 8, 14, 20], for example)

EIEIM — 772k82k[;t+(2k——1)/2-v2]t’ t>0,

this averaged amplitude is exponentially stable in the (2k)-th mean if and only if
p+ (2k —1)/2- % <0, or in terms of the original damping ratio,

S (2(:)0)

a>(k+1) s (3.8)
Note that then the condition (3.6) is also satisfied. Thus, for an arbitrarily small
value 8 > 0, from (3.7) we find

B < (8/C)H/ A=), (3.9)

However, if the damping factors of Eq. (3.1) satisfy (3.8) and (3.9) for a given small
0, then @ is different from b;, in the (2k)-th moment sense, for the greatest 6 on
the time-interval [0,7(8)]. In accordance with this fact, it is reasonable to believe
that this non-linear system behaves, asymptotically in the (2k)-th moment sense,
analogously to the corresponding linear one. Because of that, the conditions (3.8)
and (3.9) could be acceptable as the one under which the non-linear dynamic system
is stable, approximately in the same sense.
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The method exposed in this paper for the description of the behavior of the non—
linear oscillator amplitude is illustrated on a simple example, comparable with the
linear one. Likewise, it could be applied to some other situations, when mostly classi-
cal estimations did not give suitable results. Of course, it could be necessary to know
the conditions under which the corresponding unperturbed equations are asymptoti-
cally stable in the (2k)-th moment sense. Moreover, this method could be applied to
describe the behavior of nonlinear dynamic systems subjected to more independent
random excitations of a Gaussian white noise type, which will be a subject of our
forthcoming work.
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ASIMPTOTSKO PONASANJE
NELINEARNIH DINAMICKIH SISTEMA
POD UTICAJEM PARAMETARSKIH I SLUCAJNIH POBUDA

Svetlana Jankovi¢, Miljana Jovanovié¢

U radu se ispituje asimptotsko ponasanje, u smislu momenata (2k)-tog reda, amplitude
nelinearnog oscilatora pod uticajem malih parametarskih perturbacija i sluc¢ajnih pobuda tipa
Gaussovog Suma. Posto je ovaj problem esencijalno povezan sa stohastickom diferencijalnom
jednacinom tipa Itéa, ovaj rad razmatra asimptotsko ponasanje resenja Itoove diferencijalne
jednacine sa malim perturbacijama, uporedujuci ga sa reSenjima odgovarajuce neperturbovane
jednacine. Preciznije, dati su uslovi pri kojima su ova resenja bliska u smislu momenata (2k)-tog
reda na intervalima cija duZina teZi beskonacnosti kada male perturbacije teZe ka nuli.



