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Abstract. Three important problems of mechanics are addressed. The first corresponds
to analytical prediction of a suitable choice of a delay loop parameters in order to
control a transitional (perturbed) behaviour of a periodic vibro-impact process
modelled by one degree-of-freedom system. The second presents an application of the
Melnikov's method to stick-slip chaos prediction in periodically driven self-excited
oscillator. The third one illustrates an application of a so called "small δ method" to
analysis of strong non-linear oscillations using example of a mathematical pendulum.

1. INTRODUCTION

It appears that a good prognosis for a future of asymptotic approaches can be
formulated. Many of researches realized that only numerical investigation is certainly not
a panaceum for a solution to many fundamental problems including those taken from
engineering science [1-13]. In recent years the asymptotical approaches have been highly
developed from both qualitative and quantitative points of view. The most interesting
directions refer to detection of new non-trivial small (perturbation) parameters (even in
classical problems) and application of various methods ( follow, for instance a recently
increased applications of Padé approximants).

In this work only three points of application of perturbation oriented technique
(supported by symbolic computations using Mathematica and verified by numerical
simulations) are illustrated and discussed. However, they touch the most important
directions of nowadays mechanics; i.e. control of discontinuous systems, stick-slip chaos
prediction and analysis of strongly nonlinear systems.
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2. STABILITY IMPROVEMENT OF PERIODIC VIBRO-IMPACT PROCESSES [2]

The analysed one-degree-of-freedom vibro-impact system is governed by the
following equation
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and T = 2kπ/ω is the period of the considered periodic orbit being stabilised (k = 1,2,... -
number of periods of the excitating force between two successive impacts). Above y0 and
ω are the amplitude and the frequency of kinematic excitation; k1, k2 are the stiffnesses
coefficients; c1 is the damping coefficient; m is the mass; a1, b1 are control coefficients,
Rr ≤ 1 denotes the restitution coefficient.

A delay loop is switched off where perturbations are not present. In the case of
perturbations the controller causes the perturbations to vanish more quickly than in the
case without control. The problem of analytical estimation of the influence of control
coefficients for periodic orbit stability cannot be solved in the standard way. Here we
propose the following approach. Because in fact the differencies x(t) − x(t − T) and

)Tt(x)t(x −− !! are small, we express them by introducing the small parameter ε, which
allows one then to apply the Krilov-Bogoljubov-Mitropolskij (KBM) method formally
and next to take ε =1.

We assume damping of the same order as ε, and from (1) we obtain
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Using the KBM method we have truncated the ε series up to the order )(O ε and we have
obtained
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For A = B = 0 we get the uncontrolled solution, which testifies the validity of our
approach.

After integration of equations (6) we get
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Therefore, we analyse the following equivalent solution
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From equation (8) it is seen that when R < 0 the assumed solution is stabilised more
quickly in comparison to the case of R = 0. However, a problem of stability investigation
of the vibro-impact state is much more subtle. Before the impact number l, the mass
possesses the velocity −lx . This causes the following perturbation solution to occur
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A new time τ is measured from the l-th impact τ1 = τ + δτ1. For example, the next
impact occurs for τl+1 = (2πl/ω) + δT1, where δT1 denotes the period T = 2π/ω
perturbation.

After some calculations we get
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Then we get six equations as follows:
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After some calculations we have obtained the following equations
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The problem of stability is reduced to consideration of the second order characteristic
Eq. (15). If the roots of Eq. (15) are |γ1,2| < 1 then according to the assumed solutions (14)
δC1, δD1 and δϕ1 approach zero for 1 → +∞, and the solutions will be asymptotically
stable. We can easily estimate the stability regions, which are defined by
the following inequalities
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Taking into account equations (15) it is easy now to find parameters of the system (or
a delay loop) which fulfil inequalities (17). Additionally, because of some mechanical
reasons, we have x(t) ≤ s. The validity of our analytical approach has been testified by
numerical simulations [2, 3].

3. PREDICTION OF STICK-SLIP CHAOS [4]

3.1 Analysed system and Melnikov's method

The analysed mechanical system with friction is governed by the equation
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In Eqs. (18) and (19) ε > 0 is the perturbation parameter and v* corresponds to the
velocity of the belt on which the considered mechanical system lies. θ0, A, B are friction
coefficients k1 and k2 are stiffness coefficients, whereas Γ and ω are the amplitude and
frequency of excitation, respectively.

The equation (18) can be written transformed to the following set of first order ODE's
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For ε = 0 we have the unperturbed system with the following Hamiltonian






 +−= 422 bx

2
1axv

2
1H , (21)

and there are three critical points for a,b > 0 : two centres at ( )0,b/a±  and a hyperbolic
saddle at the origin with the homoclinic orbit satisfying the equation

2
x

a
b1xa

2
xbax

dt
dx 22

−=−= (22)



Asymptotic Approaches to Analysis of Strongly Non-Linear and Non-Smooth Systems 1171

Integrating (22) in respect to t , we obtain the following homoclinic orbit
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where: τ = t − t0. The integrals of (25) can be calculated using the Mathematica symbolic
package and we finally obtain
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The obtained formula is applicable in both cases, i.e. for stick-slip and slip-slip
motions. The latter one corresponds to a zero additional value given in the brackets. The
Melnikov criterion for occurrence of chaos is given by equation
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which allows to estimate a chaotic threshold in a weakly forced stick-slip oscillator.
In order to check the validity of our results, we have taken a = b = 1, α = β = T0 =0.3,

ω = 2, v* = 0.4, and we have obtained γc = 0.65. The Mathematica program and the
MATLAB-SIMULINK package have been used to simulate the analysed system. We are
going now to check numerically the validity of the analytical prediction. For this aim we
have fixed a = b = 1, α = β = T0 =0.3, ω = 2, v* = 0.4 and we have used γ as the control
parameter. For γ = 0.6 we have obtained a periodic orbit, which with an increase in γ
doubles its period. Closely to γc = 0.65 (analytical prediction) a very "slight" chaotic
behaviour has been observed. For γ = 1.2 two-well potential chaos is shown. In all of the
phase portraits the cusps corresponding to a sign change of the relative velocity, as well as
short horizontal parts corresponding to the sticks during motions are visible. The obtained
results illustrate practically a good agreement with the analytical prediction (see Fig. 1).

Fig. 1. Phase portrait and Poincaré map of a stick-slip chaos (see reference [4] ).

Because we have found the cusp of the curve γ(v*) therefore we have tried to
manipulate the parameters in such a way that the cusp can touch the horizontal
coordinate. This corresponds to a special threshold for which we have γ = 0, i.e. an
autonomous system. Then, an infinitely small periodic perturbation will lead the system
to chaos. To achieve that we have used parameter the b. For example, for b = 5 there exist
two following values of ν* (two cusps), for which γ = 0: v* = 0.310429 and v* = 0.557204
(see reference [4]).

The γ parameter represents the forcing amplitude and γ = 0 corresponds to a one-
degree-of-freedom autonomous stick-slip system. Because according to the Poincaré-
Bendixon theorem we cannot get chaos in an autonomous one-degree-of-freedom system,
therefore we have found the autonomous system lying on the border of chaos.

4. STRONGLY NON-LINEAR SYSTEMS [5]

We consider the homogeneous nonlinear differential equation

0xx n =+!! , (28)

and we are going to find a periodic solution with the following initial conditions
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Using the small δ method, equation (28) is transformed into the following one
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we get (after splitting with respect to δ) the following recurrent system of equations
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The most popular method of the solution construction to equation (41) is related to the
development of the Fourier series of the first term of the right-hand side equations in
order to cancel the resonance behaviour by a proper choice of α1. The averaging
procedure applied to the right-hand side of equation (41) is related to the so called
Lobatczevski function
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Symmetry and periodicity
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Therefore, a period of the solution can be defined as follows

].2ln21[2T δ−π≈ (42)

For n = 3 (δ = 1) the formula (42) yields T = 6.8070, where the exact period value
T = 7.4164 (the error doesn't exceed 8%). The next approximation gives practically exact
value (T = 7.5111). For n = 5 the approximation formula (42) does not represent a real
period value.

The small δ method allows for rather simple investigations of many problems, for
which an application of the quasi-linear approach is difficult.

As an example we consider the mathematical pendulum governed by the equation

0xsinx =+!! . (43)

The quasi-linear approach does not guarantee the required accuracy of the solution to
boundary value problem (43).

Equation (43) can be transformed into the form

,0....x
!5

1x
!3

1xx 4121 =++−+ δ+δ+!! (44)

and it will be solved using the small δ method with the boundary conditions (29).
Let us consider the expression

...,x
!5

1x
!3

1x),x( 4121 −+−=δΩ δ+δ+

which reads as follows

.1sinx...
!5

1
!3

11x)0,x( =




 −+−=Ω

Defining
1sin2 =ω

we apply the series (31) to each of the term of the function Ω(x,δ).
Therefore

...],)]x[ln()xln([x),x( 2222
1

22 +δ+ωδ+ω=δΩ
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where:







+−+−=ω

+−+−=ω

...
!9

4
!7

3
!5

2
!3

15.0

...
!9

4
!7

3
!5

2
!3

1

222
2
2

2
1

After splitting with respect to δ, we get the following recurrent equations

,0xx 0
2

0 =ω+!! (45)
;0)0(x,1)0(x 00 == ! (46)

,x)xln(xxx 01
2

00
2
11

2
1 !!!! α−ω=ω+ (47)

;0)0(x)0(x 11 == ! (48)

,xx)]x[ln(x)xln(xxx 1102
22

00
2
2

2
01

2
12

2
2 !!!!!! α−α−ω+ω=ω+ (49)

;0)0(x)0(x 22 == ! (50)

The zero order solution (initial value problem (45), (46)) has the form

x0 = cos ωt .

From the first approximation equation (47), using a method of avoiding the secular
terms, we get

.2ln)/(2 2
11 ωω−=α

Taking δ = 1, we get the formula for the period of oscillations

].2ln)/(1[2T 2
1 π

ωω−π= (51)

The next successive approximations can be obtained in a similar way.
The numerical computation of the period of equation (43) gives the value T = 6.6.

Approximation of 0-order gives T = 6.8, and this approximation is better then usually
using approximation of this order T = 2π. In the first approximation one obtains
practically exact value T = 6.57 (error consists approximately of 0.5%).

Therefore, the method of small δ can be treated as an adequate one for the
approximate integration of equations, which do not include explicitly small parameters.

5. CONCLUSIONS

In this paper three examples of application of an asymptotic technique are given. The
illustrated approaches indicate a powerful of the analytical asymptotical analysis which
can be applicable successfully for both discontinuous mechanical system (impacts,
friction) and strongly non-linear systems. However, these are only first steps which wait
for further development (for instance, for extension of the presented methods to either
multibody dynamical or continuous mechanical systems).
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ASIMPTOTSKI PRISTUPI ANALIZI
STROGO NELINEARNIH SISTEMA I NEGLATKIH SISTEMA

J. Awrejcewicz

Rad se odnosi na tri važna problema mehanike. Prvi odgovara analitičkom predviđanju
odgovarajućeg izbora parametara kola kašnjenja da bi se upravljalo prelaznim (poremećenim)
ponašanjem periodičnog procesa vibro-sudara modeliranog sistemom sa jednim stepenom slobode.
Drugi predstavlja primenu Melnikov-ljeve metode na stick-slip predikciju haosa u periodično
pobuđenom samopobudnom oscilatoru. Treći ilustruje primenu takozvanog "malog δ metoda" na
analizu strogo nelinearnih oscilacija primenom primera matematičkog klatna.


