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Abstract. The paper treats the thermoelastic problem of a shrink fit between an
eccentric circular annulus and a shaft. At ambient temperature, prior to heating and
assembly an eccentric annulus has an outer radius R, inner radius r1 but the shaft's
radius is by a value δ'1 greater than radius r1. An eccentric annulus is homogeneously
heated for a certain value of temperature ∆T at which the eccentric annulus expands,
and the inner radius becomes greater than the radius of the shaft. At this moment the
eccentric annulus and the shaft are assembled. After cooling down to the ambient
temperature, this assembled system represents a shrink fit. The stresses and
displacements in the eccentric annulus and the shaft are determined according to
Sherman's theory using complex functions. The results of solving some particular cases
are presented in graphs.

1. INTRODUCTION

In 1898 E. Goursat [1] showed that the general solution of the biharmonical differential
equation can be expressed by two analytical functions ϕ(z) and ψ(z) in the original complex
plane (z), z = x + iy. In 1909 Kolosov [2] proved that the element of the plane stress tensor
σx, σy and τxy can be expressed by two Goursat's functions ϕ(z) and ψ(z). However, Kolosov
did not determine the relationship between the functions ϕ(z) and ψ(z) and the boundary
conditions so they had to be determined by guessing. The relationship between the
functions ϕ(z) and ψ(z) and the boundary conditions was later determined by
Muskhelishvili [3], in 1933, who implemented the Plemelj - Sochozki functions, [4], [5].

The complex functions ϕ(z) and ψ(z) were first used for solving a shrink fit problem
by D. I. Sherman [6] in 1938. The boundary conditions between the bodies which
represent a shrink fit system were in this case fulfilled by using the first boundary
problem. The objective of the present study is to determine the plane stress state tensor
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and the displacement vector in an eccentric circular annulus and a shaft.

2. ASSUMPTIONS

To simplify the analytical treatment of a shrink fit between an eccentric circular
annulus and a shaft, the process of achieving the shrink fit is divided into four phases, as
follows:

a) The initial state

The shaft radius is r1+δ'1 and the eccentric circular annulus has an inner radius r1,
outer radius R and eccentricity b1. Both, the shaft and the eccentric circular annulus have
an initial temperature T0 which is constant.

b) The intermediate phase

The eccentric circular annulus is heated by a temperature ∆T, and the temperature
field is kept uniform. Due to the uniform temperature field the initial shape of the annulus
remains the same after the heating. The result of the heating is an increase of the inner
radius of the eccentric circular annulus for α ∆T r1, and the outer one for α ∆T R.

In the numerical simulation the temperature difference ∆T is chosen at which the
expression α ∆T r1 is equal to δ'1. At this temperature T0 + ∆T the eccentric circular
annulus is simply assembled with the shaft without any interfacial stresses.

c) The cooling phase

The cooling state depends on the intermediate phase, too. The second part of the
intermediate phase which presents a nonstationary cooling process is not the object of
study in this paper.

d) Final phase: achieving the shrink fit

Finally, the shrink fit between the eccentric cicular annulus and the shaft is achieved
by cooling down to the initial temperature T0.

3. THE STRESS STATES OF BODIES ASSEMBLED
BY THE SHRINK FIT IN THE ISOTROPIC DOMAINS

Numerical evaluation of the stress states in the isotropic domains assembled by the
shrink fit is based on the theory developed by Sherman, [6]. In the present paper it is
assumed that all assembled bodies have the same elastical properties in the isotropic
domains.

Let the isotropic domain S present a finite two-fold connected domain with an outer
boundary L0 and an inner boundary L0

*, Fig. 1.
The domain is assembled of p+2 domains. It consists of multi-fold connected domain

S0 with boundaries L = L0+L1+L2+...+Lp+1, of one-fold connected domains Sj,
j = 1, 2,..., p, that present shafts with radii rj and their centers of circles bj and of a two-
fold connected domain Sp+1 that presents an annular with an outer circular boundary with
radius rp+1 and inner boundary L0

*. The domains Sj, j = 1, 2,..., p+1 with overmeasures δ'j
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are inserted into domain S0 by the shrink fit. It is assumed that the vector of outer loads is
zero on the boundaries L0 and L0

*.

Fig. 1. Multi-fold connected domain S0 with shrink fits

According to Sherman's theory, the problem of determining the stress state in the
shrink fit can be reduced to a determination of the functions ϕj(z) and ψj(z),
j = 0, 1, 2,..., p+1, which are holomorphic functions in domains Sj. These functions can be
determined by using the boundary conditions as follows:

On the boundary L0 of the multi-fold connected domain S0 and on the boundary L0
* of

the two-fold connected domain Sp+1 the vectors of outer load are equal to zero. So, the
equations of boundary conditions are, [6]:

0000 )()(')( Ctttt =ψ+ϕ+ϕ    on L0 (1)

*
0111 )()(')( Ctttt ppp =ψ+ϕ+ϕ +++    on L0

* (2)

where t is a point on the boundaries L0, L1,..., Lp+1 and C0, C0
* are constants.

On the contact boundaries Lj between domain S0 and domains Sj, j = 1, 2,..., p+1, the
equilibrium law has to be fulfilled, [6]:

)()(')()()(')( 000 tttttttt jjj ψ+ϕ+ϕ=ψ+ϕ+ϕ     on Lj (j = 1, 2,..., p+1) (3)

On the contact boundaries Lj, j = 1, 2,..., p+1 the difference between the elements of
displacement vectors of domains S0 and Sj, j = 1, 2,..., p+1 has to be equal to
overmeasures δ'j, j = 1, 2,..., p+1, [6]:

ϕδ=+−+ i
jjjoo eviuviu ')()(    on Lj (j = 1, 2,..., p+1) (4)

or expresed by the complex functions ϕj(z) and ψj(z), j = 1, 2,..., p+1:
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)(
'2

)()(')()()(')( 000 j
j

j
jjj bt

r
tttttttt −

δµ
=ψ+ϕ+ϕχ−ψ−ϕ−ϕχ on Lj (j = 1, 2,..., p+1) (5)

where   
)+2(1

=    ,  
1
3

ν
µ

ν+
ν−=χ E

and E is Young's modulus and ν is Poisson's ratio
Equations (1-3) and Eq. (5) represent the basic equations from which can be

determined the functions ϕj(z) and ψj(z), j = 1, 2,..., p+1. D. I. Sherman solved the
problem of the shrink fit with the transformation to the first boundary problem. Using
Eqs. (3) and (5) he obtained:

)(
1

)()(0 j
j

j bttt −
χ+

δ
+ϕ=ϕ    on Lj (j = 1, 2,..., p+1) (6)











+

−χ+
δ

−ψ=ψ j
j

jj
j b

bt
r

tt
2

0
2

1
)()(    on Lj (j = 1, 2,..., p+1) (7)

where 
j

j
j r

'2µδ
=δ

Introducing two holomorphic functions into domain S0:

∑
+

= −
⋅

χ+
δ

+ψ=ψϕ=ϕ
1

1

2

0*0*
1

1
2

)()(,)()(
p

j j

jj

bz
r

zzzz (8)

and applying the Eqs. (6) and (7), these two functions can be expressed on boundaries Lj,
j = 1, 2,..., p+1:

)(
1

)()(* j
j

j bttt −
χ+

δ
+ϕ=ϕ    on Lj (j = 1, 2,..., p+1) (9)

∑
+

= −
⋅

χ+
δ

+
χ+

δ
−

−
⋅

χ+
δ

−ψ=ψ
1

1

22

*
1

1
2

1
1

1
2

)()(
p

j j

jjjj

j

jj
j bt

rb
bt

r
tt   on Lj (j = 1, 2,..., p+1) (10)

Functions ϕ*(t) and ψ*(t) are uniformly continuous functions on the boundaries Lj,
j = 1, 2,..., p+1, and they present boundary functions of the holomorphic functions ϕ*(z)
and ψ*(z) in domains Sj, j = 1, 2,..., p+1. It is obvious that the complex functions ϕ*(z)
and ψ*(z) are the holomorphic functions on the complete domain S.

The holomorphic functions ϕ*(z) and ψ*(z) have to fulfill the boundary conditions
Eqs. (1) and (2) on the boundaries L0 and L0

*, as follows:

0

1

1

2

***
1

1
2

)()(')( C
bt

r
tttt

p

j j

jj +
−

⋅
χ+

δ
=ψ+ϕ+ϕ ∑

+

=
   on L0 (11)

*
0

1

2

1
1

***
1

1
2

)(
1
2

)()(')( C
bt

r
bttttt

p

j j

jj
p

p +
−

⋅
χ+

δ
+−

χ+
δ

=ψ+ϕ+ϕ ∑
=

+
+    on L0

* (12)

The problem of the shrink fit is solved when the holomorphic functions ϕ*(z) and
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ψ*(z) are known. Using Eqs. (8-10), we get:

∑
+

= −
⋅

χ+
δ

−ψ=ψϕ=ϕ
1

1

2

*0*0
1

1
2

)()(     ,)()(
p

j j

jj

bz
r

zzzz (13)

)(
1

)()( 0 j
j

j bzzz −
χ+

δ
−ϕ=ϕ    (j = 1, 2,..., p+1) (14)

χ+
δ

+
−

⋅
χ+

δ
+ψ=ψ

1
1

1
2

)()(
2

0
jj

j

jj
j

b
bz

r
zz    (j = 1, 2,..., p+1) (15)

and after applying the functions ϕj(z) and ψj(z), j = 0, 1, 2,..., p+1 in the Kolosov's
expressions [6], the stress states and elements of displacement vectors are determined:

)]('Re[4 zjyx ϕ⋅=σ+σ (16)

)](')("[ 22 zzzi jjxyxy ψ+ϕ=τ+σ−σ (17)

)()(')()(2 zzzzviu jjj ψ−ϕ−ϕχ=−µ (18)

4. STRESS AND DISPLACEMENT STATE IN THE SHRINK FIT
BETWEEN AN ECCENTRIC CIRCULAR ANNULUS AND A SHAFT

The shrink fit between an eccentric circular annulus and a shaft represents a one-fold
connected domain. So, there is no boundary condition on the boundary L0

*, Fig. 2.

Fig. 2. A shrink fit between an eccentric circular annulus and a shaft
Applying Eq. (11), the boundary condition on the boundary L0 can be written:

0
1

2
11

*
'
**

1
1
2)()()( C

bt
rtttt +

−
⋅

χ+
δ=ψ+ϕ+ϕ (19)

where constants ϕ*(0) and ψ*(0) must be equal to zero.
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The holomorphic functions ϕ*(z) and ψ*(z) are determined by using Muskhelishvili's
method, [3]. These functions are expressed with sums:

∑
∞

=
=ϕ

1
* )(

k

k
k zaz     ( ) ∑

∞

=
=ψ

1
*

k

k
k zbz (20)

The boundary condition Eq. (19) can be written also in the form:

0
1

2

2
11

*
'
** 1

2)()()( C
tbR

trtttt +
−

⋅
χ+

δ=ψ+ϕ+ϕ (21)

Let us now insert Eqs. (20) into Eq. (19). Multiplying Eq. (21) by the expression:

zt
dt

i −
⋅

π2
1 (22)

and integration Eq. (21) on the boundary L0 for the domain  z  < R, we get:

∫∫

∫
∑

∫
∑

∫
∑

−π
+

−−
⋅

χ+
δ
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=

=



















−
+

−
+

−π

∞

=

−
∞

=

−−
∞

=

0
2)()(1

2
2
1

2
1

0

1
2

2
11

1

2

1

2)1(2

1
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L

k

kk
k

L

k

kk
k

L

k

k
k

zt
dt

i
C

zttbR
dttr

i

zt

dttRb

zt

dttRak

zt

dtta

i

o

ooo (23)

Using the rules for complex functions that are continuous functions on the boundary
L0 and holomorphic functions in the domain |z| < R, Eq. (23) becomes:

0
1

2

2
112

2
1

1 1
22 C

zbR
zrRazaza

k

k
k +

−
⋅

χ+
δ=++∑

∞

=
(24)

Multipying the Eq. (21) by Eq. (22) and integrating it on the boundary L0 for the
domain |z| > R, and applying the rules for complex functions that are continuous functions
on the boundary L0 and holomorphic functions in the domain |z| > R, we get:

∑ ∑
∞

=

∞

=

−−− =−++−
1 1

22
21

2)1(2 02
k k

kk
k

kk
k zRbRazazRak (25)

Equations (24) and (25) can be rearranged as:

0
1

2

2
112

21* 1
22)( C

zbR
zrRazaz +
−

⋅
χ+

δ+−−=ϕ (26)

2
21

'
** 2)()( Razazzz ++ϕ−=ψ (27)

In Eq. (26), from which we get holomorphic function ϕ*(z), the expression z/(R2-b1z)
has to be written in the form of a sum:
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









++++=

−
...1 4

6

3
13

4

2
12

2
1

2
1

2 z
R
bz

R
bz

R
bz

RzbR
z (28)

Having inserted Eqs. (20) and (28) into Eq. (26) we get the equation:







+++

χ+
δ=−+++++ ...

)1(
22...)( 3

4

2
12

2
1

2

2
11

0
2

21
3

3
2

21 z
R
bz

R
bz

R
rCRazazazaza (29)

By equalizing the coefficients at the same powers of complex variable zk, a linear
nonhomogenuous system of equations is obtained:

k = 0: 02 0
2

2 =−CRa

k = 1: 2

2
11

11 )1(
2

R
raa

χ+
δ=+

k = 2: 4
1

2
11

2 )1(
2

R
bra

χ+
δ=

etc.
If in solving the system of equations it is considered that domain S is symmetrical to

the axis x, ( kaak = ), the holomorfic function ϕ*(z) from the Eq. (20) becomes:


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
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
−

−χ+
δ=ϕ 2
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*
2

1
)(

R
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zbR
zrz (30)

Applying the Eq. (30) in the Eq. (27), the holomorphic function ψ*(z) is obtained:


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and with some rearrangments:
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Equations (30) and (32) lead us to the conclusion that functions ϕ*(z) and ψ*(z) are
holomorphic functions in the domain S. To determine the stress state and vector of
displacement of an eccentric circular annulus, applying Eqs. (13-15), it is possible to write:












−

−χ+
δ=ϕ 2

1
2

2
11

0
2

1
)(

R
z

zbR
zrz (33)












−

+
−

+
−

+−
χ+

δ−=ψ
1

2
1

2
1

2

1
2

1
2
1

2
11

0
1

)(
2

1
2)(

bzzbR
bR

zbR
b

R
brz (34)

and for a shaft:
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According to Eqs. (16-18), the elements of stress tensor and displacements vector in
an eccentric circular annulus are:


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and in the shaft:
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If in the Eqs. (37-42) it is chosen that the constant b1 = 0, the equations for a shrink fit
between the centric circular annulus and a shaft are obtained.

5. NUMERICAL RESULTS

In the continuation a numerical example is presented. Elements of the stress tensor are
determined for an eccentric circular annulus with an outer radius R = 60 mm, inner radius
r1 = 15 mm and b1 = –30 mm. The overmeasure of the shaft is δ'1 = 0.01 mm. The
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annulus and the shaft are made of steel with the Young's modulus E = 2,1⋅105 MPa and
the Poisson's ratio ν = 0.3. The results of the elements of the stress tensor in some points
of domain of the eccentric annulus and the shaft are shown in Figs. 3-5.

Fig. 3. Normal stress σx [MPa] Fig. 4. Normal stress σy [MPa]
in the shrink fit in the shrink fit

Fig. 5. Shear stress τxy [MPa] in the shrink fit
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PROBLEM ELASTIČNOSTI TESNOG SKLOPA
EKSCENTRIČNOG KRUŽNOG OTVORA I VRATILA

F. Kosel, T. Videnič, B. Kuselj

Članak tretira problem  termoelastičnosti tesnog sklopa između ekscentričnog kružnog otvora i
vratila. U temperaturnom polju, prvo zagrevanja, a onda montaže jednog ekscentričnog otvora koji
ima spoljašnji prečnik  R i unutrašnji radijus r1, ali radijus vratila je za veličinu δ1

' veći od radijusa r1.
Ekscentrični otvor je homogeno zagrevan za neku vrednost priraštaja temperature ∆T pri kojoj

se ekscentrični otvor širi i unutrašnji radijus postaje veći od radijusa vratila. U tom momentu
ekscentrični otvor i vratilo su namontirani. Posle hlađenja, na nižoj temperaturi, namontirani
sistem predstavlja tesni sklop. Naponi i pomeranja u ekscentričnom otvoru i vratilu  su određeni u
saglasnosti sa Sherman-ovom teorijom korišćenjem funkcija kompleksne promenljive.

Rezultati rešavanja nekih posebnih slučajeva su predstavljeni grafički.


