UNIVERSITY OF NI§
The scientific journal FACTA UNIVERSITATIS
Series: Mechanics, Automatic Control and Robotics Vol.2, No 10, 2000 pp. 1273 - 1282
Editor of series: Katica (Stevanovi}) Hedrih, e-mail: katica@masfak.masfak.ni.ac.yu
Address: Univerzitetski trg 2, 18000 Nis, YU, Tel: +381 18 547-095, Fax: +381 18 547-950
http:// ni.ac.yu/Facta

PROBLEM OF ELASTICITY OF A SHRINK FIT BETWEEN
AN ECCENTRIC CIRCULAR ANNULUS AND A SHAFT

UDC 539.31:621.824.44+621.887(045)

F. Kosel, T. Videni¢, B. Kuselj

Faculty of Mechanical Engineering, University of Ljubljana
Askerceva 6, 1000 Ljubljana, Slovenia, E-mail: tomaz.videnic@fs.uni-lj.si

Abstract. The paper treats the thermoelastic problem of a shrink fit between an
eccentric circular annulus and a shaft. At ambient temperature, prior to heating and
assembly an eccentric annulus has an outer radius R, inner radius r; but the shaft's
radius is by a value &, greater than radius r;. An eccentric annulus is homogeneously
heated for a certain value of temperature AT at which the eccentric annulus expands,
and the inner radius becomes greater than the radius of the shaft. At this moment the
eccentric annulus and the shaft are assembled. After cooling down to the ambient
temperature, this assembled system represents a shrink fit. The stresses and
displacements in the eccentric annulus and the shaft are determined according to
Sherman's theory using complex functions. The results of solving some particular cases
are presented in graphs.

1. INTRODUCTION

In 1898 E. Goursat [1] showed that the general solution of the biharmonical differential
equation can be expressed by two analytical functions ¢(z) and Y(z) in the original complex
plane (z), z = x + iy. In 1909 Kolosov [2] proved that the element of the plane stress tensor
0,, 0, and T,, can be expressed by two Goursat's functions ¢(z) and Y(z). However, Kolosov
did not determine the relationship between the functions ¢(z) and Y(z) and the boundary
conditions so they had to be determined by guessing. The relationship between the
functions ¢(z) and WY(z) and the boundary conditions was later determined by
Muskhelishvili [3], in 1933, who implemented the Plemelj - Sochozki functions, [4], [5].

The complex functions ¢(z) and Y(z) were first used for solving a shrink fit problem
by D.I. Sherman [6] in 1938. The boundary conditions between the bodies which
represent a shrink fit system were in this case fulfilled by using the first boundary
problem. The objective of the present study is to determine the plane stress state tensor
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and the displacement vector in an eccentric circular annulus and a shaft.

2. ASSUMPTIONS

To simplify the analytical treatment of a shrink fit between an eccentric circular
annulus and a shaft, the process of achieving the shrink fit is divided into four phases, as
follows:

a) The initial state

The shaft radius is r;+0'; and the eccentric circular annulus has an inner radius r;,
outer radius R and eccentricity b;. Both, the shaft and the eccentric circular annulus have
an initial temperature 7, which is constant.

b) The intermediate phase

The eccentric circular annulus is heated by a temperature A7, and the temperature
field is kept uniform. Due to the uniform temperature field the initial shape of the annulus
remains the same after the heating. The result of the heating is an increase of the inner
radius of the eccentric circular annulus for a AT r, and the outer one for o AT R.

In the numerical simulation the temperature difference AT is chosen at which the
expression O AT r, is equal to &'|. At this temperature T, + AT the eccentric circular
annulus is simply assembled with the shaft without any interfacial stresses.

¢) The cooling phase

The cooling state depends on the intermediate phase, too. The second part of the
intermediate phase which presents a nonstationary cooling process is not the object of
study in this paper.

d) Final phase: achieving the shrink fit

Finally, the shrink fit between the eccentric cicular annulus and the shaft is achieved
by cooling down to the initial temperature 7.

3. THE STRESS STATES OF BODIES ASSEMBLED
BY THE SHRINK FIT IN THE ISOTROPIC DOMAINS

Numerical evaluation of the stress states in the isotropic domains assembled by the
shrink fit is based on the theory developed by Sherman, [6]. In the present paper it is
assumed that all assembled bodies have the same elastical properties in the isotropic
domains.

Let the isotropic domain S present a finite two-fold connected domain with an outer
boundary L, and an inner boundary L, , Fig. 1.

The domain is assembled of p+2 domains. It consists of multi-fold connected domain
So with boundaries L = LytL\+Ly+...+L,,;, of one-fold connected domains S,
Jj=1,2,.., p, that present shafts with radii r; and their centers of circles b; and of a two-
fold connected domain S, that presents an annular with an outer circular boundary with
radius 7,4, and inner boundary LO*. The domains S;, j = 1, 2,..., p+1 with overmeasures )
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are inserted into domain Sy by the shrink fit. It is assumed that the vector of outer loads is
zero on the boundaries Ly and L, .

Fig. 1. Multi-fold connected domain S, with shrink fits

According to Sherman's theory, the problem of determining the stress state in the
shrink fit can be reduced to a determination of the functions ¢,(z) and Y (z),
Jj=0,1,2,.., p+1, which are holomorphic functions in domains S;. These functions can be
determined by using the boundary conditions as follows:

On the boundary L, of the multi-fold connected domain S, and on the boundary L, of
the two-fold connected domain S, the vectors of outer load are equal to zero. So, the
equations of boundary conditions are, [6]:

Bo (1) +1dy' () + W () =C, on L (1)

01 (D +10,,,' O+ W, () =Cy onLy ©)

where ¢ is a point on the boundaries Ly, Li,..., Ly and C, Co* are constants.
On the contact boundaries L; between domain Sy and domains S, j =1, 2,..., p+1, the
equilibrium law has to be fulfilled, [6]:

0o (1) +10' D+ W)=, (1) +10,' O+ W, () onL;(j=1,2,..pt1)  (3)

On the contact boundaries L;, j =1, 2,..., p+1 the difference between the elements of
displacement vectors of domains S, and S§;, j=1,2,.,p+1 has to be equal to
overmeasures 0, j = 1, 2,..., p+1, [6]:

(up +iv,) =(u; +iv;) = 6'./61'4) onL,(j=1,2,.,ptl) @)

or expresed by the complex functions ¢,(z) and Yy(z), j =1, 2,..., p+1:
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- —  _—_ 2ud.
X0o(1) =190 (1) = Wo (1) =X, () +1¢ ;" () + Y ;(1) = t L(t=byyonl; (G=1,2,., pt1) (5)

3-v E
where X = , B=
1+v 2(1+v)
and £ is Young's modulus and v is Poisson's ratio
Equations (1-3) and Eq. (5) represent the basic equations from which can be
determined the functions ¢,(z) and Yi(z), j=1,2,..,p+1. D.I Sherman solved the
problem of the shrink fit with the transformation to the first boundary problem. Using
Egs. (3) and (5) he obtained:

Po()=0; O+ > (t—b) onl;(j=1,2,.,p+l) (6)

2

o) =, ()~ 2 b0 ony (=1, 2, pt1) %)

xg-s, H

245,

Ty

Introducing two holomorphic functions into domain Sy:

where 5j =

128,17 ]
z z z z)+ U— 8
0:(2) = 0o (2), W+(2) = Wy (2) Z11+X =y ®
and applying the Egs. (6) and (7), these two functions can be expressed on boundaries Z;,

j=1,2,.., ptl:

=1,2,..ptD (€))

25,77 1 ;b pH28r7 1 ,
() =W, (1) - - +y B! onL (j=1,2,..,p+1) (10)

1+x t—bj I+x = l+x t-b;

Functions ¢«(¢) and P«(¢) are uniformly continuous functions on the boundaries L;,
j=1,2,..,ptl, and they present boundary functions of the holomorphic functions ¢«(z)
and P«(z) in domains S, j =1, 2,..., p+1. It is obvious that the complex functions ¢+(z)
and P+(z) are the holomorphic functions on the complete domain S.

The holomorphic functions ¢«(z) and l.l;l*(z) have to fulfill the boundary conditions
Egs. (1) and (2) on the boundaries L, and L, , as follows:

(1) + 14" (1) + W() = 226’ : E‘L_"'Co on Lo an

F=

0.0+ 870+ B0 = PR

The problem of the shrink fit is solved when the holomorphic functions ¢«(z) and

» 20 ji"j 1 * *
(t - p+1)+z G—+C, onl, (12)
x t=b;
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Y+(z) are known. Using Eqs. (8-10), we get:

_ _ P+126..r42 1
$o(2) = 9+(2), wo(z)—w*(z)—;#g_—bj 13)
d; )
¢j(z):¢0(z)_1+x(z_bj) (G=12,.,ptD) (14)
R PN L B TR SPRY (15)
J 0 1+X Z_bj 1+X ) 7'-->p

and after applying the functions §,(z) and Yyz), j=0, 1,2,..,p+1 in the Kolosov's
expressions [6], the stress states and elements of displacement vectors are determined:

o,t0o, =4D{e[¢j‘(z)] (16)
0, -0, +2iT,, =2[20,"(2) + Y, (2)] (17)
2 —iv) =X, (2) - 20, (2) ~ W (2) (18)

4. STRESS AND DISPLACEMENT STATE IN THE SHRINK FIT
BETWEEN AN ECCENTRIC CIRCULAR ANNULUS AND A SHAFT

The shrink fit between an eccentric circular annulus and a shaft represents a one-fold
connected domain. So, there is no boundary condition on the boundary L, , Fig. 2.

Fig. 2. A shrink fit between an eccentric circular annulus and a shaft
Applying Eq. (11), the boundary condition on the boundary L, can be written:
25 1
() + 100D+ Pu() = L B+ G, (19)

where constants ¢«0) and P«(0) must be equal to zero.
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The holomorphic functions §+(z) and Y«(z) are determined by using Muskhelishvili's
method, [3]. These functions are expressed with sums:

0.0)= 30 4= 3 (20)

The boundary condition Eq. (19) can be written also in the form:

2 +
_blt

O+ (6) +191(6) + W (1) (t)‘

Co 1)

Let us now insert Egs. (20) into Eq. (19). Multiplying Eq. (21) by the expression:
Lg_dt (22)
2 ¢t —z

and integration Eq. (21) on the boundary L, for the domain [(E[J< R, we get:

1 . Zakt dt kzlkakRz(k'”tz"kdt kzlsz”‘z"‘dzE
= + = D:
ZWQ[ t—z LI t—z O
’ g (23)

1 25,1 O tdt +Co o dt
ZTELI 1+X (R* =hit)(t-2z) ZTFiZI;I—z

Using the rules for complex functions that are continuous functions on the boundary
Lo and holomorphic functions in the domain |z| < R, Eq. (23) becomes:

a, 2" +a,z+2a,R* = 2 B5——+C 24
k 1 2 0
= 1+X R*-bz

Multipying the Eq. (21) by Eq. (22) and integrating it on the boundary L, for the
domain |z| > R, and applying the rules for complex functions that are continuous functions
on the boundary L, and holomorphic functions in the domain |z| > R, we get:

- Ska RV a2 428, R - S bR 27F =0 (25)
= =
Equations (24) and (25) can be rearranged as:
0+(2) = ~ayz 2@, R* + Zﬂr‘ Gﬁwo (26)
X
Pu(2) = —Z¢u(2) + ,Z +2a,R* (27)

In Eq. (26), from which we get holomorphic function ¢«(z), the expression z/(R*-b,z)
has to be written in the form of a sum:
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2 3
z 1 b b
== +_1222+b1_4z3 =Lzt (28)
R*-bz R R R R

Having inserted Egs. (20) and (28) into Eq. (26) we get the equation:

(az+a,2> +as2° +..)+ @z +2a,R* - C, =Lr122 +b—1222 +b—iz3 +..0 9
1+x)RH R R

By equalizing the coefficients at the same powers of complex variable Z*, a linear
nonhomogenuous system of equations is obtained:

k=0: 2a,R*-Cy =0
2
k=1: a1+571=Lr12
1+X)R
2
k=2 azzzélel4
(1+X)R
etc.

If in solving the system of equations it is considered that domain S is symmetrical to
the axis x, (@, = a, ), the holomorfic function §+(z) from the Eq. (20) becomes:

520 2z z O
- (30
R~ g

¢*(Z) = 1+X§62 —bIZ

Applying the Eq. (30) in the Eq. (27), the holomorphic function («(z) is obtained:

2 4 0
w*(z):m[jzbzl +l—%ﬂ 31)
I+X BR® z z(R"-bz)" 3
and with some rearrangments:
20 2 O
=2, b K (32)

0
1+X § R* R’-bz (R*-hz)’{

Equations (30) and (32) lead us to the conclusion that functions ¢«(z) and W«(z) are
holomorphic functions in the domain S. To determine the stress state and vector of
displacement of an eccentric circular annulus, applying Eqgs. (13-15), it is possible to write:

520 2z z U

2y = -z 33
bo(2) 1+X5RT1912 Rzg (33)
2 0 2 0
o(=-Rip2, b, Rh 1 g (34)
I+X § R R -bhz (R -hz)" z-bhf

and for a shaft:
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52 0 2z z z-b O
b(o=ig 2 2 _ZThp (35)
I+XER" -hz R° 1 O
20 2 D
po=-Rig2h, b, Rh b (36)
I+Xx § R© R -bhz (R —blz) 21’1 E

According to Eqs. (16-18), the elements of stress tensor and displacements vector in
an eccentric circular annulus are:
48,12 O 2R?

1 O
o +0o, = Re -— 37
0 1y %Rz—blz)z Rzg @7

20 2 0
o, -0, + 21, = 2 fR b L(Z-b)- b P (38)
1+X HR” - bz) (R =bz)" (z-b)° O
Y D 2z R? z 2b
u—iv=— y(—= 2) —2(1 zZ)+ _2+2—1+
1+xg R*-bhz R R -h2) R* R*-p (39)
2 4p O
Z_bl RZB

and in the shaft:
2 O 2 O
o, +o, =g, 5 2K —Lz—izm (40)
1+x HR™ -bz)” R n g

Bt DBRG-b) D

o, -0 +2iT _ = 41
YT T Qe xRP -b2 B R -bz B “h
. 5ir1 %
u—iv=—— (b, —
1+x HRZ—blz (R b1 Y2 2 W
R -bz R® g

If in the Eqgs. (37-42) it is chosen that the constant b, = 0, the equations for a shrink fit
between the centric circular annulus and a shaft are obtained.

5. NUMERICAL RESULTS

In the continuation a numerical example is presented. Elements of the stress tensor are
determined for an eccentric circular annulus with an outer radius R = 60 mm, inner radius
r1=15mm and b, =-30 mm. The overmeasure of the shaft is &,=0.01 mm. The
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annulus and the shaft are made of steel with the Young's modulus £ = 2,100’ MPa and
the Poisson's ratio v = 0.3. The results of the elements of the stress tensor in some points
of domain of the eccentric annulus and the shaft are shown in Figs. 3-5.

Fig. 3. Normal stress 0, [MPa] Fig. 4. Normal stress 0, [MPa]
in the shrink fit in the shrink fit

Fig. 5. Shear stress T,, [MPa] in the shrink fit
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PROBLEM ELASTICNOSTI TESNOG SKLOPA
EKSCENTRICNOG KRUZNOG OTVORA I VRATILA

F. Kosel, T. Videni¢, B. Kuselj

Clanak tretira problem termoelasticnosti tesnog sklopa izmedu ekscentricnog kruznog otvora i
vratila. U temperaturnom polju, prvo zagrevanja, a onda montaze jednog ekscentricnog otvora koji
ima spoljasnji precnik R i unutrasnji radijus r, ali radijus vratila je za velicinu &, veéi od radijusa ri.

Ekscentricni otvor je homogeno zagrevan za neku vrednost prirastaja temperature AT pri kojoj
se ekscentricni otvor Siri i unutrasnji radijus postaje veci od radijusa vratila. U tom momentu
ekscentricni otvor i vratilo su namontirani. Posle hladenja, na niZoj temperaturi, namontirani
sistem predstavlja tesni sklop. Naponi i pomeranja u ekscentricnom otvoru i vratilu su odredeni u
saglasnosti sa Sherman-ovom teorijom koris¢enjem funkcija kompleksne promenljive.

Rezultati reSavanja nekih posebnih slucajeva su predstavijeni graficki.



