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Abstract. The paper focuses on the development and implementation of an appropriate
finite element formulation and a macrolevel material model for the efficient and
reliable nonlinear analysis of reinforced concrete (R/C) shell structures. Towards this
aim, an element formulation is presented based on the Hu-Washizu principle.
Independent approximations of displacements (bilinear), strains and stresses
(piecewise constant) provide a consistent mechanism for describing the progressive
variation of the material properties through the element. Furthermore, re-evaluations
of stiffness coefficients and internal forces as well as correction of imbalances at
successive increments become very simple, thus leading to a significant reduction of
computational effort. The employed material model is based on the assumptions of the
"Modified Compression Field Theory". This model in conjunction with a layered
approach can in an expedient and economical way predict in a global sense the overall
ultimate load behavior. Test examples are analyzed using the proposed approach and
comparisons are made with measurements obtained from experimental investigations.
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1. INTRODUCTION

The nonlinear analysis of reinforced concrete shells calls for material models, which
are numerically reliable and which describe in a realistic manner the highly nonlinear
behavior of the material. Therefore, a reliable macrolevel material model is needed which
relies on the results of extensive experimental tests and can predict in a global sense the
overall ultimate load behavior of engineering structures. Furthermore, nonlinear finite
element analysis demands incremental procedures with the resulting costs of repetitious
computations. The accurate description of nonlinear behavior also calls for a finer
assembly of elements and further expense. Consequently, simple element formulations
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are needed which can implement the nonlinear material model in an efficient manner.
The present paper focuses on the aforementioned aspects of the nonlinear analysis of
reinforced concrete shells: development of appropriate finite elements and efficient
implementation of nonlinear material models.

The basis of the present finite element formulation is the Hu-Washizu principle1 with
independent approximations of displacements, strains and stresses. The assumptions for
these discrete variables follow the proper identification of the element deformational
modes and serve to avoid the appearance of superfluous energy and zero energy modes.
Furthermore, they incorporate an important modification especially suited for nonlinear
analyses: The strain and stresses have piecewise constant approximations. This provides a
consistent mechanism for describing the progressive variation of the material properties
through the element. Re-evaluations of stiffness coefficients, internal and non-
equilibrated forces at successive increments of load become very simple, thus leading to a
significant reduction of computational cost [2].

The employed material model is based on the assumptions of the "Modified
Compression Field Theory"[3,4]. Stress-strain relationships for plane stress take into
consideration nonlinear effects such as cracking and crushing of concrete, tension
stiffening, reduction of concrete compressive strength due to transverse tension, yielding
and hardening of reinforcing steel. The incremental stress-strain equations are introduced
into the proposed plate and shell elements by means of a layered formulation. Test
examples are analyzed using the proposed approach and comparisons are made with
measurements obtained from experimental investigations.

2. A FINITE ELEMENT APPROXIMATION BASED ON THE HU-WASHIZU PRINCIPLE

2.1. Introduction

A large number of shell element formulations has been proposed in the past [5]. Some
of these approaches employ underintegrated elements; other alternatives use stabilization
techniques, are based on hybrid/mixed variational principles or include incompatible
modes. In the last decade, assumed or enhanced strain formulations have been
established. They use enhanced strain modes and many of these formulations are based
on generalized principles such as the Hu-Washizu principle. The large variety of the
proposed approaches reveals the difficulties facing an element developer seeking to fulfill
a series of requirements such as: Avoidance of excessive energy ("locking") and zero
energy modes, accurate description of extensional and flexural deformations, insensitivity
to mesh distortions, straightforward and efficient extension to nonlinear formulations.

It has been shown [1,6-9] that the use of the Hu-Washizu principle offers a series of
advantages and may circumvent most of the aforementioned difficulties. The basis of the
present C° formulation is also the Hu-Washizu principle with independent approximations
of displacements, strains and stresses. The assumptions for these discrete variables follow
the proper identification of the element deformational modes and serve to avoid the
appearance of superfluous energy and zero energy modes. Furthermore, they incorporate an
important modification especially suited for nonlinear analyses: The strain and stresses have
piecewise constant approximations. This approach provides a consistent mechanism for
describing the progressive variation of the material properties through the element. Re-
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evaluations of stiffness coefficients at successive increments of load require no additional
integrations over the elemental area. Additionally, the evaluation of internal forces becomes
also very simple and, consequently, the correction of imbalances is readily achieved via the
iterative process. Thus, a reduction of computational cost is achieved [2].

2.2. Basic features

The underlying shell theory is formulated in arbitrary curvilinear coordinates and
includes the effects of transverse shear strains [10]. The transverse normal stress and the
associated work are neglected; the small extension of the normal is also neglected. The
corresponding expressions are later specialized to specific geometries.

The basis of the present formulation is the general functional of the Hu-Washizu,
which admits independent approximations of displacements, strains and stresses, and
provides consistent relations between the discrete parameters. As stationary criteria
provide the primitive forms (e.g., equilibrium conditions are expressed in terms of
stresses) of the differential and algebraic equations governing the continuum body, the
corresponding criteria (i.e., variations of discrete parameters) provide the algebraic
versions governing the discrete model. Here, we introduce discrete approximations of
each field; these are interrelated through the stationary conditions. Accordingly, the
scheme admits independent forms of approximation for the variables, i.e., full
compatibility of displacement, strain and stress is not a prerequisite. The requisite
"compatibility" is provided by the stationary criteria. The relaxation of compatibility
between the fields enables the suppression of unnecessary higher-order terms, avoidance
of unwarranted stiffness and, consequently, more rapid convergence.

Essential steps to our approximation are the identification of higher-order terms in the
assumptions for strains and stresses and the realization that these reappear in different
components of strains/stresses. In the following, the approach is illustrated for the simple
case of a rectangular plate element with width (2Λ) and height (2). Towards this aim we
employ the bilinear approximations for the vertical displacement w and the rotations α
and β of the plate:

211222110 xxwxwxwww +++= (1)

211222110 xxxx α+α+α+α=α     211222110 xxxx β+β+β+β=β (2), (3)

These approximations yield 12 degrees of freedom: 3 rigid body motions
),,( 23130 ωωw , 2 constant bending modes ),( 2211 κκ , 1 constant twist mode )( 12κ , and 2

constant transverse shear modes ),( 21 γγ . The remaining 4 degrees of freedom comprise
the higher order deformational modes and impart strain energy. They correspond to
bending )~,~( 2211 κκ , warping of the mid-surface and relative )~(w  torsion of the top and
bottom surface of the plate )~(t . The analytical expressions for the aforementioned modes
are given in Table 1.

Exact satisfaction of the strain-displacement relationships yields the following
expressions:
           21111212111

~ xx κ+κ=α+α=κ !     12222112222
~ xx κ+κ=β+β=κ !       (4), (5)

222111122122121212
~)2/1(~)2/1()2/1()2/1())(2/1( xxxx κ+κ+κ=β+α+β+α=κ ! (6)
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w α β

0w 0w − −
13ω 11)2/1( xw− 0)2/1( α −
23ω 22)2/1( xw− − 0)2/1( β

11κ − 11xα −
22κ − − 22xβ

12κ − 22)2/1( xα 11)2/1( xβ

11
~κ − 2112 xxα −

22
~κ − − 2112 xxβ

1γ 11)2/1( xw 0)2/1( α −
2γ 22)2/1( xw − 0)2/1( β

w~ 2112 xxw − −
t~ − 22)2/1( xα 11)2/1( xβ−

Table 1. Rigid body motions and deformational modes of the plate element

The underlined terms containing 11
~κ  and 22

~κ  in the expression (6) for the twist mode
κ12 appear also in the relations (7) and (8) for the transverse shear ε13 and ε23. These terms
are of higher order; they vanish from the energy density in the limit. Still, each must be
present somewhere in the finite element to inhibit that mode; however, it is sufficient to
retain such terms in but one of the components. Thus, it is enough to retain these terms
either in the expression for κ11 and κ22 or for κ12. Otherwise, they produce extensive
energy, thus leading to "shear locking". The influence of these additional terms can be
illustrated, e.g., for the case of a linear rotation field 1xa φ= , which corresponds to a
constant bending mode. The resulting deformational modes

φ=κ11     2113 xφ=ε (9)
yield the strain energy:
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The ratio of the produced strain energy to the exact value is
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It becomes apparent that as (t → 0) this ratio increases, thus leading to "locking".
The appearance of the constant term 12κ  in the expressions (7) and (8) for the

transverse shear deserves some attention. In case of a constant twist, the displacement
field takes the form 21xxww =  and the compatible rotations become 2xw−=α  and

1xw−=β . The combination of these fields produces no excessive energy since the
corresponding transverse shear strains are zero:

0)(
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22113 =+−=+α=ε xwxww     (12)
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11223 =+−=+β=ε xwxww  (13)
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2
1),,(

2
1

1212 (14)

Summarizing, the flaw in the formulation is a result of the exact satisfaction of the
strain-displacement relationships. Contrary, locking is prevented if the strain assumptions
employed using the Hu-Washizu principle do not contain the underlined terms of eqs. (6)
to (8). The remaining terms sufficiently describe the element deformation modes and
suppress zero energy modes. This becomes apparent if the displacement/rotation fields
are expressed in the form:

21222311130
~)()( xxwxxww +γ+ω−+γ+ω−+= (15)

2111212111113
~)~()( xxxtx κ++κ+κ+γ+ω=α (16)

2122222112223
~)~()( xxxxt κ+κ+−κ+γ+ω=β (17)

Fig.1. (a) Piecewise constant approximations for strains and stresses
(b) Subdomains and areas

2.3. Discretization

The ideas presented in Section 2.2 suggest a linear variation in the ξ2-direction for the
approximation of the strains (ε11,κ11,γ1), a linear variation in the ξ1-direction for the
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strains (ε22,κ22,γ2), and a constant approximation for (ε12,κ12). However, the formulation
can be further simplified if the linear variation of the strains and of the corresponding
stresses is replaced by a piecewise constant approximation (Fig. 1a). Introducing the four
subdomains of Fig. 1b we have the following discrete parameters for the strains









Α+Αε

Α+Αε
=ε

4311

2111

11 in

in

B

A

    








Α+Αε

Α+Αε
=ε

3222

4122

22 in

in

D

C

    1212 ε=ε (18)









Α+Ακ

Α+Ακ
=κ

4311

2111

11 in

in

B

A

    








Α+Ακ

Α+Ακ
=κ

3222

4122

22 in

in

D

C

    1212 κ=κ (19)









Α+Αγ

Α+Αγ
=γ

431

211

1 in

in

B

A

     








Α+Αγ

Α+Αγ
=γ

322

412

2 in

in

D

C

(20)

Using the piecewise constant parameters for the strains and stresses and the bilinear
approximations for the displacement/rotation fields the Hu-Washizu principle yealds
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In relationship (22) (N,M,Q) and ),,( γκε  contain the discrete parameters for the
stresses and strains, respectively:









γγγγ=









κκκκκ=








εεεεε=









=









=








=

DCBAT

DCBATDCBAT

DCBA
T

DCBA
T

DCBA
T

qqqq

mmmmmnnnnn

2211

12222211111222221111

2211

12222211111222221111

, 2     , 2

     ,      , 

γ

κε

Q

MN

(23)-(28)

The diagonal matrices (AN,AM,AQ) contain only the areas of the subdomains. The
discretized elasticity matrices (DE,DB,DS) take the forms
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Variation of the stress resultants (δN T,δM T,δQ T) leads to the discrete strain-
displacement relationships.
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Variation of the strain parameters ),,( TTT γκε δδδ  yields the discrete constitutive
equations

εEN DAN 1−=     κBM DAM 1−=     γSQ DAQ 1−= (34)

Finally, varying the nodal displacements/rotations the discrete form of the equilibrium
equations is obtained.

pQBMBNB =++ T
S

T
B

T
E (35)

Substituting relationships (32) to (34) into (35) we obtain the stiffness matrix for the
element. The implementation of the material model for the reinforced concrete will be
described in Section 3.

Some features of the proposed approximation are noteworthy: (i) the variational
principle provides consistent relationships between all discrete variables; (ii) the
independent approximation of strains and stresses allows the straightforward representation
of constant and higher order deformation modes: the homogeneous strains are augmented
by specific terms that are introduced to accommodate deformational modes of higher order;
(iii) the omission of superfluous higher order terms reduces the internal energy; no
excessive energy (locking) is present; (iv) the evaluation of the coefficients of the stiffness
matrix requires very simple operations, no numerical integrations or inversions; (v) a
displacement formulation can be achieved on the element level without inversions. This
leads to symmetric and positive definite matrices with all the desirable advantages; (vi) the
effects of extensional and flexural behavior are represented by comparable approximations.

The concept of piecewise constant approximations is especially suited for the
nonlinear analysis of reinforced concrete shells: (i) the piecewise constant stresses/strains
provide a consistent mechanism for describing the progressive variation of the material
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properties through the element; (ii) the subdomain concept is consistent with the
assumptions of the material model; (iii) re-evaluations of stiffness coefficients at
successive increments of load require no additional integrations over the elemental area;
(iv) the evaluation of internal forces is very simple and, consequently, the correction of
imbalances is readily achieved via the iterative process, thus resulting to a reduction of
computational effort.

3. MATERIAL MODEL FOR REINFORCED CONCRETE

3.1. Introduction

In the past, a large number of more or less sophisticated material models for concrete
and for the interface between concrete and steel have been proposed. However, there
exists no generally accepted constitutive law and there is a discrepancy between
sophisticated nonlinear analysis and structural engineering practice. In the following, a
review of established models is presented and remarks concerning their suitability for a
finite element analysis are made. The proposed model is described as well as its
implementation in the finite element formulation presented in Section 2.

Non-linear elastic models [12] treat biaxially stressed concrete as an orthotropic
material. Coefficients of the material stiffness matrix are expressed in terms of stress and
strain invariants11 or stem from equivalent uniaxial relations referred to the principle axes
of orthotropy. These models are simple and applicable in a straightforward manner.
However, the principal directions of stresses and strains are required to coincide in order
to preserve invariance of the constitutive tensor [13].

Constitutive models based on the theory of plasticity [14] have been also employed to
describe the irrecoverable part of the nonlinear deformations of concrete. Plasticity based
models require the definition in the stress space of a yield surface, a failure surface, and
intermediate loading surfaces. Finally, the incremental stress-strain relationships are
formulated by applying the flow rule. Although these models have a firm theoretical basis
they are more complicated than non-linear elastic models. Furthermore, deviations have
been observed in cases of inelastic volume changes near the failure load. Plastic-fracture
[15] and endochronic [16] constitutive models can be regarded as extensions of
elastoplastic models. These models offer an enhanced capability in describing the post-
peak response or the response to complex cyclic loadings. However, the complicated
nature of these models imposes difficulties in numerical applications.

Discrete crack models17 account for the displacement discontinuity across the crack.
These models require a high computational effort, lead to complexities in element
formulations and are unsuitable for the analysis of reinforced concrete plates and shells
[18].

In smeared crack models the cracked structure is treated as a continuum. The effects
of cracking are taken into account by appropriate modifications of the stress-strain
relations. According to fixed orthogonal crack models, the orientation of the crack in an
element is defined by the direction of the principal tensile stress that initially exceeds the
tensile strength of concrete. Cracked concrete is treated as an orthotropic material. The
orientation of the axes of orthotropy is kept constant upon subsequent loading stages.
New cracks are allowed to propagate in a direction perpendicular to the length of the
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existing ones. However, in cases of anisotropic reinforcement or non-proportional
loading the principal axes rotate and fixed crack models overestimate the failure load. In
fixed non-orthogonal crack models [19] additional cracks are allowed to appear in
directions not orthogonal to the orientation of the existing ones, when the change in the
direction of principal axes exceeds a predefined threshold angle. The formulation avoids
deficiencies of the fixed crack concept. Nevertheless, numerical implementation of the
model is rather complicated. Furthermore, the use of an inappropriate finite element
formulation may cause numerical problems (zero energy modes). Rotating crack models
[20,21] allow for the change in direction of cracks within a load increment. Only the most
recent cracks parallel to the actual principal axes are taken into account. Rotating crack
models are computationally efficient and consistent with experimental evidence.
Recently, smeared crack models based on the theory of plasticity have been also
proposed [22]. They are characterized by a Rankine yield criterion with an appropriate
softening law.

3.2. Reinforced concrete model-Implementation

A reliable but not too complicated material model for plane stress conditions is a
prerequisite for the realistic finite element analysis of reinforced concrete plates and
shells. Extension of the two-dimensional model to the general case of a shell can be
achieved in a straightforward manner by means of a layered formulation. The proposed
approach is based on the "Modified Compression Field Theory", which was developed by
Collins and co-workers in order to investigate the biaxial behavior of reinforced concrete
[3-4, 20, 23-24].

According to the "Modified Compression Field Theory", cracked concrete is treated
as a new material with its own stress-strain characteristics. Constitutive relations stem
from experimental investigations of biaxially loaded reinforced concrete specimens [3].
Orthogonally reinforced concrete specimens were subjected to various combinations of
monotonic loading such as pure shear, uniaxial compression, combined shear and biaxial
tension or compression as well as to different ratios of shear to axial forces. Experimental
measurements served as a basis to formulate stress-strain relations for uncracked and
cracked concrete.

In determining the behavioral characteristics of reinforced concrete, stresses and
strains are considered in terms of average values when taken over areas large enough to
include several cracks. It is assumed that steel reinforcement is distributed over the entire
element, while concrete and steel bars are perfectly bounded together undergoing equal
strains. An essential assumption for developing the model according to the "Modified
Compression Field Theory" is that the principal directions of average concrete stresses
coincide with the principal directions of average concrete strains at every loading stage.
Experimental testing has shown that the directions of principal stresses deviate somewhat
from the directions of principal strains, especially in the case of high compressive
stresses. However, it remains a reasonable simplification to assume that the principal axes
of stress and strain co-rotate.

The stress-strain relationships for concrete are referred to the directions of the
principal stresses (or strains). The principal compressive stress in concrete σc2 is a
function of the principal compressive strain ε2 but also depends on the principal tensile
strain ε1. Co-existing tension in the transverse direction has a softening effect on the peak
compressive stress of concrete fp . The proposed stress-strain curve for concrete under
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compression is a parabola:
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In relationship (38) fc is the cylinder compressive strength and ε0 is the cylinder strain
corresponding to fc. Note that as ε0 is a negative quantity, increasing tensile strain ε1 will
reduce peak strength fp. The ultimate compressive strain of concrete is taken equal to
1.5ε0. For higher strains, concrete is assumed to resist no stresses due to crushing failure.

Uncracked concrete is assumed to behave as a linear elastic material. The relationship
between the principal tensile stress σc1 and principal tensile strain ε1 prior to cracking is
given by

101 ε=σ cc E     ctε≤ε< 10     0/ cctcr Ef=ε (39)

The initial value for the tangential modulus of elasticity is taken to be

00 /2 ε= cc fE (40)

For the concrete tensile strength a relationship is adopted given in Eurocode 2 [24]:

3 23.0 cct ff = (41)

The behavior of cracked concrete under tension is described by a descending branch
in the stress-strain diagram. The decaying function in the post-cracked region accounts
for the tension stiffening effect and is given by

)2001/( 11 ε+=σ ac f (42)

The tension stiffening mechanism develops as bond between steel and concrete allows
the transmission of tensile stresses from the reinforcement to the intact regions of
concrete between cracks. Once the reinforcement begins to yield, its ability to transfer
stresses is reduced and average tensile stresses of cracked concrete are close to zero.
Thus, a bound should be imposed on the tension transfer capacity of reinforcement. If
there are N layers of steel at a concrete element, then a restraint for the concrete tension
stiffening stresses can be formulated as follows:

isiyi

N

i
ic f θσ−ρ≤σ ∑

=

2

1
1 cos)( (43)

In eq. (43), ρi is the reinforcement ratio for the ith layer, fyi and σsi are yield stress and
existing stress, respectively, and θi is the angle between the principal tensile stress and
the bar direction.

Constitutive equations (36) to (39) and (42) are incorporated into the proposed finite
element formulation in order to construct an incremental nonlinear elastic rotating crack
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model for reinforced concrete. Uncracked concrete is assumed to be an isotropic,
nonlinearly elastic material. The incremental biaxial stress-strain relationships with
respect to a cartesian coordinate system is given by
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For the first load increment, the tangential elastic modulus Et is taken equal to Ec0 .
For subsequent load stages, the tangent moduli in the principal directions are evaluated
by differentiating the constitutive equations:
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where fp = fc / β, and β = 0,8 − 0.34(ε1/ε0) ≥ 1. A uniform elastic module is finally
calculated using a weighted average value of Et1 and Et2 .
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Poisson's ratio for uncracked concrete is assumed constant and equal to 0.20.
Cracking is assumed to occur when the maximum principal tensile stress exceeds the

tensile strength of concrete. The direction of the crack or, more precisely, of the "smeared
crack field" is considered to be normal to the direction of this stress. In many cases, the
principal directions do not remain fixed during successive load increments. Hence, crack
inclination changes, co-rotating with the principal strain axes. The proposed approach
also accounts for the formulation of orthogonal cracks in two directions.

Cracked concrete is considered to be an orthotropic material with the axes of
orthotropy parallel and normal to the crack. Poisson's ratio is set to zero when cracking is
initiated. The incremental stress-strain relations are expressed in the reference system of
the principal axes as follows:
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In a more concise form, eq. (50) can be written as

121212 εσ dd cD= (51)

The coefficients of the incremental constitutive matrix Dc12 are computed by
differentiating eqs. (36) to (39) and (42). The diagonal term Dc12(3,3) = (σc1 − σc2)/
2(ε1 − ε2) accounts for the continuously varying tangential shear stiffness of concrete
parallel to the crack. The presence of this term is implicit to the "Modified Compression
Field Theory" and stems from the basic assumption that the principal concrete stress
direction equals the principal concrete strain direction [20]. The term (∂σc1/∂ε2) is equal to
zero, while (∂σc2/∂ε1) is usually non-zero as a result of the degradation of the compressive
strength due to the co-existing transverse tensile strain. The resulting non-symmetry of the
stiffness matrix is a significant drawback to the applicability of the model since most finite
element programs use an equation solver for symmetric matrices. In the present study, the
non-symmetric term Dc12(2,1) is neglected. The omission of this term has been found to
affect the convergence rate of the nonlinear algorithm but not the final converged solution.

After crack formation, the average concrete stress in the direction normal to the crack
decays according to eq. (42) and the diagonal term (∂σc1/∂ε2) becomes negative. In order
to avoid numerical instabilities, a small positive value equal to 0.001Ec0 is employed for
calculating stiffness matrix coefficients. The resulting error is eliminated during the
iterative procedure, since the actual σ − ε diagram is used for the calculation of the total
stress. A similar technique is applied for the softening branch of concrete under
compression. The tangential constitutive matrix Dc12 is referred to a cartesian system by
means of a rotational transformation

                   TDT 12D c
T

cxy =     
















θ−θθθ−
θ−θθ

θθθ
=

22

22

22

sincos2sin2sin
2/2sincossin

2/2sinsincos
T         (52), (53)

In eq. (53), θ is the angle between the principal tensile stress direction and the x-axis.
In the proposed formulation steel reinforcement is taken into account by means of a

smeared model. Reinforcement bars are uniformly distributed over the mid-surface of the
plane stress element. This approach offers significant advantages over discrete
reinforcement models, especially when conducting global analyses of large-scale
structures. The nonlinear behavior of reinforcing steel is described by a uniaxial
elastoplastic stress-strain curve with or without hardening, identical in tension and
compression. The dowel action is neglected and the bond between concrete and steel is
assumed to remain perfect. The incremental constitutive matrix for the ith steel layer in
the local system can be written as
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000
000
00ii

sli

E
D (54)

where ρi is the reinforcement ratio and Ei is the elastic or plastic modulus for steel
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The constitutive matrix Dsli is transformed to the global reference system by means of
a rotational transformation

i
T
i TDT slisxyi =D (56)

where Ti is the transformation matrix given by eq. (53).
The total incremental material stiffness matrix for a R/C plane stress element is

derived by summing the component matrices for concrete and steel:

∑
=

+=
N

i
sxyicxy

1
DDD (57)

3.3. Layered formulation

The incremental stress-strain equations are implemented in the proposed finite
element by means of a layered formulation. The finite element is subdivided across its
thickness into a number of concrete layers. Each layer is assumed to be in a state of plane
stress, while stresses across the thickness of a single layer are considered to be constant.
In a similar manner, reinforcing steel is modeled by means of fictitious steel layers. The
nonlinear material behavior in each concrete or steel layer is determined by the
incremental constitutive equations of the previous section. Since the effect of transverse
shear strains in thin shells is small, their influence on the biaxial behavior is neglected.

In order to obtain the constitutive equations for the layered element, we assume for
the extensional and flexural strains

αβαβαβ κθ+ε=ε !!! 3
0 ,    2,1, =βα (58)

while a parabolic variation through the element thickness is adopted for the out of plane
shear strains:
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212

t
!! (59)

The variables αβε! , αβκ!  and αγ!  denote the incremental extensional, bending and
transverse shear strains of the element's mid-surface, respectively. The incremental stress-
strain relations in each concrete layer are given by

LL ε⋅= !! Cσ (60)

where Lσ!  and Lε!  are the incremental stress and strain matrices for the layer, respectively
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σσσσσ= 2313122211 !!!!!!TLσ (61)
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










εεεεε= 2313122211 222 !!!!!!TLε (62)

By assuming that the transverse shear 3αε!  does not affect the in-plane behavior of
concrete, the material matrix C is decomposed as follows


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
=

S

E

C0
0C

C (63)

CE is a (3 × 3)-submatrix accounting for the biaxial nonlinear material behavior
within the concrete layer. The (2 × 2)-matrix CS represents the transverse shear stress-
strain relations, which are assumed to remain linear during load incrementation
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The strain energy per unit area of the elements mid-surface is given by the expression
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T
LL εε !!! C (65)

Substituting eqs. (58) and (59) into eq.(65) yields an expression for the strain energy
in terms of the mid-surface strains

2/)( εε !!! cTU E=ε (66)

whereas ε!  is the vector of incremental mid-surface strains
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and E c is a constitutive matrix of the form
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Evaluation of the coefficients of the stiffness matrix requires integration in the
direction of thickness. The proposed element is subdivided into 9 concrete layers of
constant thickness and the trapezoidal Simpson integration rule is employed.

In the general case, material properties vary through the element thickness and
symmetry about the middle surface θ3 = 0 is not preserved. As a result, coupling is
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introduced between extensional and flexural strains ( 0≠cE01 ). The implication of this
coupling is that, even for plate bending problems, in-plane boundary conditions must be
specified for a complete description of the problem.

A similar procedure is followed in order to evaluate the constitutive matrix ES for the
reinforcing steel. If an element is reinforced with N steel layers, then the following
relations hold
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The total material stiffness matrix is the sum of the two constituent matrices cE  and
ES.

sEEE += c (75)

The expression for the strain energy per unit area becomes

)(
2
1

0000 εκκεγγκκεε 1001331100 !!!!!!!!!! EEEEE TTTTTU ++++= (76)

where
[ ]1202201100 2 εεε= !!!!ε     [ ]122211 2κκκ= !!!κ     [ ]21 γγ= !!!γ (77)

Substitution of eq. (76) into the discretized form of the Hu-Washizu functional and
subsequent variations with respect to the independent field variables, lead to the
formulation of the tangent stiffness matrix for the layered element.

Computation of the elemental internal forces is attained by numerically or analytically
integrating the stresses in the concrete and steel layers.
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4. NUMERICAL EXAMPLES

Three characteristic test examples are analyzed using the proposed approach. The
results of the finite element models include prediction of the ultimate load and the
corresponding mode of failure, force-displacement curves up to failure and cracking
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patterns. The incremental approximation of the nonlinear problem is implemented using a
modified Newton-Raphson iterative procedure. The tangent stiffness matrix of the
structure is revised in the first iteration of each load increment and is maintained constant
during subsequent iterations within the increment. The size of the load increments is
constant throughout the analysis and the total number of load steps ranges from 10 to 15,
depending on the problem. The convergence criterion for the termination of the iterative
procedure is as follows

DTOL
i

k

n
k

n
i ≤∆∆ ∑

=1
/ uu (81)

whereas ||x|| = (xT x)1/2 is the Euclidean norm of vector x, n
ku∆  is the incremental change

of the displacement vector at iterative cycle i and ∑
=

∆
i

k

n
k

1
u  is the total incremental change

of the displacements within load increment n. The convergence tolerance DTOL is taken
equal to 0.02. Failure is assumed to occur if the convergence tolerance is not satisfied
within 40 iterations. In case of nonconvergence, the results are examined in order to
determine the failure mode of the structure.

     
Fig. 2. Reinforced concrete deep beam: Finite element mesh and comparison of results'

A reinforced concrete deep beam tested by Leonhardt and Walther [26] has been
investigated. The 100 mm thick simply supported beam has a span of 1600 mm and a total
depth of 1600 mm. It is subjected to a constant load acting along the top edge. The
reinforcement pattern of the beam is shown in Fig. 2. The material properties for the
concrete and for the reinforcing steel are fc = 29.6 MPa, ε0 = 2‰, Ec0 = 29.6 GPa,
fct = 2.87 MPa, v = 0.2 and fy = 415 MPa, Es = 206 GPa, Esp = 4.6 GPa, respectively. Taking
advantage of the symmetry, only half of the beam is discretized using 66 plane stress
elements (Fig. 2). The predicted response for the midspan deflection versus total load is
plotted, together with the observed response in Fig. 2. There is a good agreement between
the results of the proposed approach and of the experimental measurements. Nevertheless,
the failure load is underestimated (1350 KN versus 1600 KN, approximately). This
discrepancy is due to the smeared representation of cracking which results to an artificially
expanded cracking zone at ultimate load level. The numerical model accurately predicts the
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failure mode of the beam, which is due to yielding of the horizontal reinforcement at the
support region.

Fig. 3. Simply supported reinforced plate: Dimensions and reinforcement

A simply supported rectangular plate of dimensions (200 × 300 × 8 cm) tested by
Franz [27] is analyzed (Fig. 3). The slab was reinforced with 9 × 20 cm wire mesh of
diameter 8 mm. Material properties for the concrete are fc = 26.5 MPa, ε0 = 2.2‰
Ec0 = 24 GPa, fct = 26.7 MPa, and v = 0.20. Reinforcing steel is treated as an ideally
elastoplastic material with fy = 420 MPa and Es = 200 GPa. Due to double symmetry,
only one quarter of the slab is analyzed. Two alternative approximations for the tension
stiffening of concrete are employed. Model M1 utilizes a decaying function according to
eq. (42), while model M2 incorporates the relationships proposed in [29]:

  ctc f=σ 1  for ctct ε<ε<ε 21 ,    
4,0

1
1

2






ε
ε=σ ct

ctc f  for ctε>ε 21 (82), (83)

The load-displacement curves for the midpoint are presented in Fig. 4. Model M2
approximates the experimental curve more accurately at early loading stages. The
differences between the two models decrease as load increases since the contribution of
tension stiffening to overall stiffness is rather negligible at higher load levels. Both
models predict an ultimate load of 55 KN/m2. The test results were measured only up to a
load of about 52 KN/m2 in order to save the test equipment in case of a sudden failure.
The crack distribution at the lower side of the test specimen and the analytically predicted
crack pattern are compared in Fig. 4.

The structural behavior of precast reinforced concrete pipes with circular cross section
was experimentally investigated by Heger et al. [28]. A number of pipe segments with
variable material properties and reinforcement patterns were subjected to the standard
three-edge bearing test up to collapse load. The experimental procedure included the
determination of cracking and ultimate load, measurements of change in pipe diameter
and recording of crack locations. The proposed finite element model is used to analyze
the behavior of the pipe specimen I-2 tested in [28]. The specimen is 4 ft long, the inner
diameter is 48 in and the thickness of the pipe wall is 5 in. The reinforcement consists of
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two welded wire meshes in both the inner and outer faces of the pipe wall. Steel
percentages in the circumferential direction are 3.98‰ and 2.9‰ for the inner and the
outer wire mesh, respectively. Material properties for concrete are Ec0 = 4.6⋅106  psi,
fc = 5930 psi, ε0 = 2.6‰, fct = 532 psi, v = 0,2 and for the reinforcing steel Es = 30⋅106 psi,
Esp = 30⋅104 psi, fy = 86000 psi and εsu = 10‰. Due to symmetry, one eighth of the pipe is
discretized using a 2 × 8 mesh of shell elements. Finally, along the crown of the pipe
specimen a constant load is applied. The numerically obtained curve for pipe deflections
versus total load (Fig. 5) demonstrates that the proposed model may satisfactorily
describe the deformational behavior of the pipe. The calculated failure load of 52000 lb
compares favorably with the measured failure load of 53400 lb. Furthermore, the model
correctly predicts the pipe failure mode which is caused by yielding of the inner hoop
reinforcement at the crown.

Fig. 4. Simply supported R/C plate: Comparison of results



 Nonlinear Finite Element Analysis of R/C Shells 1347

Fig. 5. Precast reinforced concrete pipe
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NELINEARNA ANALIZA
KONAČNIH ELEMANATA R/C LJUSKI

Demosthenes G. Talaslidis, Aristotle Ch. Tokatlidis

Ovaj rad je usredsređen na razvoj i implementaciju odgovarajuće formulacije konačnog
elementa i materijalnog modela makronivoa za efikasnu i pouzdanu nelinearnu analizu pojačanih
konkretnih (re/inforce concrete R/C) ljuskastih struktura.U tom cilju formulacija elementa je
predstavljena na osnovu Hu-Washizu-ovog principa. Nezavisne aproksimacije pomeranja (biline-
arne), napona i naprezanja (konstantni po delovima) obezbeđuju konzistentni mehanizam za
opisivanje progresivnih promena svojstava materijala kroz element. Sem toga, ponovna ocena
koeficijenata krutosti i unutrašnjih sila, kao i korekcija neravnoteže u uzastopnim inkrementima
postaju vrlo jednostavne, čime se ostvaruje smanjenje vremena izračunavanja. Korišćeni model
materijala zasniva se na pretpostavkama "Modifikovane teorije kompresije polja". Ovaj model
zajedno sa slojevitim pristupom može na ekspeditivan i ekonomičan način predvideti u globalnom
smislu ukupno konačno ponašanje opterećenja. Test primeri su analizirani korišćenjem predlo-
ženog pristupa i izvršena su upoređivanja sa merenjima dobijenim na osnovu eksperimentalnih
istraživanja.


