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Abstract. Cryptographic approach for security of information technologies is addressed.
Main facts about cryptology, a part of which is cryptography are summarized, and two
examples related to methods for construction and analysis of certain basic cryptographic
elements are presented. Finally, the main open problems are pointed out.
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1 Introduction

Security issue is one of the hottest topics in the information technologies (IT) (see
[1], [2] and [3], for example), and particularly this is due to extensive development of
the e-commerce, [1].

An information security service is a method to provide some specific aspect of
security. For example, integrity of transmitted data is a security objective, and a
method to ensure this aspect is an information security service. Breaking an infor-
mation security service implies defeating the objective of the intended service.

Information security is much broader issue than cryptography, but it is essential
to note that without cryptography it is not possible to ensure high level of security.

Main goals of the paper are the following: (i) to point-out cryptographic methods
as the most important ones for the IT security issue; (ii) to illustrate some of the
cryptographic approaches by two examples.

This paper is far from an overview of the cryptographic approaches, and in-
tention of the authors was to provide a non-specialist reader with some, hopefully,
interesting information and motivation for more detailed consideration of the topic.
Also, it is interesting to note that according to [4], cryptography is one of the major
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topics in contemporary mathematics. Namely, at the begining, cryptography was
more an art or a craft than a science, although based on some methods and tech-
niques of the number theory. But the second half of the 20th century witnessed a
veritable explosion of cryptology, which now employs a growing number of diverse
mathematical fields and influences their development. While probability theory and
statistics are now a foundation of many cryptographic methods (as illustrated in 3.2.
below), cryptography influenced, for example, the introduction of stochastic meth-
ods into classical mathematics: stochastic proofs, which demonstrate something with
high probability but not with certainty (e.g., in connection with primality testing),
were quite a novelty for the mathematical world. Similarly for many other fields of
mathematics, their results are used in cryptology, but also the new research is driven
by the cryptological interest. This might not be so surprising for the fields which
are bordering on computer science, like recursion theory, computational complexity,
formal languages or finite automata (an example is given in 3.1.). But the same is
true, for example, for large parts of algebra, like semigroups, finite fields (see 3.1.)
or parts of algebraic geometry. The new field of quantum computing is generally
expected to have its first practical application just in the domain of cryptography
(for the secure distribution of keys, for example). A whole new field of protocols has
emerged in cryptology, presently connected to mathematical logic and the theory of
games but still awaiting an adequate mathematical treatment. In short, cryptology
will be a driving force in the next century for many branches of mathematics, both
as a field of applications and a source of challenging new problems.

The paper is organized as the following. Section 2 summarize main facts about
cryptology, a part of which is cryptography. Section 3 presents two examples related
to methods for construction and analysis of certain basic cryptographic elements.
Concluding remarks, including some open problems are given in Section 4. Proofs of
the lemmas and the theorem are given in the Appendix.

2 Cryptology

Simply speaking cryptology is the study of cryptography and cryptanalysis. Cryp-
tography is the study of mathematical techniques related to aspects of information
security such as confidentiality, data integrity, entity authentication, and data origin
authentication. Cryptanalysis is the study of mathematical techniques for attempting
to defeat cryptographic techniques, and more generally, information security services.
Accordingly, a main goal of cryptography is to deal with constructions of the sys-
tems for the IT security, and main goal of cryptanalysis is to deal with breaking of
the given systems for the IT security. Cryptanalysis is also important for security
evaluation and establishing the principles for design of secure cryptographic methods.

Main goal of cryptography is to give adequate methods for the following four IT
security objectives that form a framework upon which the others can be developed.

a) Confidentiality is a service used to keep the content of information from all
but those authorized to have it. Secrecy and privacy are terms synonymous with
confidentiality.
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b) Data integrity is a service which addresses the unauthorized alteration of data.
To assure data integrity, one must have the ability to detect data manipulation (such
as insertion, deletion and substitution) by unauthorized parties.

¢) Authentication is a service related to identification of entities and information
itself. 'I'wo parties entering into a communication should identity each other, and

information delivered over a channel should be authenticated as well. Accordingly,
this aspect of cryptography is usually subdivided into two major classes: entity
authentication and data authentication.

d) Non-repudiation is a service which prevents an entity from denying previous
commitments or activities. When disputes arise due to an entity denying that certain
action were taken, non-repudiation service should resolve the dispute.

Cryptographic primitives can be defined as the basic cryptographic tools used
to provide information security. Roughly speaking, cryptographic primitives can be
classified as the following:

e symmetric key or secret key cryptographic primitives based on an underlying
parameter, named key, which must be secret; this class of primitives include
the following ones:

- symmetric-key ciphers: stream and block ciphers
- message authentification codes (MACs)

- signatures

- pseudorandom sequences

- identification primitives;

e asymmetric key or public key cryptographic parameters based on two under-
lying parameters - keys where one should be public and the other should be
secret; this class of primitives include the following ones:

- public-key ciphers
- signatures
- identification primitives;

e unkeyed cryptographic primitives which do not require any secret parameter;
this class of primitives includes the following ones:
- hash functions
- one-way permutations
- random sequences.

A cryptosystem is a general term referring to a set of cryptographic primitives

used to provide information security services.

3 Two Examples

This section presents two illustrative examples of the cryptographic techniques: an
approach for construction of the cryptographic primitives, and an approach for secu-
rity examination of certain cryptographic primitives for stream ciphers.

3.1 An approach for the constructions
A large number of cryptographic primitives are based on the finite state machine
concept. In this section we point out a particular class of finite state machines. A well
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known and widely used class of finite state machines are linear feedback shift registers;
the intention of this section is to present another class of finite state machines known
as the linear cellular automata which recently appeared as an interesting alternative.

Generally speaking, a linear finite state machine (LFSM) is a realization or an
implementation of a certain linear operator. Linear feedback shift register (LFSR)
and Linear Cellular Automaton (CA) are particular LFSMs. Following [7] this section
summarizes the main characteristics of the CA over GF(q), assuming ¢ is a power of
a prime (for the background see also [5] and [6]).

A null-boundary linear hybrid cellular automaton is a LFSM composed of an
one-dimensional array of n cells with the following characteristics. Each cell consists
of a single memory element capable of storing a member of GF(g), and a next-state
computation function. Here, we assume that communication between cells is only
with the nearest-neighbor, so that each cell is connected to only its left and right
neighbors. The leftmost and rightmost cells behave as though their left and right
neighbors, respectively, are in state 0, and this make the CA null- boundary. At
each time step t, cell ¢ has a state s ) (that is a member of GF(g)). The next-state
function of a cell is its updating rule or just rule. A linear CA employs linear next-
state functions. If in a CA the same rule is applied to all cells, then the CA is called
a uniform CA; otherwise it is called a hybrid CA.

For time step t + 1, each cell 4 computes its new state s; , using its next-state
function f;. In a CA, this function can depend only on the 1nformati0n available to
the cell, and in the here considered case, it is the states of cells i — 1, 4, and 2 + 1 at
the time t. Since we require that f; be linear,

(t+1)

O = 0,500,550 = et + e+ i

and b;, d;, and ¢; are constants from GF(g) characterizing the particular machine.
The multiplication and addition operations are performed in the field GF(g). The
number of possible functions f; is the number of choices for b;, d;, and c;, which is
¢°. Hence, the number of rule configurations for an n-cell CA is (¢°*)" = ¢*".

We define the state of a CA at time ¢ to be the n-tuple formed from the states
of the individual cells, s® = [s{,...,s!]. The next-state function of the CA is
computed as s+ = f(s®)),

s = [£00,58 ), ., fi(sP), 689 s,

Since each f; is a linear function, f is also a linear function, mapping n-tuples to
n-tuples. Linearity implies that f has an n x n matrix formulation A, so that the
previous expression can be rewritten as a matrix-vector product

s+ = f(s) = 45D

where A is the transition matrix for the CA, and the product is a matrix-vector
multiplication over GF(q).

Because the CA communication is restricted to nearest-neighbor, the matrix A is
tridiagonal. The subdiagonal contains the multipliers on the left inputs of the cells;
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likewise, the super-diagonal contains the right-input multipliers. The main diagonal
consists of the self-input multipliers, and the rest of the matrix is 0:

d b 0 .. 0 0
cy dy by ... 0
. 0 C3 d3 . (1)
0 e dp_1 bnog
0 0 ... ... ¢ dy

The next state of cell i is the product of the ith row of A and s,
SgtH) = 4;-s® = cisgt_)l + disl('t) + biSE—ti—)l .

An important CA characteristic relevant for cryptographic applications is the
cycle length of its sequence of states. A CA has a maximum length cycle if the
sequence of states s(0, s, s s includes all ¢® — 1 nonzero states for any
nonzero starting state s(%).

Let the transition matrix of an LFSM be denoted Aprsa. The characteristic
polynomial of the LESM is defined to be:

el — Arrsul,

where z is an indeterminate, and I is the identity matrix with the same dimension
as Arrsa. The characteristic polynomial is primitive if and only if the LF'SM has a
maximal length cycle.

For more details on CAs see [9], [7] and [10], for example.

CA based constructions of certain cryptographic primitives are discussed in a
number of papers (see [8], [12], [11], [19] and [20]). Particularly, recently a CA
based construction of a keystream generator for stream ciphers and a cryptographic
hash-function are proposed in [19] and [20], respectively.

3.2 An approach for the cryptanalysis

As an example of the methods for cryptanalysis (or security evaluation) of crypto-
graphic primitives this section presents some results relevant for the cryptanalysis
of certain keystream generators for stream ciphers. These results are of interest for
the cryptanalytic approach known as ”fast correlation attack” (see [3], for example)
considered in a number of papers including [14], [25], [23] and [17]. This cryptan-
alytic approach is based on the iterative decoding techniques (see [13] and [18], for
example).

Formally speaking, the problem under consideration is convergence analysis of
the recursion specified by Definition 1.

Definition 1: The self-composition of the relevant Bayes error probability is defined

as the recursion
PO = pu-y _p(pl-1y =12 .. (2)
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where P(©) = p < 0.5 and f(P) on [0, 0.5] is given by

q(P,s) —

o= q(; Pr(S =s) pa 71 s)+1 3)
q(P,s) is given by
B — 1+ ].—2P) J—2s;(w)
a(Pys) = I;I (1—(1—2P) ) ’ @

n, J, p are certain parameters, and Pr(S =s) > 0.

According to [16], we now give several lemmas and a theorem yielding the nec-
essary and sufficient conditions for (2) to converge to zero. The proofs are given in
the Appendix.

First note that f(P) is a continuous nonnegative function on the segment [0, 0.5]
such that f(0) = f(0.5) = 0.

Lemma 1: The recursion (2) converges to 0 if and only if

f(P) >0, Pe(0,p] (5)

Lemma 2: For each P € (0,0.5), we have that f(P) > 0 if and only if ¢(P,0) > 1
where 0 = [0]”_%. Otherwise, f(P) = 0.

Lemma 3: Let Q(P) be a function defined for P € (0,0.5] by
P 1+ (1-2P)w\’™
Qp) = 1—PwH€Q(1—(1—2P)w) ’ (6)

Then, for @ = {1} and J(1) = 1, we have Q(P) =1, P € (0,0.5]. For Q = {1} and
J(1) > 1, we have Q(P) > 1, P € (0,0.5), and Q(0.5) = 1. Finally, for 2 # {1}, a
critical value Py € (0,0.5) exists such that Q(P) > 1 for 0 < P < Py, Q(FRy) = 1,
Q(P) <1for P < P < 0.5, and Q(0.5) = 1.

Theorem 1: The self-composition of the Bayes error probability converges to 0 for
0 < p < Py, and is in every iteration step equal to p for Py < p < 0.5. The critical
value Py is equal to the unique value of P € (0,0.5) such that

P 1+ (1-2P)w\’™ . ,
= )
1—Pwl;[ﬂ<1—(1—2P)W) (

if @ # {1}. For Q@ = {1} and J(1) > 1, P, = 0.5, and for Q = {1} and J(1) = 1,
P():O.
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4 Concluding Remarks

Security issue related to IT is one of the most important topics. Accordingly, this
paper points-out cryptographic methods as the most important ones for the IT se-
curity issue, and illustrates some of the cryptographic approaches by two examples.
The examples are related to an approach for construction of the cryptographic prim-
itives, and an approach for security examination of certain cryptographic primitives
for stream ciphers.

Finally, we can say that main, still open problems in cryptology include the
following: (i) construction of the basic cryptographic elements (cryptographic primi-
tives) suitable for high-speed implementations and with a desired level of the crypto-
graphic security; (ii) developing methods for the security evaluation of cryptographic
algorithms.

Appendix

Proof of Lemma 1: Since f(P) is a nonnegative function not greater than P,
the sequence {P(”}fil is nonnegative and nonincreasing and, hence, it converges to
a limit P* € [0,p] such that f(P*) = 0, that is, to a fixed point of the function
P — f(P). It follows that P* = 0 if and only if (5) is true.

Proof of Lemma 2: Except in the degenerate case, according to (4), we obtain
that for all s £ 0

q(P,0) > q(P,s), P €(0,0.5). (8)
On the other hand, Pr(S = s) > 0 for all s. Therefore, in view of (3), it follows that
the necessary and sufficient condition for f(P) > 0 is that a value of s exists such
that q(P,s) > 1. However, (8) implies that this is equivalent to ¢(P,0) > 1.

Proof of Lemma 3: First note that Q(P) is a positive and continuous function
such that @(0.5) = 1. Its first derivative on (0. 0.5)

, 1 4J (w)w(1 — 2P)w-1
eE) = QP (P(1—P)"Z 53(1(—213)2)1” ) ®
weR
after a substitution P = (1 — z)/2 becomes
Lfl1-a\ | 4Q(4FE
(57) = mnme 1o
where for any z € (0,1)
w)w w+1l _ w1

weN
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and |2} denotes the cardinality of 2. The zeros of Q'((1 — z)/2) on (0,1) are thus
determined by F(z). So, we proceed by analyzing F(z).

When Q = {1} and J(1) = 1, F(z) = 0 for all z € (0, 1), meaning that Q(P) =1,
P € (0,0.5]. When @ = {1} and J(1) > 1, F(z) < 0 for all z € (0,1). Since
Q(P) > 0, P € (0,0.5), it then follows that when @ = {1} and J(1) > 1, Q(P) is a
decreasing function on (0, 0.5] such that (0.5) = 1, as desired.

Assume now that  # {1}. The first derivative of F(z) on (0,1) is

F’(.’L’) — Z _M ((’U) _ 1) _ (w + 1)(.’[2 . 1,2111) _ (’LU _ 1)$2w+2) ]

weQR (1 —a?)?
(12)
According to (12), we now analyze the following function on (0, 1), for any w € Q\{1}:
By(z) = (w—1) = (w+1)(@® ~2*) - (w—1)2”¥*2 (13)

The first dertvative of ®,,(z) is
3 (z) = 2w+ Dz (-1 +wz®™ % — (w—1)z*). (14)

Consequently, for any w € 2\ {1}, define the following function on (0, 1):

bul(z) = —1+wz™ 2 — (w— 1)z**. (15)

The first derivative of ¢, () is
¢, (x) = 2w(w —1)z*¥ 73 (1 —2?). (16)

According to (16), ¢! (z), = € (0,1), is a positive function, for each w € Q\ {1}.
In view of the fact that ¢,(0+) = —1 and ¢,,(1-) = 0, we then obtain that ¢, (z),
z € (0,1), is a negative increasing function, for each w € Q\ {1}. So, according to
(15) and (14), @, (z), = € (0,1), is a negative function, for each w € '\ {1}. On the
other hand, using (13) we get ®,,(0+) = w — 1 and ®,,(1-) = 0, so that ®,(z) is a
positive function on (0,1), for each w € 0\ {1}.

Further, by (12) it follows that F’(z) is a negative function on (0,1). Since from
(11) we obtain that F(0+) = |Q| and F(1—) = —oo, it then follows that F(z) has
exactly one zero on (0,1). Using (10) and the fact that Q(P) > 0, P € (0,0.5), we
thus obtain that Q'(P) has exactly one zero, P*, on (0,0.5), and that Q'(P) is a
negative function for 0 < P < P*, and a positive one for P* < P < 0.5.

Finally, from Q(0+) = oo, @(0.5) = 1, and the established characteristics of
Q'(P) it follows that for Q # {1}, a point Py € (0,0.5) exists such that Q(P) > 1 for
0< P <P, Q(R) =1, Q(P) < 1for Py < P < 0.5, and Q(0.5) = 1, as desired.

Proof of Theorem 1: For = {1} and J(1) = 1, the proof is trivial. For Q # {1}
or @ = {1} and J(1) > 1, the existence of Fy is established by Lemma 3. It then
follows that Q(P) > 1 for any 0 < P < P,. By Lemma 2, Q(P) > 1 implies that
f(P) > 0,0 < P < F,. Finally, by Lemma 1, the self-composition converges to 0 if
0< p< P().

On the other hand, in view of Lemma 2, we have that f(P) = 0for P, < P <0.5,
so that (2) implies that the Bayes error probability equals p in every iteration step
if Py <p<O0.5.
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O KRIPTOGRAFSKIM PRISTUPIMA ZA BEZBEDNOST
U DOMENU INFORMACIONIH TEHNOLOGIJA

Miodrag J. Mihaljevi¢, Zoran M. Markovi¢

U ovom radu se razmatra kriptografski pristup za ostvarivanje bezbednosti u domenu
informacionh tehnologija. Prvo se rezimiraju osnovni stavovi o kriptologiji, Ciji je sastavni deo
kriptografija. Istice se da su kriptografske tehnike neophodne za ostvarivanje visokog stepena
bezbednosti (iako one same nisu i dovoljne za izgradnju kompletne bezbednosti). Zatim se kroz dva
primera ilustruju neke tehnike od interesa za kriptografske metode. Prvi primer ukazuje na jedan
pristup za konstrukciju osnovnih kriptografskih algoritama (kriptografskih primitiva), a drugi primer
ukazuje na jednu tehniku za analizu nekih kriptografskih primitiva (generatora pseudoslucajnih
nizova). Na kraju se ukazuje na dva kljucna otvorena problema vezana za kriptografske metode.



