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Abstract. Classical problem of flow in a gas lubricating slider bearing is considered in
the paper under the assumption that the pad is made from a porous material, such as
sintered metal, through which the gas is injected into the bearing under the constant
ambient pressure. Both the isothermal, low Mach number gas flow in the bearing, and
the same kind of flow through the porous pad, turn out to be coupled, but amenable to
relatively simple analytical methods. By using Darcy's law for the flow through the
porous pad, an analytic relation between the injection velocity and the pressure inside
the bearing is obtained and is used for the numerical solution of the nonlinear
differential equation governing the pressure. The obtained results show how the gas
injection inside the bearing, even at small rates, highly increases its load, and how they
can be applied in the design of externally pressurized gas bearings.

1. INTRODUCTION

As it was shown by Montgomery and Sterry [1] in their experiments on gas-lubricated
porous journal bearings in 1955, externally pressurized porous gas bearings have several
advantages over conventional discrete hole admission bearings. They are simpler in
construction and have better load capacities, and damping and stability properties.
Nowadays they are widely used in industrial applications and further experimentally and
theoretically investigated. Both incompressible oil flow and compressible gas flow in the
bearing are treated. At that the flow in the bearing is usually modeled as an inertia-free
flow, while the flow in the porous coating is supposed to obey classical Darcy's law. For
small injection velocities both flows are coupled in the sense that neither of the two
problems involved: flow in the bearing and flow the porous coating, can be solved
separately, which makes the problem extremely difficult and amenable to approximate
analytic methods or numerical techniques only.
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In this paper we treat a simplified problem of gas lubricating bearing: gas flow in a
slider bearing with a porous pad exposed to a constant external pressure, and from this
point of view the performed analysis represents an extension of the results obtained in a
previous paper [2] concerned with an arbitrarily prescribed gas injection into the bearing.
Under the assumption of an isothermal, low Mach number flow in the bearing, and
Darcy's flow with prescribed permeability coefficient in the pad, we demonstrate how the
strong interaction between these two dynamically different problems can be solved
exactly. We consider also the injection of the gas into the bearing through a series of
narrow slits in the pad, and show the existence of a full analogy between this case and the
previous one, provided the friction factor for the flow through slits is inversely
proportional to the local value of the Reynolds number, so that an equivalent value of the
permeability coefficient can be found.

2. PROBLEM STATEMENT AND GOVERNING EQUATIONS FOR THE FREE FLOW

We consider the problem depicted in Fig. 1 in which a spontaneous injection/suction
of the gas through a porous pad takes place under the variable pressure difference be-
tween the external, constant pressure pa and the variable pressure inside the bearing, in
order to improve the performance of the bearing. The flow in the bearing is supposed to
be a steady, 2-D, isothermal, compressible flow of a perfect gas. Such a flow is governed
by continuity equation, momentum equation in x and y directions (s. Fig. 1), and the
equation of state. They will be written in nondimensional form by using the following
scales (s. Fig. 1): δ0 for all lengths, speed of the runner u0 for all velocities, and pressure
and density at the entrance into the bearing, p0 and ρ0, respectively, for pressure and den-
sity. In order to simplify this system of equations even before we write them down, we
will now make the following assumption, which can be always accepted in the theory of
lubrication. Let the maximum angle of inclination of the pad contour toward the x-axis,
αmax (s. Fig. 1), be small enough, so that it can serve as a small parameter ε : αmax = ε. In
this case the local thickness of the gas film δ(x) will be a slowly varying function of x,
and all physical quantities, like both
velocity components, pressure and
density will be also slowly varying
function of x. To make these slow
variations explicit, we will
introduce the following slow
coordinate ξ = εx, instead of x.
Also, since the inclination of the
pad contour actually determines the
ratio between velocity components
u and v in x and y direction, re-
spectively, v will be much less then
u throughout the bearing, so that we
can write: v(x,y) = εV(ξ,y), where
V(ξ,y) is an order one transverse
velocity component. Further, we will assume that γ λεM0
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Fig. 1. Slider bearing with gas injection/suction
through the bearing pad.
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ratio of specific heats, M0 is the reference Mach number defined as: M u p0 0 0 0= / /γ ρ ,
and Re is the reference Reynolds number: Re = ρ0u0δ0/µ (µ is constant viscosity).

Simplified governing equations in nondimentional form will now read (some of
denotations used for dimensional quantities in Fig. 1 are retained for simplicity!):

- continuity equation in which equation of state for isothermal flow in the form: p = ρ
is used,
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- momentum equation in x-direction,
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- momentum equation in y-direction,
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Obviously, for high subsonic and supersonic flow inertia term in (2) is of the same
order of magnitude as the dominant viscous term, and the problem is one of boundary
layer type. However, for low subsonic Mach numbers inertia term can be neglected, and
the flow is viscosity dominated. This case is particularly simple because equation (2),
taking into account (3), can be easily integrated. Employment of no-slip boundary
conditions: for y = 0, u =1, and for y = δ(ξ), u = 0, then yields:
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where p' = dp/dξ. Strictly speaking the use of no-slip boundary condition at a permeable
wall is not correct, as shown by Beavers and Joseph [3], because there exists a slip at
such a wall which is proportional to the shear stress exerted by the fluid on the wall.
However, for materials characterized by extremely small permeability coefficients, of
which bearing coatings are usually made, such as sintered metals, coefficient of
proportionality in the definition of the slip condition attains so small values that, to the
degree of approximation already made here, the slip effect can be ignored.

Since we are primarily interested in the derivation of an equation for the pressure
distribution inside the bearing, we will now circumvent the determination of V from (1). We
will simply integrate (1) in y from 0 to δ(ξ), apply the boundary conditions: y = 0 , V = 0,
and for y = δ(ξ), V = V0(ξ), where V0(ξ)  is unknown injection/suction velocity, to get:
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Finally, utilizing (4) the following equation governing pressure is obtained:
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with boundary conditions: for ξ = 0, p = 1, and for ξ = L, p = 1, where L = εl0/δ0 (s. Fig.
1). Since v(x,y) = εV(ξ,y), as stated earlier, note that the injection/suction velocity must be
much smaller then the runner velocity in order for this theory to be applicable. For
convenience of numerical integration of this equation we will introduce X = ξ/L instead
of ξ, and get:
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with boundary conditions: for X = 0 and X = 1, p = 1. An interesting conclusion can now
be drawn from (5). Even if δ = 1 (Couette-like flow) some non-trivial pressure
distribution inside the slider bearing can be induced by injection/suction of the fluid. At
that, if V0(X)  0 the pressure curve is concave/convex at the point of pressure
extremum, indicating that p 1 inside the bearing, so that Couette-like flow with injection
can still be used for lubricating purposes. Since for δ = 1, αmax = 0, the definition of small
parameter ε should be changed in this case. It can be redefined to be: ε γ= M0

2 / Re , i.e. by
choosing λ = 1. For λ = 1 L l u l p= =ε δ µ δ0 0 0 0 0 0

2/ /  and plays the role of the bearing
number Λ = 6L in this problem, s. [4].

Of course, equation (5) cannot be solved before the velocity V0(X), determined by the
flow through the pad, is specified.

3. FLOW THROUGH THE POROUS PAD

The pad is supposed to be made of a homogenous, isotropic porous material with given
permeability coefficient α, and the flow in the pad is supposed to be, lake in the bearing,
steady, 2-D, isothermal, compressible flow of a perfect gas, obeying Darcy's law. Equations
governing such a flow, if written in nondimensioal form by using the same scales, used
already in the normalization of equations governing the flow inside the bearing, read:
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where ~p , ~u  and ~v  are pressure and velocity components in the bearing pad respectively,
and
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Since both transverse velocity components in the pad and in the bearing must be of the
same order of magnitude, ~v  can be presented as ~ ~v = εV , ~ ( )V O= 1 . Then, from the second
of equations (6) it follows that k must be of the order ε−1, so that the order of α δ/ 0

2  is ε2.
This determines the order of permeability coefficient for which the theory presented here is
valid.

Further, we will introduce the slow coordinate ξ = εX instead of X for the same reason
as before, and conclude that ~ ( )u O= ε2 , and is much smaller then ~v . Thus, the first order
equations governing the flow in the pad are:
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and can be readily solved with the boundary conditions (s. Fig. 1): for y b= , ~p pa=  ,
and y x= δ( ) , ~ ( )p p= ξ . The solutions are:
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velocity V0 ( )ξ :

pb
ppVV a

)(
))(,(~)(

22

0 δ−
−β=ξδξ=ξ  , (7)

to be used in the integration of equation (5).
Gas injection/suction through the pad can be maintained by a number of narrow slits,

perpendicular to x - axis. If the flow in each of them is steady, 1-D, compressible, low
Mach number flow, it is well known that the momentum equation for such a flow is (in
dimensional form):
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where d is diameter of the slit, τ w  is the local value of the wall shear stress: τ ρw f= ~ ~ /v 2 2 ,
and f is the friction factor. In laminar, low Mach number, flows: f C= / Re, where C is a
constant (C=16 for pipes), and Re ~ ~ /= ρ µv d  is the local Reynosld number. If written in
nondimensional form, equation (8) attains now the form of the second of equation (6),
provided α = d 2 32/ , which at the same time yields the estimate d O/ ( )δ ε0 = , as a necessary
condition for the validity of theory. The same holds for continuity equation for 1-D,
isothermal flow, which is as well known: ~ ~ .p constv =  Thus, the two problems are fully
equivalent from the point of view of fluid mechanics, so that (dis)advantages of one method of
injecting the gas into the bearing over the other should be sought in those characteristics of gas
bearings, mentioned in the Introduction, which are not directly related to the flow problem.

4. RESULTS AND DISCUSSION

Equation (5) with V0(ξ)determined by (7) is a second order nonlinear ordinary
differential equation, with boundary conditions defined at two points. It can be solved by
standard numerical techniques. Its numerical integration is performed in this paper for the
simplest pad geometry of the form: δ = 1 − (1 − δe)X, where δe = δ1/δ0 (s. Fig. 1). In this
particular case ε = δ0(1 − δe)/l0, so that L = 1 − δe and cannot be chosen arbitrarily.

In Fig. 2 and Fig. 3 we present the results of the numerical integration of equation (5)
for δe = 0,7 and δe = 0,5, respectively, for various pa and fixed values of other parameters.
It is seen that even for pa = 1 (no difference between the pressure above the pad and outer
pressure) there exists a small suction velocity produced by the pressure growth inside the
bearing, pressure maximum being considerably smaller than in the classical case without
any gas injection/suction into the bearing [4], or in the case of the gas suction with
relatively small, constant velocity [2]. In both cases considered, pressure distribution
inside the bearing is more uniform in comparison with the cases elaborated in [2] and [4].
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Pressure growth with pa is very pronounced, thus highly improving the performance of
the bearing. This effect is particularly apparent for relatively small exit cross sections of
the bearing, for which the pressure maximum is shifted to the right.
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Fig. 2. Pressure and injection/suction velocity distributions inside a slider bearing
for λ β= =1, b = 2 , 7,0=δe , L e= − =1 0,3δ  and different pa .
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O PODMAZIVANJU GASOM
UBRIZGAVANJEM KROZ PROPUSTLJIVI ZID

Vladan D. Djordjević, Cvetko Crnojević

U radu se tretira klasični problem strujanja gasa u kliznom ležaju pod pretpostavkom da je
nepokretni deo ležaja sačinjen od poroznog materijala, kao što je to na pr. sinterovani metal, kroz
koji se gas ubrizgava u ležaj pod konstantnim spoljašnjim pritiskom. Ispostavlja se da su oba
strujanja koja pri tome nastaju - izotermsko strujanje pri malom Mahovom broju u ležaju, i isto
tako strujanje u poroznom nepokretnom delu ležaja, međusobno spregnuta, ali da se mogu tretirati
pomoću relativno jednostavnih analitičkim metoda. Korišćenjem Darsijevog zakona za strujanje
kroz poroznu sredinu dobija se analitička relacija koja povezuje brzinu ubrizgavanja sa pritiskom u
ležaju, koja je zatim iskorišćena za numeričko rešavanje nelinearne diferencijalne jednačine kojom
se opisuje raspored pritiska. Dobijeni rezultati pokazuju da ubrizgavanje gasa u ležaj, čak i pri
relativno malim brzinama, značajno povećava nosivost ležaja, tako da se oni mogu korisno
upotrebiti u konstruisanju ovakvih kliznih ležajeva.


