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Abstract. It is shown that the turbulent boundary layer consists of two layers: the fully
turbulent layer (defect layer) and the viscous wall layer. The calculation can be
restricted to the fully turbulent layer (defect layer), whose equations are independent of
Reynolds number. The corresponding boundary conditions follow from the matching
with the inviscid outer flow (at the outer edge y = δ) and with the viscous wall layer
flow (at the overlap layer y ≈ δv) respectively. The structure of the skin friction law is
independent of the turbulence model. Three algebraic models have been used in the
calculation of the defect layer global values. The velocity and stress distribution within
viscous wall layer at high Reynolds number have universal form, if the Reynolds
number is high enough (Reθ > 6000).
In this way, at the given potential flow velocity distribution on the outer edge of
boundary layer, it is only needed one calculation to be carried out. The influence of the
Reynolds number is taken into account only for the calculation of local skin friction,
which follows from matching conditions to the wall layer flow, better to say, to the
universal logarithmic wall layer law. The global characteristics of turbulent boundary
layer can be obtained by the numerical solution of the governing equation over the
defect layer of turbulent boundary layer.

1. INTRODUCTION

The primary emphasis in this paper is upon the large Reynolds number asymptotic
theory of turbulent boundary layers. The origin of this approach dates back to the paper
of Mellor (1972), where he has shown that the flow field near the wall at high Reynolds
numbers has three distinctive areas with different time and length scales: outer inviscid
flow, fully turbulent defect layer, and viscous wall layer.

This method has been recently extended in the paper of Gersten (1995) where the
author explained two version of this method: integral approach and differential approach.
The second one has been used in this paper.
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The main goal of this paper was to test three different algebraic turbulent models,
which are mostly used in engineering practice, and to compare the results that are
obtained with the available experimental data, and to estimate which one best fits the
experimental results.

At high Reynolds numbers the flow field consists of an inviscid outer flow and of the
boundary layer. When the Reynolds number is high enough the flow in the boundary
layer is turbulent. The turbulent boundary layer has two new features compared to the
laminar one. First, it has distinctive outer edge with the wall distance (or boundary layer
thickness) δ as shown in the Fig. 1.1. This outer edge separates the inviscid nonturbulent
outer flow from the turbulent boundary-layer flow. Second, the turbulent boundary layer
consists of two layers, the fully turbulent outer part, where viscosity effects are negligible
and the viscous wall layer, where viscosity effects have to be taken into account. The
thickness of the viscous wall layer is δv(x). Both thickness δ(x) and δv(x) tend to zero for
increasing Reynolds number, but δv(x) decreases much faster than δ(x). As it will be
shown later the viscous wall layer is governed by universal laws which are determined
mainly by viscosity and the wall shear stress. From the asymptotic theory for high
Reynolds numbers it can be concluded, that for a given pressure distribution only the
flow in the fully turbulent outer part of the boundary layer (defect layer) has to be
calculated. The flow equations valid for this fully turbulent layer become independent of
Reynolds number. The corresponding boundary conditions follow from the matching
with the inviscid outer flow (at the outer edge y = δ) and with the viscous wall layer (at
the overlap layer y ≈ δv) respectively.

Fig. 1.1. Layer structure of turbulent boundary layers

2.VISCOUS WALL LAYER

In this paper the two-dimensional, steady, turbulent boundary layer flows with constant
properties have been considered. The following equations have been obtained by time
averaging for this flow:
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where are, ),(),,( yxVyxU - streamwise and cross-stream time averaged velocity respec-
tively, ρ - fluid density, τv(y), τt(x,y) - viscous and turbulent shear stress respectively, x, y -
streamwise and cross-stream (normal) coordinate respectively and pe(x) - pressure at the
outer edge of turbulent boundary layer, and according to the first order boundary layer
theory, see Mellor (1972), is independent of coordinate y, where the expressions for viscous
and turbulent shear stress read,

.        , υ′′ρ−=τ
∂
∂µ=τ u

y
U

tv (2.3)

To describe the very thin viscous wall layer the following normal coordinate is used:
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where uτ - friction velocity, wτ - wall shear stress, ! - kinematic fluid viscosity. When the
variables are nondimensionalised by
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U" and p" are the velocity and pressure of the undisturbed incoming flow, L -
streamwise length scale, u+,v+ - dimensionless streamwise and cross-stream velocity, and
τ+ - dimensionless total shear stress. The Reynolds-averaged flow equations reduce to
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For the limit ∞→∗
τuRe  these equations have solution:

. 1    ,0 + ==τ=+ constv (2.8)

The expression within the brackets in Eq.(2.7) tends to zero for high Reynolds
numbers so that we have that ∂v+/∂y+ → 0, and having in mind no-slip wall condition
v+(y+ = 0) = 0, it is obvious that the normal velocity in viscous wall layer is zero. Its now
evident that last term on the left-hand side of the Eq.(2.6) is also zero for high Reynolds
numbers, so that we have now ∂τ+/∂y+ → 0. The attached flow in the wall layer is
independent of pressure gradient, and the sum of viscous and turbulent shear stress is
constant.
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In the overlap layer we have
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Since the overlap layer must have the features of both adjacent layers, its flow field is
(as part of the fully turbulent layer) independent of the viscosity and (as part of the viscous
wall layer) independent of boundary layer thickness δ. Hence, the following relationship
between the turbulent shear stress vut ′′ρ−=τ and the velocity gradient yU ∂∂  must be valid
in the overlap layer
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Applying the #-theorem of dimensional analysis leads to the overlap law:
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where κ is the Karman constant. According to Eq.(11) we have
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which leads to the well known universal logarithmic law
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with the integration constant C+. This constant is C+ = 5.0 for smooth walls and a well-
known function of the dimensionless roughness parameter k+ = kuτ /v for rough walls,
respectively.

On the basis of the analysis carried out in Jovanovic (1998), the function which
should represent the velocity distribution in viscous wall layer, has to satisfy the
following asymptotic conditions
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The expression for the first derivation of the function which is looked for, and which
satisfies these boundary conditions, reads
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By the integration of the Eq.(2.16), where it have been taken in account that u+(0) = 0,
the following function is obtained
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where the following constants have been used
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Having in mind the expression for nondimensional total shear stress in viscous wall
layer in Eq.(2.5) and the conclusion that have been drawn for the case of ∞→∗

τuRe
Eq.(2.8), the following equality can be written for the case of high Reynolds numbers

.constu
dy
Ud

tvw =υ′′ρ−µ=τ+τ=τ (2.19)

If the equation Eq.(2.19) is divided by fluid density ρ which is constant for incom-
pressible, isothermal flow, the Eq.(2.19) now reads
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If the Eq.(2.20) is divided by 2
τu , this equation yields now
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The nondimensional turbulent shear stress in viscous wall layer now reads

+

+
+ −=τ

dy
du

t 1 (2.22)

If the Eq.(2.16) is substituted in the (2.22), the nondimensional turbulent shear stress
distribution obtains the universal form. In the Fig.2.1 are shown the nondimensional
turbulent shear stress and nondimensional velocity distribution in viscous wall layer
according to the Eq.(2.16), (2.17) and (2.22).

From the Fig.2.1 we see that the velocity distribution in the viscous wall layer rises
from no-slip at the wall and obeys the asymptotic conditions (2.14) and merges smoothly
at y+ ≈ 70 with the overlap logarithmic law. The velocity distribution between the
asymptotics given by (2.14) and (2.15) is described by the function (2.17).
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Fig. 2.1. Velocity and turbulent stress distribution in viscous wall layer

The viscous stress is dominant in the region y+ < 5, and this part of viscous wall layer
is known as viscous sublayer. In this point the participation of viscous stress is about 95%
of the total shear stress, and at the value y+ ≈ 10 the contribution of viscous and turbulent
stress to the total shear stress are equals. From this point the participation of viscous part
decreases rapidly, so that the beyond the point y+ = 50 the influence of the viscous stress
is significantly reduced. For the values y+ > 100 viscous stress practically can be
neglected. Therefore it is avoided to calculate the whole viscous wall layer which is
anyhow universal and hence known a priori for a given wall shear stress.

3. FULLY TURBULENT LAYER (DEFECT LAYER)

The momentum and continuity equations of this part of turbulent boundary layer read
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The flow field for high Reynolds numbers is calculated in two steps. In the first step
the inviscid outer flow is determined usually by the methods of potential theory. The
resulting pressure distribution (or velocity distribution Ue(x)) is input for calculating the
fully turbulent layer . For this layer the following form of the solution is assumed:
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The primes refer to derivatives with respect to η. Ue(x) and pe(x) are the velocity and
pressure at the edge of boundary layer and U" is the velocity of the undisturbed incoming
flow. The equation (3.3-3.7) can be considered as perturbation of the limiting solution

)(),( xUyxU e= for Re = ", where γ(x) works as perturbation parameter. Since F'(x,η)
represents the dimensionless velocity defect, this fully turbulent layer is also called defect
layer (for attached flows, τw ≠ 0). As will be shown later, see Eq.(3.26), it is δ/L = O(γ) =
O(1/lnRe). Hence the limit γ(x) → 0 is equivalent to the limit Re → ∞. When Eqs.
(3.3−3.7) are introduced into the Reynolds-averaged Navier-Stokes equations, the
momentum equation for the x-direction yields,
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The equation above is dimensionless momentum equation of defect layer. It is partial
nonlinear differential equation of second order. This equation can be simplified by the
substitution of the dimensional values by the corresponding nondimensional values
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where UR and lR are the reference velocity and length scales, respectively. By substituting
the dimensional values with nondimensional ones (3.9) in the equation (3.8), this equation
reads
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This equation is reduced in the limit Re → ∞, γ(x) → 0 to the following defect-layer
equation
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The boundary conditions are:
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The conditions for η → 0 are the matching conditions, in the overlap layer. The
formulation of the boundary-layer problem by Eqs.(3.11) to (3.14) is called the method of
wall functions. It uses the matching condition in the overlap layer as boundary condition
rather than the conditions directly to the wall (e.g.: no-slip condition). Integration of
Eq.(6) over the defect layer yields
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where is Fe = F(x,η = 1). From the solution F(x,η) the following global values can be
determined:
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All the global values are, as already mentioned, independent of Reynolds number as
well as independent of wall roughness k+. Eventually these parameters come into the
picture, when the wall-shear-stress or the function 2/)()( xcx f=γ  have to be determined.

The matching condition in the overlap layer
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yields according to Eqs.(2.13) and (3.3)
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If the same term is added and subtract to the right-hand side of the Eq.(3.22)
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and if these terms are rearranged and taking into account the Eq.(3.13), the equation
(3.23) obtains the new form
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 Eq.(3.24) for the function γ (x) can be written as an explicit skin-friction law
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this function can be expressed in the explicit form by asymptotic expansion
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The three turbulent algebraic models have been used in calculation, Cebecci-Smith
(1974)
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where is α = 0.016. Michell (1968) model yields
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Substituting the expression for mixing length suggested by Michel into (3.29),
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where c = 0.085, and κ = 0.41. If η > 0.6, the mixing length is practically independent of η
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! ≈ cδ(x) and the nondimensional turbulent stress have the form
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The Clauser (1956) model gives the following expression for turbulent stress
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For the comparison of the calculation results with the existing experimental data, the
flows, which are coded as IDENT1100 and IDENT1300 at the AFOSR-IFP-Stanford
Conference 1968, have been chosen . The first one is the flow in divergent channel, and
the velocity distribution of the inviscid potential flow is shown in the following
Fig. (3.1.a) and velocity gradient distribution in Fig. (3.1.b). For the edge of boundary
layer the momentum equation is reduced to the form
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It is evident that this is mild adverse pressure gradient flow (dp/dx > 0).
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Fig. 3.1. Potential velocity and velocity gradient distribution for IDENT 1100

The results of the numerical solution of the equation (3.11) with boundary conditions
(3.14) by using turbulent models (3.28) (3.30) (3.32) for the flow coded as IDENT 1100
are shown in the Fig.3.2 (a-f). The values of the functions F,F',F" are shown in Fig
3.2.(a-c) for five different cross-sections; - (x*=0.78); 2 - (x* = 1.78); 3 - (x* = 2.78); 4 -
(x* = 3.78); 5 - (x* = 4.38). These values are obtained by the Cebecci-Smith turbulence
model (3.30) and are in very good agreement with experimental values quoted in Coles &
Hirst (1968, p.56).
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Fig. 3.2. The distribution of the functions F, F', F" for five cross-sections, as well the
nondimensional turbulent stress distribution S(x*,η) for three different turbulent
models: d-Michell (1968), e-Cebecci & Smith (1974), f-Clauser (1956), for the
flow coded as IDENT 1100 (dp/dx>0)

In the Fig. 3.2. (d-f) the nondimensional turbulent stress, obtained by three different
turbulent models (3.28) (3.30) (3.32), has been shown for five different cross sections at
same distances as in Fig.3.2 (a-c). It is obvious that for the mild adverse pressure
distribution the values of turbulent stress τt over the different cross-sections are several
times grater than the viscous stress at the wall τw, in other words, than the total shear
stress in the viscous wall layer, since S > 1 for almost all values η and x* in fully



48 M. M. JOVANOVIĆ

turbulent defect layer.
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Fig. 3.3. The global values distribution of turbulent boundary layer for the flow
coded as IDENT 1100

In the Fig3.3 . are shown the global values distributions of turbulent boundary layer
Fe(x*), G(x*), Π(x*), )(~ ∗xC , )(~ ∗∆ x and )(ˆ ∗∆ x . These values have been obtained by using
Cebeci-Smith turbulence model (3.30), and are independent of Reynolds number. They
are calculated only once for the given flow geometry, i.e. for the given pressure
distribution. This values can be used for calculation of skin friction cf by using the
equation (3.26) for any value of Reynolds number if the Reynolds number high enough is
(Re$ > 6000). Values obtained by the other turbulent models can be found in Jovanovic
(1998).
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Fig. 3.4. Potential velocity and velocity gradient  distribution forIDENT 1300

In the Fig.3.4 are sketched the velocity and velocity gradient distribution of the outer
inviscid flow for the flow coded as IDENT 1300. It is evident from the figure that it is the
mild favourable pressure gradient dp/dx < 0, in the other words, it is the case of
longitudinal accelerated turbulent boundary layer.

In the Fig.3.5 are shown the results of the numerical solution of the equations (3.11)
with boundary conditions (3.14) by using turbulent models (3.28) (3.30) (3.32). The
values of the functions F,F',F" are shown in Fig3.4.(a-c) for five different cross-sections;
- (x*=0.78); 2 - (x* = 1.78); 3 - (x* = 2.78); 4 - (x* = 3.78); 5 - (x* = 4.38). These values
of the functions F,F',F" are obtained by the Cebecci-Smith turbulence model (3.30) and
are also the closest values to the experimental ones of all three turbulent models (the
maximal deviation is under 2%).

Comparing the values of F(x*,η) in the Fig.3.2a and in the Fig3.5a, it is evident that
the values of F(x*,η)for the flow with dp/dx > 0 are grater than the ones for the case of
dp/dx < 0. The same can be concluded from the Fig.3.2b and the Fig.3.5b, however the
values of F'(x*,η) in the Fig.3.2b are the grater at the smaller values of η (η < 0.75) than
the values in the Fig.3.5b. The similar situation is with the function F"(x*,η). The
variation of this function is much more noticeable at the case of dp/dx > 0 than at the case
of dp/dx<0. This fact has for consequence the smaller values of nondimensional turbulent
stress S(x*,η) in the case of dp/dx < 0. In the Fig.3.5(d-f) are sketched the variations of the
function S(x*,η) for the three algebraic turbulent models. The Clauser and Cebeci-Smith
model yield almost the same distribution of the function S(x*,η). Only the Michell model
shows some discrepancies in comparison with the forehead mentioned models. This
model yields very good results for the flow with dp/dx > 0 (deviations of the numerical
results were less than 7% from experimental ones), but for the case of dp/dx < 0, these
deviations were larger (more details in Jovanovic 1998).
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Fig. 3.5. The distribution of the functions F, F', F" for five cross-sections, as well the
nondimensional turbulent stress distribution S(x*,η) for three different turbulent
models: d-Michell (1968), e-Cebecci & Smith (1974),  f-Clauser (1956), for the
flow coded as IDENT 1300 (dp/dx<0)

The global values distribution of turbulent boundary layer for the flow IDENT 1300 is
shown in the Fig.3.6. It turns out that the distributions of the Fe(x*), G(x*), Π(x*), are
mutual very similar not only in the Fig.6 (c,d,f) but also in Fig.5(c,d,f). The values of the
function Fe(x*), Π(x*), )(~ ∗xC , )(~ ∗∆ x  and )(ˆ ∗∆ x are grater for the flow with dp/dx > 0 than
for the flow dp/dx < 0, unlike the function G(x*)where the situation is opposite.
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Fig. 3.6. The global values distribution of turbulent boundary layer for the flow
coded as IDENT 1300

4. INDIRECT TURBULENCE MODEL: THE LAW OF THE WAKE

It is imortant to emphasis that on the basis of numerious experimental data D. Coles
(1956) has suggested the following expression for the solution of F'(x*,η) defined by
expression (3.3):

}ln)](2)[({1),(
)(

)(
η−η−Π

κ
=η′=

−

τ
WxxF

xu
UxUe (4.1)

where W(η) is wake funktion and Π(x) is defined by the equation (3.18). This
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represantation is known as the law of the wake. The three free parameters δ(x), τ(x) and
Π(x) are determined in such a way, that the measured velocity profiles are possibly best
matched (indirect turbulence model). The wake function has the following boundary
conditions:
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0
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If the following wake function is chosen:
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so that the values defined by the equations (3.17) and (3.18) now read:
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The results are altered only slightly if the wake function with power law is used
W(η) = 2η2(3 − 2η). The corrections of the law of the wake with improvements on the
outer edge of boundary layer are undertaken by A.K.Lewkowicz (1982) and described in
the work of J. Klauer (1989).

5.CONCLUSION

In the paper the global values of turbulent boundary layers coded as IDENT 1100 and
IDENT 1300 on AFOSR-IFP-Stanford Conference 1968 have been obtained. It has been
shown that it is needed to find global values of boundary layer that are independent of
Reynolds number, and they can be later used for the calculation of skin friction, which is
dependent on Reynolds number, not only for given Reynolds number for the Flows
IDENT 1300 and IDENT 1100 but also for different Reynolds numbers, but for given
nondimensional velocity and velocity gradient distribution (pressure distribution) of outer
inviscid flow. The main goal of this paper was to test three different algebraic turbulent
models, and to compare the values of F(x,η), F'(x,η), F"(x,η), S(x,η), with the available
experimental data.The best agreement with experimental data for the flows coded as
IDENT1300 and IDENT1100 has had Cebecci-Smith model, whose computational
results agree very well with experimental data, and deviation is less than 2% for F'(x,η).
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PRORAČUN NEKOMPRIMOVANOG GRANIČNOG SLOJA
SA RAZLIČITIM GRADIJENTIMA PRITISKA
PRI VIŠIM REYNOLDS-OVIM BROJEVIMA

Miloš M. Jovanović

Pokazano je da se turbulentni granični sloj sastoji iz dva sloja: potpuno turbulentnog sloja
(defektnog sloja) i viskoznog sloja uz zid. Proračun se može ograničiti na potpuno turbulentni sloj
(defektni sloj), čije jednačine su nezavisne od Reynolds-ovog broja. Odgovarajući granični uslovi
slede iz uslova spajanja sa spoljašnjim neviskoznim strujanjem (na spoljašnoj ivici y%δ) i sa
strujanjem viskoznog sloja uz zid (u preklapajućem sloju y&δv) respektivno. Struktura zakona o
koeficijentu trenja je nezavisna od modela turbulencije. Tri algebarska modela su koriščena u
proračunu globalnih vrednosti defektnog sloja. Raspodela brzine i napona unutar viskoznog sloja
uz zid pri velikim Reynods-ovim brojevima ima univerzalni oblik ako je Reynolds-ov broj dovoljno
veliki (Reθ > 6000).

Na ovaj način pri zadatoj raspodeli brzine potencijalnog strujanja na spoljašnjoj ivici
graničnog sloja potrebno je sprovesti samo jedan proračun. Uticaj Reynolds-ovog broja se uzima u
obzir tek pri proračunu lokalnog koeficijenta trenja, koji se određuje iz uslova spajanja sa
strujanjem u viskoznom sloju uz zid. Globalne karakteristike turbulentnog graničnog sloja mogu se
dobiti numeričkim rešenjem jednačine defektnog sloja turbulentog graničnog sloja.


