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CONTRIBUTION TO THE DISCUSSION ON ABSOLUTE
INTEGRATION OF DIFFERENTIAL EQUATIONS

OF GEODESICS IN NON-EUCLIDEAN SPACE    

UDC 517.93:514.13:528.232.22(045)

Zoran Drašković

Military Technical Institute, Katanićeva 15, 11000 Belgrade, Yugoslavia

Abstract. In this paper: a) the existence of parallel propagation operators with respect
to a surface, along a curve given on that surface, is once again pointed out; b) a closed
form of these operators, in the case of a parallel transport with respect to a spherical
surface and along its great circles, is obtained; c) the opinion that an absolute
integration of differential equations of geodesics in non-Euclidean spaces is not
possible in principle (because of the very method of introducing the covariant
differentiation in these spaces) is stated.
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INTRODUCTION

In papers [8] and [11], V. Vujičić postulated the absolute integral of a tensor as an
integral operator "... by which it is possible to obtain the initial tensor from its absolute
differential" ([11], p. 375). For example, for an absolute integral of an absolute
differential of a sufficiently smooth vectorial function V, from the point Po to the point P
on an arbitrary curve, the following formula was quoted

,

 ( ) ( , )
o

o
P P

DV V P A P Pα α α
∇

= −∫ , (1)

where A is a covariantly constant vector field. It was demonstrated in paper [16] that this
operation in Euclidean space reduces to an integration in accordance with Ericksen's
concept of integration of vector and tensor fields in curvilinear coordinates (s. p. 808 in
[4]) and that (1) can be rewritten in the form
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. .  ( , ) ( ) ( )  ( ) ( , )
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DV g M P DV M V P V P g P Pα α β α β α
β β

∇ 
≡ = −   

∫ ∫ , (2)

where M is the "current" point of integration, and .g α
β

 are the shifting operators
("Euclidean shifters"; [4], p. 806); Einstein's summation convention for diagonally
repeated indices is used, and Greek indices have the range {1,2}, while Latin indices will
have the range {1,2,3}. The vector .( ) ( , )o oV P g P Pβ α

β
, having been obtained by the parallel

transport of the vector ( )oV Pβ , represents a covariantly constant vector field.
However, when non-Euclidean spaces are in question, the doubt in the sense of the

introduction of such an integral operator was still present in the audience on some
communications of V. Vujičić. This was unintentionally due, perhaps, to the statement (in
the paper [17], proposing the use of the idea of an absolute integral to solve some
problems of analytical mechanics) that still "... the problem of the covariantly constant
tensor […A…] in Riemannian spaces is not solved generally" ([17], p. 1307).

But, in the meantime (when paper [1] was obtained), it was discovered that the
introduction of the above mentioned operator − a’priori declared to be nonsens − was the
subject of a communication on one of the sessions of the French Academy of Sciences as
far back as 1929!

Namely, paper [1] considers the determination of a vector field V such that, along a
curve K

( )u u tα α= , (3)

in a space equipped with linear connection, the absolute differential of this field is equal
to

     ( )DV v Dt dt
Dt

α
α= ≡ , (4)

where vα(t) is the field given at the points of the curve K. In the next step, Horák
introduced "un symbole d'intégration absolue le long d'une courbe"

 . .
. | ( , ) ( , )  ( , )  

o

o o

t t
t

t o o
t t

v d K t t K t v d K t v dα α β γ α γ
β γ γτ τ τ τ τ= =∫ ∫ , (5)

such that, after some stipulations quoted in [19] (and having in mind that the equation (4)
should be satisfied along the curve K ), the absolute integral can be written in the form

( )  . |   |  ( )  ( , ) ( )
o o

t t

t t o ov d DV V t K t t V tα α α α α
γτ = = − , (6)

i.e.

. .

.
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τ τ
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= −

∫ ∫ ∫ , (7)
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where the coefficients1 .K α
γ  represent the fundamental solution of the homogeneous

system corresponding to the system (4); the following relations are valid
. .

. .     ,    K K K Kα γ α γ α α
γ β β β γ βδ δ= = . (8)

To be quite precise, the expression quoted in [1] was neither of the form postulated in
[8] and [11] (namely, the absolute integral of an absolute differential is not mentioned,
but only an "intégrale absolue du vecteur … prise le long de K entre les limites to et t"),
nor was its geometrical interpretation given, but it was unambiguously shown how to
determine the coefficients .K α

β  appearing in [1] − they represent the fundamental solution
of the corresponding homogeneous system of differential equations. However, only the
procedure of the introduction of the parallel propagator in [3]2 (p. 59) enabled us to link
(in [19]) Vujičić’s results with the ones Horák obtained; namely, it was noticed that these
coefficients from [1] represent the shifting operator along a curve mentioned in [8], [11]
and [17], making possible to evaluate the covariantly constant vector (tensor) A, as well
as to determine a vector (tensor) field if its absolute differential (along a given curve) is
known, i.e. to determine the absolute integral3 introduced in (1).

The presentation of the paper [19] at the 21st Yugoslav Congress of Theoretical and
Applied Mechanics (Niš, 1995.) was followed by a discussion between V. Vujičić and B.
Jovanović (Mathematical Institute, Belgrade) and Đ. Đukić (Faculty of Engineering
Sciences, Novi Sad), concerning the possibility of using the notion of an absolute integral
in order to integrate the differential equations of geodesics in non-Euclidean space or,
more precisely, concerning the procedure (proposed in [10] and [13]) for the reduction of
the order of these equations. The following sections should represent a contribution to
this discussion, also pointing out a dilemma which then appears. But, first of all we shall
dwell on this procedure for

REDUCING OF THE ORDER OF THE DIFFERENTIAL EQUATIONS OF GEODESICS

The differential equations of geodesic lines in a Riemannian space, i.e. (if we dwell
on the two-dimensional case) on a surface were formulated a long time ago

2

2 0d u du du
ds ds ds

α β γ
α
βγ+ Γ = , (9)

where uα are so-called surface coordinates, α
βγΓ  are Christoffel symbols of the second

kind determined for this surface, and s is the arc length of the geodesic line. However, it
was also stated a long time ago that, in the general case, the solution of these equations is
unknown4. Namely, in order to verify the existence of a geodesic line passing through

                                                          
1 The first index in K(to,t), either superscript or subscript, refers to the point on curve K determined by the first
argument, while the second one refers to the point determined by the second argument.
2 Although, as we know (s. [15], p. 130), J.L. Synge himself has rejected the notion of an absolute integral.
3 Of course, an integral defined in this way in non-Euclidean space is not, in general, independent of the chosen
curve K.
4 "Notons qu’en général, on ne sait pas, sauf quelques cas particuliers, résoudre de telles équations
différentielles." ([5], p. 134).
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two points on a surface, i.e. through two points in a Riemannian space5, a particular
examination is necessary in each single case.

Hence, papers [10] and [13] must have drawn particular attention since, due to the
introduction of the notion of an absolute integral, a simple procedure for the reduction of
the order of the differential equations (9) was proposed.

The procedure is based on the possibility of rewriting the system (9) in the form

0d du du du
ds ds ds ds

α β γ
α
βγ

 
+ Γ = 

 
, (10)

i.e. in the form (Ds ≡ ds)

0D du
Ds ds

α 
= 

 
, (11)

and hence

0du
ds

D
α 

= 
 

. (12)

If we knew that - for the vector field in the parentheses - the relation (12) holds along
a given curve, then, in accordance with (7) and (4), we should write

. .

.

0 ( , ) 0 ( , ) 

( , ) 0

o o

o o

t

t P P M

o
P P P

duK t d K M P D
ds

du du duD K P P
ds ds ds

β
α α
β β

α α β
α
β

τ τ

∇

  
= = =     

 
= − = 

 

∫ ∫

∫ , (13)

i.e.
. ( , ) 

o

o
P

du duK P P
ds ds

α β
α
β= , (14)

and the coefficients .K α
β  would form the fundamental solution of the starting

homogeneous system (11), the satisfying of which is required along this known curve.
However, the situation here is quite different from the one in (7) − instead of a given

curve, now an unknown curve (a geodesic line), which should be determined from the
condition that (11) is satisfied, is in question! But, an implicit supposition in the previous
procedure is that in the considered space, i.e. on the considered surface there exists a
geodesic line between the chosen points Po and P (this follows from the classical theory
of differential equations or from the calculus of variation), so (although this line is not
known) the above mentioned absolute integration along the geodesic line is possible in
principle (and, in principle, exists the corresponding fundamental system, i.e. the
operators .K α

β  of the parallel transport along this unknown geodesic line) − the

                                                          
5 S. [7], §17.3-12 and §17.4-2.
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differential equations of geodesics of the first order6 (14) are obtained in that very way, as
the first integrals of the equations (9).

Notwithstanding all this, the further integration of the equations (14) "is not solved
generally" ([15], p. 40) because "the explicit form of the function … [ .K α

β ] is not known"

([13], p. 260), i.e. because "the covariantly constant vector A [ .  A Kα α
β= (duβ/ds)|Po] is not

determined in the general case" ([15], p. 40). And at this moment, in an example in [15]
(p. 41), the author resorted to the use of the result of Clairaut’s theorem in order to
determine the covariant coordinates of the vector A and then to solve the differential
equations of geodesics7, while the very problem of determining the coefficients .K α

β , i.e.
the operators of parallel transport with respect to a surface (along a geodesic line lying on
it) is put aside (with a comment that they cannot be obtained by extracting the "surface"
part from the shifting operators of the corresponding enveloping Euclidean space; [15], p.
130. It seems that this is reason enough to say a few more words

ON THE DETERMINATION OF SHIFTING OPERATORS IN RIEMANNIAN SPACES8

For the sake of simplicity, we shall stay on the case of a surface in three-dimensional
Euclidean space. As we know, the vectors v(Po) and v(P) in a plane are parallel9 if they
form equal angles with the line connecting the points Po and P. Similarly, one can say
that the vectors v(Po) and v(P), in tangent planes at the points Po and P of a surface, are
parallel if they form equal angles with the tangents (in Po and P) of a geodesic line
connecting these points on this surface (s. p. 143 in [6]).

Hence, in order to establish the relation between the coordinates of the vector v before
and after its parallel transport with respect to a surface along the geodesic line connecting
the points Po and P (at the finite distance), we shall proceed in the following manner: let
us introduce a surface coordinate system uα , but in such a way10 that the above
mentioned geodesic line belongs, for example, to the 1u - family of coordinate lines,
while the lines of the 2u  - family are orthogonal to the 1u  ones. Bearing in mind that the
vectors v(Po) and v(P) have the same modulus and form equal angles with the coordinate
line 1u  at the points Po and P, the equality of their projections at these points on the axes
of the curvilinear coordinates uα  follows

)()()()( PPPP oo αα ⊗=⊗ tvtv , (15)

                                                          
6 A further step is made in paper [13], where the finite equations of geodesics are obtained under the supposition
of the existence of a vector ρα such that du ds D Dsα αρ=  !
7 When the concept of the absolute integral is not used to obtain the equations of geodesics with respect to
surfaces, a resort to this theorem is made, too (s. e.g. p. 324 in [18]).
8 This section is contained in the note "Contribution to an attempt of introduction of shifting operators in
Riemannian spaces" (private communication, 1976), resulted from the first encounter with the notion of an
absolute integral at V. Vujičić's communications, and this note was presented to him for inspection. Now ─
when there is no reason to doubt in the existence of shifting operators along a given curve (and hence along a
geodesic line, too) on a surface ─ it seems to be the right moment to quote the subsequent results, which will be
used in the next section.
9 Here we take parallelism in a narrow sense, since vectors of equal intensities are considered.
10 Cf. with geodesic polar coordinates in [2] (p. 177) and with Riemannian coordinates in [6] (pp. 166-167).
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where
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the following holds
( ) ( )       (  )

( ) ( )
o

o

v P v P non
a P a P
α α

α
αα αα

= Σ . (17)

If we now introduce some other arbitrary surface coordinates uα

( )
( )

u u u
u u u

α α β

α α β

= 


= 
, (18)

it will be
uv v
u

β

α βα

∂=
∂

, (19)

of course, in the point of the coordinate transformation; hence it follows

( ) ( )
       (  )

( ) ( )
o

o

o P P

v P v Pu u non
u ua P a P

β β
β β

αα α
αα αα

∂ ∂=
∂ ∂

Σ , (20)

and (bearing in mind that α is a free index), after the composition with 
oP

u
u

α

γ

∂
∂

, we obtain11

( )( )

( )( )

( )
 ( )  ( )

( )
o

o
o

P P

a P u uv P v P
a P u u

α β
α α

γ βγ α
α α

∂ ∂=
∂ ∂

. (21)

This expression can be rewritten in the form
. ( ) ( , ) ( )o ov P K P P v Pβ

γ γ β= , (22)

where the quantities (let us call them "Riemannian shifters")

( )( ).

( )( )

( )
( , )  

( )
o

o
o

P P

a P u uK P P
a P u u

α β
α αβ

γ γ α
α α

∂ ∂=
∂ ∂

 (23)

obviously establish a relation between the coordinates of parallel surface vectors with
respect to an arbitrary surface system uα, i.e. they take the role of the above introduced
operators of parallel transport with respect to a surface12; therefore, we have obtained
their analytical expressions − of course, on the condition that the geodesic lines on the
                                                          
11 The placement of an index in parentheses means that the summation convention is not applied to the
corresponding member - for example in summation over α in (21) this member is simply associated to the other
members with this index.
12 It is noticeable that the expression (23), obtained for the operators of parallel transport along the geodesics on
a certain surface, is analogous to that for "Euclidean shifters" ([4], p. 808), where the coordinates u α ,
introduced in the above described manner, now play the role of Cartesian coordinates.
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surface under consideration are known (these expressions will be used in the next section
for determining the shifting operators on a spherical surface).

Let us mention that it is easy to show that, for the inverse operators, we have

( )( )
.

( )( )

( )
( , )  

( )
o

o
o P P

a P u uK P P
a P u u

β α
α αβ

γ α γ
α α

∂ ∂=
∂ ∂

 (24)

and it holds that (s. (8))
.

.( , )  ( , )o oK P P K P Pβ α α
γ β γδ= . (25)

OPERATORS OF PARALLEL TRANSPORT ON A SPHERICAL SURFACE

Bearing in mind that the geodesic lines on a spherical surface are its great circles, we
shall choose the coordinates uα  (appearing in expression (23) for the coordinates of the
shifting operators) to be the geographical coordinates ( 1 2,  u uϕ ϑ≡ ≡ ) in a spherical
polar system },,{ ϑϕr  corresponding to the Cartesian system iz  ( 1 2 3,  ,  z x z y z z≡ ≡ ≡ )
whose plane 1 2Oz z  (i.e. Oxy ) coincides with the plane OPoP, where Po and P are
arbitrary points on the spherical surface. In this way, we managed to make the geodesic
line, i.e. the great circle passing through the points Po and P, belong to the 1u ϕ≡ - family
of coordinate lines (more precisely, lie on the equator). Therefore, the expressions (23)
can be used, but now (knowing that the diagonal coordinates of the fundamental metric
tensor in the system },{ ϑϕ  are 2 2 2

11 22cos ,  a r a rϑ= =  as well as that 0P oϑ ϑ= =  ) they
reduce to

. ( , )
o

o
P P

u uK P P
u u

α β
β

γ γ α

∂ ∂=
∂ ∂

. (26)

However, in order to obtain the effective expressions for the operators of parallel
transport with respect to a spherical surface (along its great circle), i.e. to determine the
partial derivatives in (26), one should establish the relations (18) between the surface
coordinates uα  and uα . To realize this, and bearing in mind that uα  (i.e. },{ ϑϕ ) are the
geographical coordinates on a spherical surface, we shall choose uα  as the geographical
coordinates on this surface too (i.e. 1 2,  u uϕ ϑ≡ ≡ ), but corresponding to another
Cartesian system zi (a "fixed" one, in which the points Po and P are given); then the
expressions (26) can be rewritten in a developed form (using 1 2,  ,  u u uϕ ϑ≡ ≡

1 2,  ,  u uϕ ϑ≡ ≡ )

.1 .1
1 2

.2 .2
1 2

( , )      ,      ( , )     ,

( , )     ,      ( , )      .

oo o o

oo o o

o o
P P PP P PP P

o o
P P PP P PP P

K P P K P P

K P P K P P

ϕ ϕ ϑ ϕ ϕ ϕ ϑ ϕ
ϕ ϕ ϕ ϑ ϑ ϕ ϑ ϑ

ϕ ϑ ϑ ϑ ϕ ϑ ϑ ϑ
ϕ ϕ ϕ ϑ ϑ ϕ ϑ ϑ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= + = +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (27)

However, in order to determine the partial derivatives
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,  ,  ,  
oo o oPP P P

ϕ ϕ ϑ ϑ
ϕ ϑ ϕ ϑ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

    and     ,   ,  , 
P PP P

ϕ ϕ ϑ ϑ
ϕ ϑ ϕ ϑ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

, (28)

but, not having the explicit expressions for the relations between the systems },,{ ϑϕr
and },,{ ϑϕr , i.e. (because of r r= ) between the systems },{ ϑϕ  and },{ ϑϕ , we should
use the following relations

                    
 

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

i j i j

z z z z
z z z z

z z z z
z z z z

z z z z
z z z z

z z z z
z z z z

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ
ϑ ϑ ϑ ϑ
ϑ ϑ ϑ ϑ
ϕ ϕ ϕ ϕ
ϑ ϑ ϑ ϑ
ϑ ϑ ϑ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= =∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= =∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= =∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂= =∂ ∂ ∂ ∂ ∂ ∂ ∂
 

ϑ











∂ 

. (29)

Namely, on the one hand we know the relations between Cartesian and spherical
coordinates

( ) ( ) ( )

( ) ( )

2 2 21 2 31

2 2 1

3 2 23 1 2

 cos cos
sin cos            tg
sin tg

r z z zz r
z r z z
z r z z z

ϕ ϑ
ϕ ϑ ϕ
ϑ ϑ

= + += 
 = = 
 =  = +



, (30)

as well as the relations
1 1 1

2 2 2

3 3 3

cos cos  ,    sin cos  ,    cos sin   

sin cos  ,      cos cos  ,    sin sin   

sin          ,       0                 ,       cos

z z zr r
r
z z zr r
r
z z z r
r

ϕ ϑ ϕ ϑ ϕ ϑ
ϕ ϑ

ϕ ϑ ϕ ϑ ϕ ϑ
ϕ ϑ

ϑ ϑ
ϕ ϑ

∂ ∂ ∂= = − = − ∂ ∂ ∂ 
∂ ∂ ∂ = = = − ∂ ∂ ∂ 
∂ ∂ ∂= = = 

∂ ∂ ∂ 

 (31)

and their inverse

1 2 3

1 2 3

1 2 3

  cos cos  ,         sin cos    ,    sin   

sin cos      ,                ,     0  
cos cos

cos sin sin sin cos ,        ,      

r r r
z z z

z r z r z

z r z r z r

ϕ ϑ ϕ ϑ ϑ

ϕ ϕ ϕ ϕ ϕ
ϑ ϑ

ϑ ϕ ϑ ϑ ϕ ϑ ϑ ϑ

∂ ∂ ∂ = = = ∂ ∂ ∂ 
∂ ∂ ∂ = − = = ∂ ∂ ∂ 
∂ ∂ ∂ = − = − = ∂ ∂ ∂ 

 (32)

(analogously is for the relations between iz  and },,{ ϑϕr ), and, on the other hand,
between the Cartesian systems iz  and iz  there exist the relations
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. .
. .   ,        ( )i i j i i j i j
j j j iz a z z a z a a= = ≡ , (33)

where 
.
i
ja  are the cosines of the angles between the axes of these systems and

.
.    ,     

i i
i i
j jj j

z za a
z z

∂ ∂= =
∂ ∂

. (34)

As is known, the 
.
i
ja ’s can be expressed in terms of Euler angles, but the usual

relations (due to a suitable choice of the angle of proper rotation, such that ϕEu = 0, i.e.
the axis 1z  lies in the plane 1 2Oz z ) are now reduced and read

1 1 1
.1 .2 .3

2 2 2
.1 .2 .3

3 3 3
.1 .2 .3

  cos       sin cos          sin sin

  sin          cos cos       cos sin

  0                  sin                      cos

Eu Eu Eu Eu Eu

Eu Eu Eu Eu Eu

Eu Eu

a a a
a a a
a a a

ψ ψ ϑ ψ ϑ
ψ ψ ϑ ψ ϑ

ϑ ϑ

= = − =

= = = −

= = =

. (35)

As for the angles of precession Euψ  and nutation Euϑ , the first of these (as the angle of
inclination of the line which represents the intersection of the plane OPoP and the
coordinate plane 1 2Oz z ) can be expressed in the form

sin cos sin sin sin costg
cos cos sin sin cos cos

o o P o P P
Eu

o o P o P P

ϕ ϑ ϑ ϑ ϕ ϑψ
ϕ ϑ ϑ ϑ ϕ ϑ

−=
−

, (36)

and the second (as the angle between the normals to the planes 1 2Oz z  and OPoP) in the
form

2

2

2

cos cos sin cos sin cos cos coscos
  (sin cos sin sin sin cos )

(sin cos cos cos cos sin )
(cos cos sin cos sin cos cos cos )

o o P P o o P P
Eu

o o P o P P

o P P o o P

o o P P o o P P

ϕ ϑ ϕ ϑ ϕ ϑ ϕ ϑϑ
ϕ ϑ ϑ ϑ ϕ ϑ
ϑ ϕ ϑ ϕ ϑ ϑ
ϕ ϑ ϕ ϑ ϕ ϑ ϕ ϑ

−=
− +

+ − +

+ −

; (37)

their dependence on the coordinates (ϕo,ϑo) and (ϕp,ϑp), i.e. of the points Po and P
respectively, is obvious.

Taking into account the expressions (31), (32), (34) and (35), replacing them in (29) and
determining the derivatives (28) appearing in (27), we obtain the following explicit
expressions, in geographical coordinates, for the operators of parallel transport with respect
to a spherical surface along the geodesic line (the great circle) connecting Po and P

.1
1

2

cos( , ) [sin sin( ) cos cos( )cos ]
cos

[sin sin( ) cos cos( )cos ]

cos( )cos( )sin

{

}

o
o P P Eu P P Eu Eu

P

o o Eu o o Eu Eu

P Eu o Eu Eu

K P P ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ

ϕ ϕ ψ ϕ ϕ ψ ϑ
ϕ ψ ϕ ψ ϑ

= − + − ×

× − + − +

+ − −

   

                

                            

.1
2

1( , ) [sin sin( ) cos cos( )cos ]
cos

sin [sin cos( ) cos sin( )cos ]
cos sin cos

{
}

{o P P Eu P P Eu Eu
P

o o o Eu o o Eu Eu

o Eu o

K P P ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ

ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

= − + − ×

× − − − +
+ −

  

                

                                         

            

 

cos( )sin [sin sin( )sin cos cos ] }P Eu Eu o o Eu Eu o Euϕ ψ ϑ ϑ ϕ ψ ϑ ϑ ϑ− − − +  

(38)
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.2
1 ( , )  cos   sin [sin cos( ) cos sin( )cos ]

                                                                                           cos sin cos
                      

{
}

{o o P P P Eu P P Eu Eu

P Eu P

K P P ϑ ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

= − − − +
+ ×

          [sin sin( ) cos cos( )cos ] 

                           cos( )sin [sin sin( )sin cos cos ]  }
o o Eu o o Eu Eu

o Eu Eu P P Eu Eu P Eu

ϕ ϕ ψ ϕ ϕ ψ ϑ

ϕ ψ ϑ ϑ ϕ ψ ϑ ϑ ϑ

× − + − −

− − − +

(38)

.2
2 ( , )  sin [sin cos( ) cos sin( )cos ]

                                                                                     cos sin cos
                  sin [sin cos(

{
}

{

o P P P Eu P P Eu Eu

P Eu P

o o

K P P ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϑ ϕ ϕ

= − − − +
+ ×

× ) cos sin( )cos ]
                                                                                     cos sin cos
                                                       [sin si

} 
o Eu o o Eu Eu

o Eu o

P

ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϑ

− − − +
+ +

+ n( )sin cos cos ]
                                                        [sin sin( )sin cos cos ]

P Eu Eu P Eu

o o Eu Eu o Eu

ϕ ψ ϑ ϑ ϑ
ϑ ϕ ψ ϑ ϑ ϑ

− + ×
× − +

It should be noted that these operators are indeed functions of the points Po and P, i.e.
of the coordinates (ϕo,ϑo) and (ϕp,ϑp) only. For Euψ  and Euϑ , this is evident from (36) and
(37), while, for oϕ  and Pϕ , the following relations can easily be established

cos cos cos( )
cos cos cos( )

o o o Eu

P P P Eu

ϕ ϑ ϕ ψ
ϕ ϑ ϕ ψ

= − 
= − 

, (39)

and the above statement again holds (we remember that 0P oϑ ϑ= = ).
The fact that the operators (38) are obtained by using a heuristic procedure − and not

by solving the homogeneous system (11), i.e. the system

     0dV duV
ds ds

α γ
α β
βγ+ Γ =  (40)

for an arbitrary vector V (where (40) represents the condition of its parallel transport
along a curve, as well a geodesics) − should not be surprising, since the existence of a
fundamental solution (it does exist for the system (40) along a given curve) does not,
implicitly, mean that it is easy to find; on the other hand, this approach could cause the
concern regarding the correctness of operators so obtained.

In order to allay this concern, let us look for the fundamental solution of the system
(40) when geographical coordinates are in question ( 1 2,  u uϕ ϑ≡ ≡ ). In this case (when
only the three coordinates of Christoffel symbols of the second kind are non-zero:

1 1
12 21 tg ,ϑΓ = Γ = −  2

11 sin cosϑ ϑΓ = ), it reduces to

1
1 2

2
1

 tg tg   0

  sin cos    0

dV d dV V
ds ds ds

dV d V
ds ds

ϑ ϕϑ ϑ

ϕϑ ϑ


− − = 


+ = 

. (41)

Some special cases of parallel transport of a vector along curves on a spherical
surface will now be considered.
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Let us start with propagation along the equator. In this case, since 0ϑ = , (41) reduces
to

1

2

  0
  0

dV ds
dV ds

= 


= 
; (42)

it is obvious that the following two solutions of this system
1 1

(1) (2)

2 2
(1) (2)

1 0
    and    

0 1
V V

V V

         = =       
         

 (43)

form the fundamental system for (42), because of
1 1

(1) (2)

2 2
(1) (2)

  1    0
0

0    1  

V V
Det Det

V V

     = ≠   
   

 (44)

(s. e.g. p. 73 in [9]). However, when parallel transport along the equatorial circle is in
question ( 0,P o P oϑ ϑ ϕ ϕ= = ≠ ), then the operators .K α

β  reduce to

{ }. 1    0
0    1

K α
β

 
=  

 
; (45)

so, the matrix of these coefficients is obviously fundamental.
In the next case, parallel transport on a spherical surface is still in question, but now

along a meridian. Then .constϕ = , and the system (41) reduces to

1 1

2

  tg  
  0

dV V d
dV ds

ϑ ϑ = 


= 
; (46)

the following two solutions of this system

1 1
(1) (2)

2 2
(1) (2)

cos 0cos     and    
10

oV V

V V

ϑ
ϑ

           = =       
         

, (47)

form its fundamental system due to

1 1
(1) (2)

2 2
(1) (2)

cos           0
0cos

  0                  1

oV V
Det Det

V V

ϑ
ϑ

     = ≠   
      

. (48)

On the other hand, bearing in mind that parallel transport along a meridian is in
question ( ,P o P oϕ ϕ ϑ ϑ= ≠ ), for the operators .K α

β  we obtain

{ }.

cos     0
cos
0             1

o

PK α
β

ϑ
ϑ

 
 =  
  

. (49)
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Therefore, it is obvious that the matrix of these coefficients is fundamental in this
case, too (we suppose the point P to be variable, i.e. that Pϑ ϑ≡ ).

Remark 1. It now seems to be the right moment to compare the results (38), obtained
for the operators { }.K α

β
, with the expressions for "Euclidean shifters" { }.ijg  in spherical

polar coordinates (s. e.g. p. 146 in [10] and p. 401 in [14])

cos cos cos( cos cos sin( cos sin cos(

sin sin sin cos

cos cos sin
sin( cos(

cos cos

)P o P o o P o P o o P o P o

P o o P o

o o o o
P o P o

P P P P

r r

r

r r

r r

ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ
ϕ ϕ ϕ ϕ

ϑ ϑ
− −

− − − +   -   -

+                                    +

-               

) )+

) ) sin(
cos

1
sin cos cos( sin cos sin( sin sin cos(

1
cos sin cos cos

o
P o

P P

o o
P o P o P o P o P o P o

P P P

o
P o P o

P P

r

r r

r r r

r

r r

ϕ ϕ
ϑ

ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ

ϑ ϑ ϑ ϑ

 
 
 
 −  
 
 − − − 
 
 
  

-  -   +

+                                   +

)

)+ ) )

,

i.e. with the corresponding submatrix relating to a spherical surface (ro=rP)

cos sincos( sin(
cos cos

sin cos sin( sin sin cos( cos cos

o o
P o P o

P P

P o P o P o P o P o

ϑ ϑϕ ϕ ϕ ϕ
ϑ ϑ

ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

 − 
 
  

−

− −

               

 -    +

) )

) )

. (50)

At first glance, we notice that (38) differs from (50). This, however, may not seem
immediately obvious to a more inquisitive reader (because of the complexity of
expression (38), which can probably be further simplified), so we can consider two
special cases. First, let the points Po and P lie on the equator ( 0,P o P oϑ ϑ ϕ ϕ= = ≠ ); then
(50) reduces to

cos( 0
0 1

P oϕ ϕ− 
 
 

) 

         
, (51)

and this differs obviously from the matrix (45) corresponding to the operators .K α
β  in that

case. But if the points Po and P lie on a meridian ( ,P o P oϕ ϕ ϑ ϑ= ≠ ), then (50) reduces to

cos 0
cos

0 cos( )

o

P

P o

ϑ
ϑ

ϑ ϑ

 
 
 
 − 

     

    

, (52)

and this also differs from the matrix (49) now corresponding to the operators .K α
β .

Therefore, we can indeed say that the operators of parallel transport with respect to a
surface (and, generally, in a Riemannian space) differ in principle from the "Euclidean
shifters" for the corresponding enveloping Euclidean space, more precisely from their
"surface" part. This just confirms the above mentioned note in [15], p. 130

Remark 2. Now, when we have obtained the analytical expressions for the operators
of parallel transport .K α

β  along the great circles on a spherical surface, the covariant
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coordinates of a vector shifted on this surface from point Po to point P (along the arc of
the great circle connecting them) would be calculated according to the formula

.( ) ( , ) ( )o ov P K P P v Pα α β
β=  (53)

(where 1 2,  v v v vϕ ϑ≡ ≡ ), and we can then determine the Cartesian coordinates of this
vector at the point P in the usual way

( ) ( )  ( )
i i

i

P P

z zv P v P v Pϕ ϑ

ϕ ϑ
∂ ∂= +
∂ ∂

(54)

(but now 1 2 31 2 3,  ,  x z y z z zv v v v v v v v v≡ ≡ ≡ ≡ ≡ ≡ ).
This procedure is used to calculate the Cartesian coordinates of a given unit vector v

after its parallel transport on a spherical surface (with the radius r) from point Po to point
P along the great circle; these points are given by their geographical coordinates {ϕo,ϑo}
and {ϕp,ϑp}, where the angle αo between this unit vector and the geographic parallel was
prescribed at point Po too. The results for a few arbitrarily selected pairs of points on the
spherical surface are quoted in the Table 1. In this table, the Cartesian coordinates of the
vector v obtained directly (without introducing the notion of the operator of parallel
transport with respect to a surface) from the condition that a vector shifted along a
geodesic line must close a constant angle with this curve at every its point, are also
quoted (s. p. 143 in [6]). This was performed by a special software tool, used to generate
the Figure 1, as well.

Table 1

Cartesian coordinates of a given unit vector v after parallel
transport with respect to a spherical surface (r = 5) from

point Po to point P along the great circle
Po P vP (analytical approach) (numerical approach)

ϕo = 3° ϕP = 76° vP
x: −0.5609105726399270 −0.5609105726399270

ϑo = 15° ϑP = 79° vP
y: 0.8179382961038478 0.8179382961038477

αo = 23° vP
z: −0.1278916465899297 −0.1278916465899297

Cartesian coordinates of a given unit vector v after parallel
transport with respect to a spherical surface (r = 10) from

point Po to point P along the great circle
Po P vP (analytical approach) (numerical approach)

ϕo = 10° ϕP = 80° vP
x: −0.9592179801699705 −0.9592179801699705

ϑo = 15° ϑP = 85° vP
y: 0.2824986141850212 0.2824986141850212

αo = 60° vP
z: −9.7672668738299610E-3 −9.7672668738299595E-3

Cartesian coordinates of a given unit vector v after parallel
transport with respect to a spherical surface (r = 10) from

point Po to point P along the great circle
Po P vP (analytical approach) (numerical approach)

ϕo = 17° ϕP = 66° vP
x: −0.8188552843021616 −0.8188552843021616

ϑo = 10° ϑP = 77° vP
y: 0.5723252631531620 0.5723252631531620

αo = 30° vP
z: −4.3815710961823556E-2 −4.3815710961823552E-2



68 Z. DRAŠKOVIĆ

Fig. 1.

The conformance of these two groups of results represents a numerical confirmation of
the correctness of the previously obtained expression for shifting operators on a spherical
surface; we consider this examination to be a very advisable one − on the one hand, because
of the fact that these expressions, as well as the approach to their derivation, are new (at
least judging from the available literature) and, on the other hand, because the complexity13

of these operators indisputably increases the possibility of an error.
At the end of this section we conclude the following: even though the former efforts

to determine the shifting operators might resemble a "search for the Holy Grail", we have
nevertheless managed to obtain, for a particular example, a closed form of these
operators, but along a known geodesic line.

However, the question from the above mentioned discussion − does the reduction of
the order of the differential equations of geodesics make their solving possible? − is not
resolved in this manner. Since, on the one hand, it was pointed out (p. 40 in [15]) that the
further integration of the equations of the first order (14) "is not solved generally", and,
on the other hand, we are more and more convinced that the reduction of the order of the
equations (9) was performed at the price of introducing the unknown functions14 .K α

β  to

the equations (14) − we dare say that further integration of these equations is not possible,
either, because of the existence of a

                                                          
13 Which can probably be reduced by using a software tool for symbolic transformation, differentiation etc.
14 More precisely, it is known that these coefficients are shifting operators, but along an unknown curve!
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CIRCULUS VICIOSUS OF ABSOLUTE INTEGRATION
OF DIFFERENTIAL EQUATIONS OF GEODESICS:

To reduce the order of the differential equations of a geodesic line (9) and obtain its
first order equations (14), one should know the operators of parallel transport along this
still unknown geodesic line on the surface under consideration. On the other hand, to
determine these operators as a fundamental solution for the system (11), one must know
the geodesic line along which this system is to be satisfied!

In this situation, we can do nothing but wonder: "What next?". Even the most well-
intentioned researcher would point out to the correctness, checked innumerable times, of
the dictum "Back to school!", meaning − since we do not notice any possibility of cutting
the above vicious circle − an attempt to find the origins of this circulus vitiosus.
Therefore let us remember that "the concept of absolute derivative is made to depend on
the concept of parallel displacement of a given vector at one point on a curve C to other
points on C" ([12], p. 178); namely, the introduction of the notion of absolute and
covariant derivatives implies a certain concept of parallel transport; however, the
subsequent introduction of the notion of parallel transport in non-Euclidean space (s. e.g.
[6], p. 142) includes a condition in which the covariant derivative arises, and this is a sort
of circulus vitiosus as well! In view of the fact that the operation of absolute integration is
introduced as an inverse to the one of absolute differentiation, we logically reach the

CONCLUSION

that the above mentioned vicious circle is only the consequence of a situation inherent
to the existing approach to covariant differentiation in non-Euclidean spaces. In other
words, the impossibility of using the concept of absolute integration for an effective
determination of geodesics in non-Euclidean space is not the deficiency of this concept
itself − it is impossible in principle within the theory based on the usual procedure of
covariant differentiation in these spaces.

Therefore, the dilemma arising from the discussion mentioned in the title of this paper
is substituted with the following one: whether, and how, to attempt to introduce another
definition of the operation of covariant differentiation in non-Euclidean spaces
(generalizing some characteristics common to both Euclidean and non-Euclidean spaces),
without causing the mentioned circulus vitiosus ? However, this should be the subject of
a future communication, because too much heretical ideas have already been presented in
this paper.
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PRILOG RASPRAVI O APSOLUTNOM INTEGRALJENJU
DIFERENCIJALNIH JEDNAČINA GEODEZIJSKIH LINIJA

U NEEUKLIDSKOM PROSTORU
Zoran Drašković

U radu je: a) još jednom istaknuto da postoje operatori paralelnog pomeranja po površi duž
krive zadate na toj površi; b) dobijen je zatvoreni oblik tih operatora za slučaj paralelnog
pomeranja po sfernoj površi, a duž velikih krugova; c) iznet je stav da apsolutno integraljenje
diferencijalnih jednačina geodezijskih linija u neeuklidskim prostorima principski nije moguće
zbog samog postupka kojim je u tim prostorima uvedeno kovarijantno diferenciranje.


