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Abstract. In the classical problem of motion of a heavy rigid body about a fixed point
the permanent rotations are well known and completely investigated as the most simple
and good visually demonstrated type of motions. Numerous properties of these motions
are established and their theoretical and applied significance is commonly known (here
the list of scientific references is so extensive that O. Staude's paper [1] must be singled
out at first). In multibody mechanics, where under a increasing of the quantity of the
system bodies the quantity of mechanical parameters and the order of differential
motion equations are increasing too, the studying of conditions of existence of such
motions is a complicated problem. This, apparently, is a reason in a view of which the
problem on permanent rotations of coupled rigid bodies system does not have a
exhaustive solution up to present time.
The success of analytical investigations in different mechanics problems, especially in
multibody system dynamics, is often caused by a good choice of a form of motion
equations for studied object. In 1st section of this paper the new form of motion
equations of the considered mechanical system is suggested. It is derived from P.V.
Kharlamov's equations [2,3] under the using of the mechanical parameters of the
augmented bodies [4-6] in these equations. The obtained equations have a more
compact form suitable for its studying.
In second section for the system of n heavy rigid bodies which are sequentially jointed
in a chain by ideal spherical joints the conditions of existence for the motions are
determined when the each of the bodies permanently rotates about the vertical vector.
Section 4 contains the analysis of these conditions in a general case when the bodies
angular velocities are different. Under the investigation a prior conditions on the mass
distribution of the bodies and a way of their jointing are not used. The most simple case
of two bodies is studied in 3rd section in detail.
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1. MOTION EQUATIONS OF A CONSTRAINED SYSTEM OF N CONNECTED RIGID BODIES

We will consider a system of n heavy rigid bodies B1, B2, …, Bn. The bodies Bi and
Bi+1 (i=1,2,…,n−1) are coupled in a common point Oi+1. The last link of the bodies chain,
B1, is fixed in a point O1 on the immovable base.

Let us assume that an external influence on the system is expressed by a force Fi and
a moment Mi which are acting on Bi and applied in the suspension point Oi (i=1,2,…,n).
In addition, we suppose that the body Bi-1 acts on Bi with a force Ri and a moment Li,
applied in Oi, and the body Bi+1 affects on Bi with a force –Ri+1 and a moment –Li+1,
applied in Oi+1.

Among different forms of motion equations of n connected rigid bodies system,
known up to present time, on our opinion P.V. Kharlamov's equations [2] are the most
useful for analytic investigations of its dynamical properties. These equations are:
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where Ai is an inertia tensor of the body Bi constructed in the point Oi; ωωωωi is an absolute
angular velocity of Bi; mi is a mass of Bi; ci = OiCi, Ci is the mass center of Bi; si = OiOi+1;
the point in these and other equations of this section designates the absolute derivative. In
the equations (1.1) and below we suppose that the index i takes all the values from the
set, N = {1,2,…,n},of indexes of the system bodies.

In order to write the equations (1.1) in a more compact form, for the each Bi we
consider the body *

iB  which represents the body Bi with the apparent additional mass
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*  in the point Oi+1. This mechanical object had been successfully used for a

description of mass characteristics of the considered bodies chain [7, 8]. Below, abiding
by [4,5], where analogous objects had been introduced for bodies systems with a tree-like
structure, we will call *

iB  as the augmented body for Bi in contrast to the same J.
Wittenburg's definition [6].

In such a case the equality of the absolute angular velocities of Bi and *
iB  is the evident

fact. Let us denote that *
iA  is an inertia tensor of *

iB  relatively to Oi; ,**
iii COc = where *

iC
is the mass center of *

iB  named as the barycenter [4]; iiiii mm sc *+=a  is the static moment of
*
iB  with respect to Oi. Hence
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By means of the relations
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we can accomplish the transition to parameters of the augmented bodies in the equations
(1.1). As result we derive:
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We note that the bodies Bn and *
nB  are the same one (since 0* =nm ). Then by virtue

of (1.2) we have nnnnn m caAA == ,* .
If the bodies of the system are coupled by elastic joints then the equations (1.1) take

the form:
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Here 1
iL and 2

iL are respectively the elastic moment and the moment of the constraint
reaction in Oi characterizing the affecting of Bi-1 on Bi.

The equations system (1.3) as well as the system (1.1) is not closed in a general case:
in addition to ωωωωi it has unknown moments Li too. So for its closure an information about
an interaction character between Bi and Bi-1 and a constraint in the point O1 is needed.

In the particular case, when all the bodies are coupled by spherical joints )0( 2 =iL in
which the elastic regenerating moments )( 1

21
iii eeL ×κ−= −  are acting for i = 2,3,…,n

(ei = si / |si|), then the equations (1.4) yield
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At last, if in the points Oi there are ideal spherical joints and the external forces
affecting on the system are the supporting force in O1 and the gravity force (i.e. Li = 0,
Fi = mi g ν , Mi = mi gci×ν , where ν  is the unit vector of the gravity force, g is its
acceleration), then the equations (1.3) are presented in the kind:
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2. PERMANENT ROTATIONS OF THE SYSTEM ABOUT THE VERTICAL VECTOR
FOR THE PROBLEM (1.5)

We will assume below that the each body from the studied system rotates with a
constant angular velocity. Such motions of the system are named to be permanent
rotations. Then for the body Bi the vector iν  fixed in the inertial space exists:

,ω iii νω =  .ω consti =  (2.1)

Taking into account the known equality: iiii νωνν ×+′=  (the prime designates the
relative derivative on time), by virtue of (2.1) we conclude that the vector ννννi as well as the
vector ωωωωi will be constant in the coordinate system rigidly associated with Bi. Therefore,
based on (2.1) we transfer the equations (1.5) to the moving axes:
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Next, if all the vectors iν  are collinear to an axis, then the system performs the
permanent rotations about this axis. In particular, for

νν =i (2.3)

the system permanently rotates about the vertical vector. In the following bellow we will
consider only such motions.

Let us introduce the orthonormal basis fixed with Bi in the point Oi so that the vector
ν  coincides with the ort of the third axis. In this basis we put ),,( 321

iiii aaa=a ,
),,( 321

iiii sss=s  and ),,( *
33

*
23

*
13

* iii
i AAA −−=νA . Then, projecting the equations (2.2) on the axes

of the corresponding mobile basises with respect to (2.3), we obtain such relations:
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It is obviously that the conditions of compatibility for the system (2.4) are the
conditions of existence of permanent rotations of n connected rigid bodies system.

By implication of the problem we point out that

,0232221 ≠
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because in another case si = 0 and it means that the body Bi+1 is coupled with Bi-1 in the
point Oi but not with Bi.

3. THE CASE OF TWO BODIES SYSTEM

In this section we will analyze the formulas (2.4) for the most simple case when n = 2.
Then these relations take the form:
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In (3.1) we have ,3,2,1,1 == kss kk  l, j∈ {1,2}, l ≠ j.
Further, we isolate the four cases:
1. ω1 ≠ ω2, ω1 ≠ 0, ω2 ≠ 0 The equalities (3.1) will be fulfilled at the every moment of

time if and only if
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22 ccc=c , where these vectors

are represented as seen from the frame fixed in the body B2.
One can easy check that by means of (2.6) the relations (3.3)–(3.5) will be satisfied by

one of the ways:
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2 ===== AAccc  (3.7)

From the formulas (3.6), (3.7) we infer that under ω1 ≠ ω2 the body B2 performs
permanent rotations only about one of its principle inertia axes. In such a case the mass
center C2 of this body should either be placed on the rotation axis ( 2c || νννν by virtue of
(3.6)) or put in the suspension point O2 (c2 = 0 according to (3.7)). For the first
considered subcase the point O2 should be located on the vertical line passing through O1

(from (3.6) we have s || νννν).
Comparing (3.2) with the relations (4.2) of the paper [9] we conclude that the body B1

permanently rotates about an axis which contains the suspension point O2 and belongs to
the Staude's cone having been built for *

1B . This analogue with the classical problem of
rigid body mechanics will be explained as soon as we keep in mind the fact that the
motion of the body B2 does not make any influence on a motion of *

1B  when the bodies
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parameters are chosen with respect to the relations (3.6) or (3.7).
For this subcase the obtained conditions of existence coincide with the results of the

paper [8]. From following above reasoning we deduce their uniqueness.
2.  ω1 ≠ 0, ω2 ≠ 0. The system (3.1) can be satisfied by the relations (3.3), (3.4) and
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Therefore, in this case the body B2 will permanently rotate about one of its principle
barycentric axes if the barycenter of the resting body *

1B  is situated on the vertical line
passing through O1. Moreover, in general, the vector s is not collinear to ν . It is easy to
show that the accomplishment of the equalities (3.8) provides the vanishing of the
moment of forces which are external by respect to *

1B  relatively to the point O1.

3. ω1 ≠ 0, ω2 = 0. Now from (3.1) we get the relations (3.2), (3.4) and === 13
2

2
2

1
2 saaa

023
2 == sa . These relations can be reduced to the same conditions as for the first case.

Indeed, this fact is evident because under the fulfillment of these conditions the motion of

B2 does not affect on a motion of *
1B . This property will be valid for any values of ω2

including ω2 = 0
4. ω1 = ω2 = ω. The system (3.1) is transformed to the system of algebraic relations:
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We note that the two last equalities can be presented in the kind:
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4. ABOUT COMPATIBILITY OF THE CONDITIONS SYSTEM (2.4)

In this section we will define the conditions of the compatibility of the system (2.4).
For this purpose we formulate the following statement.

Statement. Let all the values lµ  (l =1 ,…, p) are chosen so that :
1. ll ∀≠µ 0 ; (4.1)

2. .22 jiji ≠∀µ≠µ  (4.2)
Then the function
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is identically equal to zero if and only if 00 === ll baa  (l = 1,…, p).
Proof. We will prove this statement for all natural values of the parameter p by the

method of mathematical induction. It is easy to make sure that for p = 1 the statement is
correct. Then assuming that the statement is valid for p = p* we shall demonstrate it for
p = p* + 1. If the function f(t) is identically equal to zero then all its derivatives must be
identically equal to zero too, therefore from (4.3) we get
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The identity (4.4) with respect to (4.1) is written in a kind:
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On the base of (4.5) the relation f(t)≡0 takes the form:
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As the statement is valid for p = p* , then the identity (4.6) is correct only under
satisfaction of the conditions:

0)/1(,0)/1(,0 2
1

22
1

2
0 **

=µµ−=µµ−= ++ lpllpl baa  (l =1,…,p). (4.7)

Further, by virtue of (4.2) we have a0 = al = bl = 0 (l = 1,…, p). Then f(t) =
tbta pppp 1111 ****

sincos ++++ µ+µ . It is easy to see that the function f(t) will be identically
equal to zero under the conditions 011 **

== ++ pp ba  and, so, the statement is proved.
For the case, when the one of the inequalities (4.1), (4.2) becomes the equality, the

function f(t) after the regrouping of sum terms will be presented in the kind which meets
the requirements of the statement and, therefore, can be identified on its base.

Using this statement we infer that in a general case, when

,0≠ωj  ,kj ω≠ω  Nlkjlkj ∈∀ω≠ω−ω ,,,2 , (4.8)

we are able to satisfy the system (2.4) by the relations

0=γ=β=α k
ij

k
ij

k
i  i, j ∈  N, i ≠ j, k=1,2,3. (4.9)

The relations (4.9) are analyzed and under its satisfaction the conditions on the system
bodies parameters are determined. Here we will not cite the detailed analysis but give a
mechanical interpretation of the obtained results.

Let k is an arbitrary fixed index (1 < k ≤ n). Let us select two subsystems,
Σ1 = {B2,B3,...,Bk−1} and Σ2 = {Bk,Bk+1,...,Bn}, from the considered mechanical system.
Then the studied bodies chain will permanently rotate about the vertical vector if and
only if :
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i) the rotation axis of the body Bj from Σ1 or Σ2  is a principle inertia axis for Bj
*

( 0*
23

*
13 == jj AA , j = 2, …, n);
ii) the bodies of the system Σ2 are suspended in the own barycenters, i.e. the point Oj

coincides with *
jC  for j = k, k+1,…, n ( 0321 === jjj aaa );

iii) for the each body Bj from Σ1 the suspension point Oj and the barycenter *
jC  should

be placed on the system rotation axis, i.e. on the vertical line passing through the fixed
point O1 ( 021 == jj ss , 021 == jj aa , j = 2,3,…, k-1);

iv) as in the case of the two bodies system the body B1 permanently rotates about an
axis of the Staude's cone having been built for the body *

1B ; if the set of indexes for Σ1 is
not empty, then this axis contains the point O2 and by this means it is isolated.

Next, we shall give all the values between 2 and n to the index k then under the
fulfillment of the conditions (4.8) we will obtain all possible cases of existence of
permanent rotations about the vertical vector of the n rigid bodies system.
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O USLOVIMA POSTOJANJA NEPRESTANE ROTACIJE SISTEMA
NEPOKRETNIH  KRUTIH TELA OKO VERTIKALNOG VEKTORA

D. Chebanov, N. Khlistunova

U klasičnom problemu kretanja teškog krutog tela oko nepokretne talke, neprestane rotacije su
dobro poznate i potpuno istražene kao najprostiji i vizuelno dobro predstavljeni tip kretanja.
Mnogobrojne osobine ovih kretanja su utvrđene i njihov teoretski i primenjeni značaj je uopšteno
poznat (ovde je lista naučnih referenci tako iscrpna da rad Staude-a mora biti istaknut pre svih). U
mehanici sistema tela gde pri porastu broja tela sistema raste i broj mehaničkih parametara kao i
red diferencijalnih jednačina kretanja, proučavanje uslova postojanja takvih kretanja je jedan
komplikovan problem.

Uspeh analitičkog istraživanja u različitim mehaničkim problemima, naročito u dinamici
sistema mnogostrukih tela je često prouzrokovan dobrim izborom oblika jednačina kretanja za
proučavani objekat. U prvom delu ovog rada razmatra se novi oblik jednačina kretanja razmatra-
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nog mehaničkog sistema. On je izveden iz jednačina P.V. Kharlamova korišćenjem mehaničkih
parametara uvećanih tela [4,6] u ovim jednačinama. Dobijene jednačine imaju mnogo kompaktniji
oblik koji je pogodan za njihovo proučavanje.

U drugom delu rada su određeni uslovi za postojanje kretanja za sistem od n teških krutih tela
koji su jedan za drugim u nizu povezani u lanac idealnim sfernim zglobovima, te su ti uslovi
određeni kada svako od ovih tela neprekidno rotira oko vertikalnog vektora. Odeljak broj 4 sadrži
analizu ovih uslova u opštem slučaju kada su ugaone brzine ovih tela različite. U istraživanje a
priori uslova o raspodeli mase i načinu njihovog spajanja se nije ulazilo. Najprostiji slučaj dva tela
je proučen u trećem odeljku do detalja.


