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Abstract. In this paper, the field method for solving the equations of motion of
holonomic nonconservative systems is extended to system under the action of excitation.
Both external and parametric excitation are considered. The asymptotic solutions for
these weakly non-linear systems are obtained by combining the field method with the
perturbation technique of the dual time expansion.

1. INTRODUCTION

Although the Hamilton Jacobi method is powerful procedure for solving the equations
of motion of holonomic conservative systems, in the case of strictly nonconservative
systems it fails to be applicable. Vujanovic [1] has proposed a field method as an extension
of the Hamilton Jacobi method to holonomic systems with finite degrees of freedom and
applied it in the study of weakly nonlinear vibrational problems [2,3], too. This application
needs combining with the perturbation technique of the dual time expansion. Note also, that
the field method has been extended to the nonholonomic systems [4].

In this paper, the field method is extended to excited one degree of freedom systems.
Both parametric and external excitations are considered. The solutions in the first
approximation are obtained. These are in the form usually given by the other asymptotic
procedure, i.e. in the form of the first order differential equations for the amplitude and
phase of motion. It means that the procedure given in the original version [1,2,3] is
condensed and improved.

2. THE BASIC CONCEPT OF THE FIELD METHOD

Consider the system governed by:
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whose initial state is specified as:
.)0( 0ii xx = (2)

The basic assumption of the field method is that one of the states coordinates
(generalized coordinate or momentum) can be considered as a field depending on the
time and the rest of the coordinates:

.,...,2,),(1 njxtUx j == (3)

By differentiating equation (3) with respect to the time and using the last (n-1)
equations (1) we obtain, so called, the basic equation:
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Finding a complete solution of equation (4) in the form depending on the time,
variables xj and arbitrary constants Ci:

,),,(1 ij CxtUx = (5)

and applying the initial conditions (3), one of the constants, say C1, can be express by
means of the initial values and the rest of constants. Then we obtain the conditioned form
solution:

.),,,,( 001 jiij CxxxtUx != (6)

Vujanovic's theorem:

The solution of the system (1), (2), supposing that det(∂2U/∂xα∂Cβ) ≠ 0, α,β = 2,3,...,n
can be obtained from the j equations:
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together with equation (6).
So, Vujanovic's method gives us possibility to find the solution of motion passing

from the system of ordinary equations to one partial equation. We get the asked solution
from the complete solution without any integration, i.e. by simple algebraic operations.

3. APPLICATION TO THE NONLINEAR THEORY OF VIBRATIONS

3.1. Parametric excitation

Firstly, we consider the system governed by a modified Mathieu equation:
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where ε is a small parameter, f is a nonlinear function of the state of the system. We
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restrict our analysis to the case of principal resonance, that is 12
0 ≈ω=δ .

Choosing the generalized coordinate for the field variable:

),,( ptUx = (9)
we have the basic equation:
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To find its solution in the closed form is impossible. In order to accomplish the
approximate asymptotic solution we will combine the basic concept of the field method
with the method of two-time scale expansion [5].

So, we define "slow" and "fast" time: τ = εt, T = t.
We develop U(t,p) and p(t) in series with respect to the small parameter ε:

,...),,(),,(),,( 1100 +τε+τ=ε TpUTpUptU (11a)

....),(),(),( 10 +τε+τ=ε TpTptp (11b)

We also suppose that dependence of Ui on pi is linear and unique: ∂U/∂p = ∂U0/∂p0 =
∂U1/∂p1.

Consequently, the basic equation transforms, after equating terms by powers of ε, into
the system of the following partial differential equations:
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The complete solution of (12a), according to [1,3], has the form:
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where C is a true constant and A(τ) and B(τ) are functions to be determined.
Applying the rule (7) we find:

,)cossin( 0000 TBTAp ω+ω−⋅ω= (14)

and substituting this into (13) we get, so called, solution along trajectory:
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According to the similar form of the left sides of equations (12), we assume the complete
solution of equation (12b) in the same form as (13):
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where D1 is an unknown function.
Introducing it into the left side of (12b) and (13), (15) to the right one we obtain:
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To express the nearness of δ to 1 we let 1 = ω0 + εσ, where σ  is a constant.
To eliminate the secular terms, we have to equal with zero all term containing cos C

and sin C. Respectively, we find:
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By letting A = a(τ)cosβ(τ), B = −a(τ)sinβ(τ), and applying some manipulations, the
solution for the system (8) is found in the form of the first order differential equations for
the amplitude and phase:
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This solution is completely in accordance with the solution presented in [6]. Note that
at this point we returned to the usual point for the methods of slowly varying parameters
and applied the averaging principle over a period 2π.

3. 2. External excitation

Here we consider the system:
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where ε is a small parameter, 2
0ω  and k are known constants. We assume that

Ω = ω0 + εσ. It means that we are interested in the case of primary resonance only.
In analogy with the previously presented procedure we choose the variable x for the field, i.e.

x = U(t,p)
The corresponding basic equation is:
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Using the same scheme for the time scales and the series of U and p given by



 A Field Method for Solving the Equations of Motion of Excited Systems 157

equations (11), the basic equations becomes:
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The solution of equation (22a) is given by equation (13), while the solutions for the
first component p0 and solution along trajectory have the same form as, respectively, (14)
and (15). Introducing these relations to the equation (22b) leads to:
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After substituting )(sin)(),(cos)( τβτ−=τβτ= aBaA  into (23) and applying the
averaging principle we find the solution for the (19):

),cos( 0 β+ω= tax (24a)

,,sin
2

1)sin(
2 0

2

000
β+ω=φφφ

πω
−β−στ

ω
=′ ∫

π
Tdfka (24b)

.cos
2

1)cos(
2

2

000
φφ

πω
−β−στ

ω
−=β′ ∫

π
dfka (24c)

This solution is identical with the solution obtained by the method of multiple scales [6].

4. CONCLUSION

In the present paper approximate analytical solutions for weakly nonlinear ordinary
differential equations have been found by a field method. The field method of the
generalized coordinate has been applied to the case of parametric and external
excitations. It is shown that this method gives solutions that are in good agreement with
those obtained by means of the other methods.
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PRIMENA METODA POLJA U REŠAVANJU
JEDNAČINA KRETANJA SISTEMA SA PRINUDOM

Ivana Kovačić

U ovom radu je izvršeno proširivanje metoda polja za rešavanje jednačina kretanja holonomnog
nekonzervativnog sistema na sistem pod dejstvom prinude. Razmatrane su parametarska i spoljašnja
prinuda. Asimptotsko rešenje za slabo nelinearni oscilatorni sistem je dobijeno kombinovanjem
metoda polja sa perturbacionom tehnikom dvojne vremenske skale.


