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Abstract. In this paper we discuss sensitivity for a special class of automatic control
systems so-called variable structure systems. The sensitivity model is defined for the
multivariable input systems and the connection with existing conclusions is outlined
about the invariance conditions in the sliding mode.

1. INTRODUCTION

The main subject of the sensitivity theory is the influence of the some system
parameter variations, on their dynamics behavior. Sensitivity analysis is considered with
how to define and determine sensitivity function or, adequately, sensitivity model
(Tomović and Vukobratović [5]). The problem of determining sensitivity functions in
many ways depends on what kind of system is to be analyzed and which parameters are
to be studied. Therefore we need to develop different analytic or simulation methods for
determining the sensitivity function.

The variable structure systems (VSS) are nonlinear. The control action is discontinuous
in VSS and from (1) the state space derivatives are discontinuous too. By definition of the
sensitivity coefficients it is clear that they are discontinuous to. A general problem of the
coefficient discontinuity is presented and discussed in (Tomović and Vukobratović [5]) and
(Bingulac [1]). In (Matić [4]) defined sensitivity model for VSS with a scalar control action.
In this paper we will tray to determine the sensitivity model for VSS with a vector control
action. The significant interest has been made on the sliding mode.

2. THE PROBLEM SETTING

The multiinput systems are described with matrix differential equation

BuAxx += , (1)
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where: x ∈  ℜ n - n state vector-column (it is understood that all its elements are available
for forming a control action); A = {aij} n × n - matrix of systems coefficients;
B = {bij} n × m - matrix, with linearly independent columns bi; : u ∈  ℜ m - m control
vector-column, with linearly independent elements, called control functions.

The motion of such system can be represented most conveniently in n dimensional
Euclidean space E n. If the control action is suitable chosen, the phase trajectories can be
attained in the vicinity of the hyperplane G, oriented toward it. The phase point which
reaches such a hypersurface cannot leave it again, but it keeps shifting from one of its
sides to another, moving on the average along the trajectory belonging G. The described
motion is called the sliding mode and G is the sliding hypersurface. For multiinput
systems considered in this paper, it is possible to realize the sliding mode both on certain
hypersurfaces and their intersections. There are different methods to organize sliding
modes (Hang and Gao [3]). One of this methods is so-called hierarchical method in
which the control function u1 provides the sliding mode on G1, the control function u2 on
G1 ∩ G2 , etc. and finally, um guarantees the sliding mode on

 mGGG ∩∩∩ ...21 .

The most acceptable hypersurfaces are the hyperplanes passing through the origin
defined by equations:

0T == xciig ,

where ci is a constant n row vector and gi is a scalar called the switching function. When
the final stage of motion the phase point moves in the sliding mode along the
intersections of all m hypersurfaces Gi, the system phase trajectories belong to the
subspace E n−m defined by equation:

,0Cx =  (2)

where C is an (m × n) constant matrix with linearly independent rows ci. The motion in
E n−m  will be considered as the main part of the motion, and the motionpreceding in the
sliding mode in E n−m as the preliminary part. The conditions the control function has to
fulfill to provide the sliding mode are given in (Draženović [2]). The control vector is
defined in the following way:

xu ΨΨΨΨ= ,

where ΨΨΨΨ is a matrix of switching coefficients with elements:
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If we denote ΨΨΨΨi to be the i-th row of matrix ΨΨΨΨ then, the control functions have the
form

xT
iiu ΨΨΨΨ= . (3)

If the sliding conditions are satisfied, then for sliding on hypersurface, we can define
a system sensitivity model. The vector of sensitivity coefficients is defined as:
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ijijij ssss = is a vector of sensitivity coefficients with respect to the
parameter aij (later in this paper we will omit index ij).

3. SENSITIVITY MODEL

By applying the partial differentiation to equation (1) with respect to the parameter aef
(an element of matrix A), we can obtain the sensitivity equation. The continuity of the
state space is a necessary condition for the partial derivative, with respect to the
parameter of differentiation to be defined. In the real systems this condition is satisfied
almost always. The sensitivity equation has the form:

efa∂
∂++= uBxQsAs ***  (4)

with
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The symbol * in the exponent denotes altering structure of matrices A and Q in the
preliminary part. We are considered our system from the moment t1, when the sliding
mode along G1 has begun provided by control function u1. With ti we will define the
moment when the sliding mode along Gi has begun provided by the control function ui.
This is a moment when the switching function gi changes its sign. In the interval [ti, ti+1],
the switching function does not change its sign, but it is possible for the state space
coordinates to change their signs. Therefore, if we describe the function sgn(*) using step
function,
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where δg is Dirac impulse. In the same way we obtain:
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By differentiation of equation (3) we get:
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where the functions of the right hand side are
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Here, p denotes a number of coordinates changing their sign in the interval [ti, ti+1],
δgii is an impulse in the moment ti, and δxl is an impulse in the moment, when some of
state space coordinates change their signs. Matrices A* and Q* have modified their
structures every time when some sign changing is performed, and have decreased order
by one (Draženović [2]), when the switching function is switched. Their explicit
structures are not defined hire. In this context it is not so important, because we are
interested just in what type of discontinuity the sensitivity coefficients have, in the so
called preliminary part.

When in the final stage of motion the phase point moves in the sliding mode along the
intersections of all of m hyperplanes Gi the system phase trajectories belong to the
subspace E n−m  defined with (2). Since in the sliding mode the phase point does not leave
the subspace E n−m, it is accepted that the phase velocity also belongs to E n−m, that is:

0xC = . (5)

By substitution of value x  from (1), if the matrix CB is nonsingular, u is determined
in an unique manner from (5),

u CB CAx= − −( ) 1 ,
and the system model has the form:

mmm xAx = , (6)

where Am denotes system matrix after the elimination of the control vector. It is clear that
the vector, denoted with xm, has (n-m) coordinates.

We can get sensitivity model in sliding mode by applying partial differentiation on
equation (6) with respect to the parameter aef, in the form
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To calculate partial derivative on the right side of equation (7) we have to find the
explicit form of the matrix Am. First we introduce a transformation matrix T which maps
the subspace E n−m in to E n, i.e.,

x Tx= m .
The matrix T is a matrix of the basis vectors of the subspace E n m− and it can be

written in a general form like:
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where the elements tij , for i = n - m + 1,...,n and j = 1,...,n - m, depend on matrix C. With
the introduced transformation, we can write system’s model in the sliding mode in the
following form:

mm ATxCCBBIxT ))(( 1−−= ,
i.e.,

mm RATxxT = , (8)

where the matrix ))(( 1CCBBIR −−=  do not depend on the elements of the matrix Am.
We can define an (n - m) × n matrix TL such that

]  ;[ ,mmnmnL −−= OIT
and

ITT =L  (9)

The matrix TL satisfying Eq. (9) is called the left inverse of T. After a multiplication
Eq. (8) by the matrix TL we get an explicit form of the matrix Am, i.e. the system model
in the form:

m
L

m RTxTx = . (10)

Applying Eq. (10) we get a sensitivity model in the sliding mode like:
m

efL
mmm TxRQTsAs += , (11)

where the matrix Qef has the form:
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The matrix denoted by 
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∂A  is then:
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After some matrix multiplication, because of their specific form, we obtain:
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The sensitivity model for the VSS in sliding mode motion, applied on the system with
scalar control action reduces to

1
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∂+= , (12)

where the matrix 
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∂ 1A  is given by
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with transformation matrix T in the form
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The model (12) corresponds to the model defined in (Mati} [4]). We can discuss the
obtained model with respect to the invariance conditions in VSS. From (11) it is clear that
the system is invariant with respect to the perturbation parameter (aef) if the condition

0TRQT =efL

is satisfied. The latest condition can be written in the form
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The matrix equation is defined if
m
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The vector Txm can be represented as a sum of vectors:
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where ti is i-th column of matrix T. Equations system (12) is linear and by the rule of
linear systems superposition

m
iief xtQBM = ,

we get solution for the complete system. A necessary and sufficient condition for a linear
system to have solution is given by Kronecker-Capelly theorem

BtQB rankrank ief =],[ . (13)

The latest condition can be interpreted in such way that it is necessary that the vector
Qef ti is a linear combination of the columns of the matrix B. Conclusion which has been
made here based on the sensitivity model is the same as conclusion made in [Dra`enovi}
[2]) for the case when the one parameter of the matrix A is changed.

4. CONCLUSION

In this paper is presented sensitivity model for variable structure systems with vector
control action. a special consideration has been made on so-called sliding mode. Until the
moment of switching first structure, sensitivity model is the same as sensitivity model for
linear systems. In the moments of structure switching discontinuity control functions are
those with the same index as nonzero rows of the matrix B. Sensitivity model is then
defined by equation (4). After the sliding mode is established, the sensitivity model has
been given by equation (7). Equation (13) gives the conditions for parametric invariant
systems in sliding mode motion, which are same as those in (Dra`enovi} [2]). For the
scalar control systems one can obtain the same results as in the paper (Mati} [4]). If we
consider varying parameter as disturbances, then the conclusion is: the necessary and
sufficient conditions for a parametric invariant system in sliding mode is that the vector b
is collinear with the disturbance vector (f-th column of matrix Qef).
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MODEL OSETLJIVOSTI ZA SISTEME PROMENLJIVE
STRUKTURE S VEKTORSKIM UPRAVLJANJEM

Č. Milosavljević, S. Lj. Rančić

U radu se razmatra osetljivost posebne klase sistema automatskog upravljanja - sistema
promenljive strukture. Definisan je model osetljivosti za sisteme s vektorskim upravljanjem i
ustanovljene su korelacije s poznatim rezultatima u pogledu uslova invarijantnosti u kliznom
režimu.


