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THE SHEAR STRESS DISTRIBUTION
OF UNSTEADY INCOMPRESSIBLE BOUNDARY LAYER
IN DIFFUSER REGION ON POROUS CONTOUR
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Abstract. Through the porous contour in pependicular direction, the fluid of the same
properties as incompressible fluid in basic flow, has been injected or ejected with
velocity which is a function of the contour longitudinal coordinate and time. The
corresponding equations of unsteady boundary layer, by introducing the appropriate
variable transformations, momentum and energy equations and two sets of similarity
parameters are transformed into generalized form. Generalized solutions obtained by
numerical integration in the three once localized approximation, are used to calculate
the laminar-turbulent transition based on zero skin friction criteria, and velocity
distribution of unsteady boundary layer in diffuser region on wing aerofoil when center
velocity changes with time as a degree function and when potential external velocity is
measured in free flight. In diffuser region, as well as for both the accelerating and
decelerating flows, the ejection of fluid increases the friction and postpones the
boundary layer separation, and vice versa the injection of fluid reduces the friction and
favours the separation of flow.

MATHEMATICAL MODEL AND GENERALIZED SIMILARITY EQUATION

Generalized similarity method [1,2,3], is exposed to the problem of unsteady
incompressible plane boundary layer on the porous surface [4,5,6,7,9], when the fluid of
the same properties as fluid in basic flow has been injected or ejected through the surface
in perpendicular direction with velocity v,. The mathematical model of the noticed
problem is described by the following equation:

W, +¥Y W+, -WYH¥, =U,+UU, +v¥ )

with boundary and initial conditions:
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y=0:¥ =‘P}, =0; y - ooz‘Py - U(x,t); t=t, :Wy =u(x,p); x=Xx :‘P}, =uy(t,y), (2)

where the following notations are used: W(x,y,f) - stream function, U(x,f) - free-stream
velocity, U - kinematic viscosity, u(x,y) - thestreamwise velocity distribution in boundary
layer in some determined point of time ¢ = #y, u(t,y) - the streamwise velocity distribution
in boundary layer in cross-section x =x,, x- streamwise coordinate, y - crosswise
coordinate, 7 - time. Introducing new variables in the form [3,6,7,8,9]:

xX=x, t=t, n= yUbO/Z(GOUIUbO_ldx)_I/z, (D(x,r],t) - l-IJUbO/z_l (GOUJ-UbO—ldx)—l/Z (3)
0 0

where ao=0,4408, by=5.714 [3], we transform the equation (1) to the new form.
Afterwards, we introduce the group of parameters:

Jew SUMUET, 2 (ky,n=0,1,2,..;k On #0)
i “)
Mew = =020 S0 222 (ke n=0,1,2,..)
as new independent variables, where:
Z7 =87/, 8 = (aOUU_b(‘IUb“_ldx)”zB, B=[®,(1-®,)dn. (5)
0 0
Now, previously transformed equation (1) is transformed to the new form:
BX® 0 +0.5(agB” + (2 fi,9]0Ppy + £ (1 =P+ /o, (1= @) +
(0.5nT™ +BA)PNn =nB”~' (3 CunBr,* 3 RinBy, )P *
k0 o
® (6)
{k ZO [Cksanfk,n + Aka”(q)ﬂq)ﬂfk,n - q)fk,nq)rm )] +
kOn#0
. ;0 [Rk,nqu])\ ke + Ek,n (q)r]q)r])\ ko - q))\k’n (Dr]r] )]} 5
with corresponding boundary conditions:
nN=0:®=®; n->ow: & -1 f =N, =0
n n 7

(k=0,1,..;k0n#0): ®=d(n)

where ®y(n) is Blausius's solution for the problem of flat plate. In the equation (6) the
following notations have been used:

Ay =k =D fiofint Simin TRkt fi, By Epy =k oA, A sy, T(k+n+0.5)A, , F;
Cin =k =Dforfin* finn T+ [, T5 R, =kfo Ny ¥ Ny F(k+n+05A, , T ®)

T=z; F=Uz,.
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In order to take the equation (6) universal, the multipliers F and 7 have to be
expressed by means of quantities which are explicit functions only of parameters (4). In
the determination of this functions, one can use the momentum and energy equations of
the considered problem:

Ud), +(U*™), +UU.8 ~-Uv, -1, /p=0;

(U?8™), +U’8  +U?(3, +38, U, —2ve) =0

where:

5 =L1/2I(1—¢q)dﬂ; T, = pUUb“/ZHL_”z(CDm)n:O;
0

(10)

oo o) X
5 = L1/2£¢n(1 ~®p)dn; e= L‘”zgtb,zmdn L= aouU‘bogubo‘ldx.

After certain transformations, the expressions for ™ and 7™ have been obtained as
universal, i.e. they do not depend on outer flow charasteristics. In the equation (6) the
velocity at outer border of boundary layer and its derivatives, as well as the ejection or
injection fluid velocity are not involved in explicit form, thus this equation can be called the
generalized i.e. universal equation. The universal boundary conditions have the form as (7).

APPROXIMATIVE UNIVERSAL EQUATION

The numerical integration of the equation (6), with the corresponding universal
boundary conditions (7), can be performed "once and forever" only for its approximative
form. It means, that the solution of universal equation in practice needs limitation of the
number of the independent variables. It leads to the necesity of application of the
"segment" method, in which all variables from someone have to be equal to zero. In such
a way, the approximative universal equation is obtained. Having the above procedure in
mind, the parameters f o, fo.1, Ao Will be remained, while all others will be let to be equal
to zero. Also, the derivative with respect to the first porous parameter Ay will be
considered as equal to zero. The equation (6) in these approximation i.e. in three
parametric "once localized" enviroment, has the form:

B*® 0 +0.5[agB> +(2=by) f1010P + f1(1=PR) + £y (1D) +
0.5n7" +Bho )Py, = nB_l[T**(fl,oBfL0 +f0,1Bf(U)_f02,1Bf0,| P, +
[T**(JII,OBW],O +f0,1q)rm“)‘foz,lq’qu1 +fl,oF**((Dn(brm0 P, Pyt
Joa(F™ = i) (@@ — @ @],

an

and the corresponding boundary conditions (7) are reduced to the following:
N=0:®=®,=0; N0 @ =1 fio=Fi;=h=0: P=Dy(n), (12)

where the functions 7" and F ", after the same approximation have the following forms:
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T = {2[2(1[1,01{1**/1'0 + fO,lHl**/‘OJ )+ H, 1L - 2fi0~ H**(fl,o + fo) " Aot fOZ,IH**fO,l 1+
+20fo1(2 - fioH 1o, "Joatly y 1HOH, . —4a;
(L™ 42 0H ) = foaH o MRCRGHT , + fogHy ) )+ H =11-117

F7=2{0=2f0=H" (fig * for 05T ) =Noo + fo Hy (fou =T ) =T" fioH b,
where is:

(13)

H™ =B [(1-®)dn=4/B; H =B [® (1-bp)dn; {=B(@y)n=os o =B[Ppdn -
0 0 0

The numerical integration of the equation (11) with boundary conditions (12) has
been performed by means of the difference schemes and by using Tridiagonal Algorithm
method with iterations.The obtained results can be used in the withdrawing of general
conclusions of boundary layer development and in calculation of particular problems.

UNSTEADY BOUNDARY LAYER ON POROUS WING AEROFOIL

Universal solutions of the equation (11) ®'(0), 4, B are used to calculate the
charasteristic properties of unsteady boundary layer on wing aerofoil whose center
velocity changes with time as a degree function. Substituting nondimensional

coordinates: ¥ =x/I and 7 =Ut/l, where is [-chord and U,- endlessly velocity,
nondimensional potentional external velocity becomes:

U(E.1)=0,(D)0(%) = (B + AT")U,(3) (14)
with constant values for 4,B,n. The Figure shows potential external velocity U, (%)=

U/Uwon wing aerofoil measured by J.Stueper in free flight [10], where lift coefficient is
¢1 = 0.4, Reynolds number R = 400° and chord / = 1800 mm. Substituting (14) in (4),(5)
yields the following relations for the universal functions:

ho! B =aU™0.0:  fo,/B% =aU""7U,0;

- CS (15)
Moo/ B=v,(aQ/0U)"?; 0 =[U"dx.
0

Using (3) and (13) the expression for the dimensionless skin friction T,, has the form
T, =21,R" (pU2) =20 7" (ay fUM )2 07 (0) (16)
0

With obtained universal quantities 4 and B one can determine on a same previous
way the expressions for dimensionless displacement thickness & and dimensionless
momentum thickness 8. Now, we select a given set of the constants 4,B,n and for
particular point on contour X, and time7 searching by (15) the obtained universal
functions (f; /B0, (fo.1/B”)e, (No.o/B)o, concerning [D"(0)]o, Ao, By for different values of
porous parameter Aqo. Afterwards, using (16) one can determine %, distribution on
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contour. Preliminary calculations of expressions (15) and (16) have been made for:
A=%1;B=1; n=3; 7=0.0, 0.1; Agp= 0.0, +0.2. For all n values sufficient universal
quantities could be found to cover the contour of wing aerofoil, and it means that
%,,5,8" can be calculated for all variations of contour accelerating and decelerating
through the fluid. It was not the case in reference [9] in which there were no porous
parameter, and where the universal solutions are obtained using the approximative
momentum and energy equation, so it was reason why we considered only very slow
cylinder accelerating and decelerating.
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Fig. 1. Graphical presentation of the stress distribution
of unsteady layer on porous wing aerofoil

For determination of the nondimensional streamwise velocity distibution #(¥,7) in

some boundary layer cross-section %, and for time 7,, one can use the relation:
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U(Xy,ty) _ 0 -~ -~ -~
=2 = PN £ (R )3 fo1 (Fos 10)i o0 (Fos 1), a7

U(xXo,%) 0N
where 0®/0n is universal solution obtained from numerical integration of equation (11).
There are the distributions of velocities in different cross-sections of porous contour, i.e.
for ¥/1 =0.62; 0.73; (see Fig.) when porous parameter is Aoo=—0.2; 0.0; 0.2. In diffuser
region for both the accelerating and decelerating flows and also for ejection and injection,
velocity distribution receives the ridge point, so it is beginning the laminar-turbulent
transition.

For controling the boundary layer separation point, shear stress and drag, the
expression for nondimensional ejection and injection velocity distribution v, can be

applicable in form:
-1/2

1 b N
v, = AgoB T (WU™)2 EUOIU”O“JJFE (18)
0

obtained by (4) for k = n =0, from which for wanted separation point X, in time 7,, one
can determine the needful value for v, . In that way we can control the boundary layer

separation.

It's found that for both in cofuser and in diffuser contour regions the accelerating
flow (4= 1) increases the shear stress and postpones the separation of boundary layer i.e.
laminar-turbulent transition section, and vice versa the decelerating flow reduces the
shear stress and favours the separation of flow. It can be noted that the unsteady
parameter has a significant influence on a shear stress distribution and especially on the
laminar-turbulent transition location obtained by zero skin friction criteria. When this
parameter is increasing (7 = 0.1; 0.2) the shear stress magnitude is increasing on whole
contour and the separation point is removing along the surface. It means, that the
acceleration leads to the postponing of the boundary layer in diffuser region from 73.8%
for steady flow i.e.7 = 0.0 to the 78.7% of contour for 7 = 0.1, and it is when there are no
fluid injection or ejection through the porous contour. It is important fact, because the
achivement of laminar flow on 73.8%—78.7% of contour significantly reduce the contour
drag. The decelerating flow (4 =—1) favours the occurring of the separation and for
steady flow the separation is occurring at lower contour values i.e. on 72.2% of contour
for 7 =0.1, also when there is no fluid injection and ejection. As well as for both the
accelerating and decelerating flows, the ejection of fluid increases the shear stress,
especially in confuser region about stagnation point, where shear stress is dramatically
increased in time. It's not good for drag, so one can control this great shear stress with
fluid injection, when his value is noticeably reduction. Also, the ejection of fluid
postpones the boundary layer separation, and vice versa the injection of fluid reduces the
shear stress and favours the flow separation. The great fluid ejection, i.e. when the porous
parameter is Aqo = 0.2, leads to the postponong of separation to 81.4% of contour for
7 =0.1. And for a great fluid injection (A¢o = —0.2) the separation is occurring at lower
contour values, about 63% of contour for a decelerating flow and for 7 = 0.1
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RASPODELA SMICUCEG GRANICNOG ODVAJAJUCEG
NAPONA NESTACIONARNOG NESTISLJIVOG GRANICNOG
SLOJA U OBLASTI DIFUZORA NA POROZNOJ KONTURI

Decan Ivanovié

Kroz poroznu konturu u normalnom pravcu, fluid istih svojstava kao nestisljivi fluid u
osnovnom toku se ubrizgava ili izbrizgava brzinom koja je funkcija uzduzne koordinate konture i
vremena. Odgovarajuce jednacine nestacionarnog granicnog sloja transformisu se u
generalizovani oblik uvodenjem odgovarajuce transformacije promenljivih jednacina momenta i
energije i skupa parametara slicnosti. Generalizovana resenja dobijena numerickom integracijom
u lokalnoj aproksimaciji, koriste se za izracunavanje laminarno-turbulentnog prelaza zasnovanog
na zeko skin funkciji kriterijuma, a raspodela brzine nestacionarnog gramicnog sloja u oblasti
difuzora na krilu aerofol kada se centralna brzina menja sa vremenom kao stepena funkcija i kada
se rotacijalna spoljasnja brzina meri pri slobodnom letu. U oblasti difuzora, kao i pri ubrzanom i
usporenom toku, izbrizgavanje fluida povecava trenje i odlaze separaciju granicnog sloja i
obrnuto, ubrizgavanje fluida smanjuje trenje i ubrzava razdvajanje toka.



