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Abstract. Longitudinal creep vibrations of a fractional derivative rheological rod with
variable cross section are examined. Partial differential equation and particular
solutions for the case of natural creep longitudinal vibrations of the rod of creep
material of a fractional derivative order is accomplished. For the case of natural creep
vibrations, eigenfunction and time-function, for different examples of boundary
conditions are determined. Different boundary conditions are analyzed and series of
eigenvalues and natural circular frequencies of longitudinal creep vibrations, as well
as tables of these values are completed. By using MathCad a graphical presentation of
the time-function is presented.
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I INTRODUCTION

Mechanics of hereditary medium (material) is presented in scientific literature
by the array of fundamental monographs and papers [8], [9], [28], [30], [31], [32] and
[34] and is widely used in engineering analyses of strength and deformability of
constructions made of new construction materials. This field of mechanics is being
intensively developed and filled up with new research monographs [28] and [9].
Actuality of that direction of development of mechanics is conditioned by engineering
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practice with utilizing the new construction materials on synthetic base, the mechanical
properties of which often have pointed creep rheological character [32].

Nowadays proportion of utilization of these materials can be compared with size of
using the metals. New construction materials possess both high strength and different
useful physical characteristics as: dielectric's properties, radio conductivity,
transparentness, high deformability and low (small) weight are, that make them
irreplaceable in many cases. Successes of chemistry are enabling production of new
synthetic materials with ordered properties [32].
theory of longitudinal oscillations of homogeneous rods and beams, and in [24] we can
find mathematical theory of corresponding partial differential equations. R.E.D Bishop's
paper [5] contain some results on longitudinal waves in beams and the paper [6] by
Coehen H.and Whitman A.B. present research concerning waves in elastic rods. The
effect of an arbitrarily mass on the longitudinal vibrations of a bar is investigated by
M.A. Cutchins [10].

A series of papers [15, 16, 17], by K.S. Hedrih and A. Filipovski, presents results of
original research on nonlinear oscillations of longitudinal vibrations of an elastic and
rheological rod with variable cross section, which has application in engineering systems
such as ultrasonic transducers, and ultrasonic concentrator (see Ref. [1]). Paper by L. G.
Merkulov [26] contain method for numerical processing of the vibration state of the
ultrasonic concentrator in the form of a rod with variable cross section.

Two paper [20, 21] by K.S.Hedrih present results on transversal vibrations of
prismatic beam of hereditary material. Papers [23] and [19] contain some models of
discrete continuum with hereditary light standard element as the constrants and with light
standard creep element as constraints of the fractional derivatives in the behavior of
materials. Standard hereditary element is constraint in the systems which are investigated
and described in the papers [18] and [22]. P.O. Agrawal presented paper [2] about a new
Largangian and a new Lagrange equation of motion for fractionally damped systems.

II FUNDAMENTALS OF MECHANICS OF CREEP AND HEREDITARY SYSTEMS

In present literature notion hereditary elasticity and viscose-elasticity are equivalent.
J.M. Rabotnov (IO M. PabotHoB) [28], being conducted via papers of V. Volter (V.
Volter), believes that notion hereditary elasticity is more exact and a better description of
the essence of the phenomenon. This term expresses the ability of rheological body to
specifically "remember" history of loading (stretching). Viscose-elastic body possesses
the particularity of deforming [9], [34], [25]:

For the short-time-loading, fast form (shape) reconstruction of the body form after
unload occurs;

for the long-time-loading, establishing of the form (shape) needs necessary long-time-
period after unloading, i.e. viscous-elastic bodies "remember" ("memorize"), which
reflexes in term "hereditary elasticity".

More or less, all solid bodies practically hold hereditary properties [28], [30]; and [9].
For example, forced by long-time-loading (period of many years), steel spring changes
the length (wearing, fatigue), and after unloading it regains the former length in the time
period that is calculable with loading period. These advents are known for practitioners
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which put heavy tracks for durable storage (conservation) on stiff supports to unload
springs. In this specified example, recording hereditary properties requires many hours of
measurement for investigation. For viscous-elastic synthetic materials, as rubber or
polymers-threads, manifestation time for hereditary properties is measured by second and
minutes.

Thus, not less then other theories, as it was shown in ref. [28], [30], hereditary theory
is relevant for describing internal friction, even in metals with small stress-amplitudes.

Material laws and constitutive theories are the fundamental bases for describing the
mehanical behavior of materials under multiaxual states of stress involving creep and
creep rupture (see J. Betten's Ref. [4]). In creep mechanics one can differentiate between
three stages: the primary, secondary and tertiary creep stage [4]. These terms correspond
to a decreasing, constant and increasing creep strain-rate, respectively. In order to
describe the creep behavior of metals in the primary stage, tensorial nonlinear
constitutive equations involving the strain-hardering hypothesis are proposed.

III MODEL OF CREEP RHELOGICAL BODY

For modeling processes of solidification and relaxation, models of Kelvin's viscous-
elastic material and Maxwell's ideal-elastic-viscous fluid, [31], [9], [12] and [13], are
being used. In their paper, [8], A. O. Goroshko and N. P. Puchko, have used model of
standard hereditary body to modeling dynamics of mechanical systems with rheological
links. Studying elements of mechanics of hereditary systems in their monograph [31], G.
N. Savin. and Yu.Ya. Ruschisky, gave survey of both structure and analysis of the
rheological models of simple and complex laws for linear deformable hereditary-elastic
media, as well as theory of growing old of hereditary-elastics systems. Rheological
models can be found in R. Stojanovic's monograph [33], as in the university's
publications [12] and [13] from K. (Stevanovi¢) Hedrih, and in the monograph [9] by A.
O. Goroshko and K.S. Herdrih.

Recently, there is a noticable interest in using fractional derivatives to describe creep
behavior of material. In solid mechanics particularly for describing problems related to
material creep behavior including viscoelastic and viscoplastic effects, fractional
derivatives have a longer history (see Ref. [35], [3], [11], [23]). Mathematical basis of the
fractional derivative and short complete of fractional calculus are presented in the
monograph papar [7] by R. Gorenflo and F. Mainardi.

Paper [11] by Dli Gen-guo, Zhu Zheng-you and Cheng Chanh-jun contain the
consideration of dynamical stability of viscoelastic column with fractional derivative
constitutive relation. Paper [3] by B.S. Basli¢ and T. M. Atanackovi¢ considered stability
and creep of a fractional derivative order viscoelastic rod.

By using stress-strain relation from cited refernces, a single-axis stress state of the
creep hereditary type material is described by fractional order time derivative differential
relation in the form of three parameter model:

o(t) =—{Ee(t) + E, D/ [e(0)]} (1

where ®[e]is operator of fractional derivative - the o™ derivative of strain &(f) with
respect to time ¢ in the following form:
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d* s(t) £l0) dt &1
DI [e(1)] = <>—m_a) o

2

where E, and E, are instant and prolonged elasticity modulus, respectively, while O is
relaxation parameter, ratio number from interval 0 <o <1, and I'(1-o) is Euler gama
function. We shall use relation (2) only for > 0.

IV LONGITUDINAL CREEP VIBRATIONS EQUATION OF A FRACTIONAL DERIVATIVE ORDER
RHEOLOGICAL ROD WITH VARIABLE CROSS SECTION

i L Consider a deformable rod of a fractional derivative
order with variable cross section, whose axis is straight.

Figure 1. shows an element of the rod of variable
cross section A(z), where z is axis's length coordinate of
the rod. Normal force acting on the cross section at the
distance z measured from left side of the rod is:

Fig. 1. An element of the rod N(z,t) = A(2)0.(z,1) 3)

of variable cross section o ) ) ) )
while it's value in cross section on distance z + dz is:

N(z+dz,t) = A(z)0,(z,t) + ai[A(z)O'Z (z,0)]dz 4)
Z

where ¢ is time, and G,(z.f) is normal stress in the points of cross section that is, according
to introduced assumption, invariable on the cross-section. Moreover deplaning of cross
section are neglected considering that all points have the same axial displacement
determined by coordinate w(z,z).

According to the D'Alambert's principle following equation could be written for
dynamical equilibrium of forces acting on rod's element:

=—N(z,0)+ N(z+dz,t)+q(z,t)A(z)dz = ON(z.0) —2 2 dz+q(z,0)A(z)dz  (5)
0z

0d(z)dz 220 azw(z 1)
ot

where p is rod material's density, and ¢(z,f) is distributed volume force. Substituting
expression (1) into equation (3) leads to:

Pw(zt) 1
ot*  pA(z) 0z

We assume that rod is made of creep rheological material and therefore the stress-
strain-state equation written in the form (1).
Taking that strain in axis's direction of rod is:
ow(z, t)
oz

previous stress-strain-state relation (1) can be written in following form as:

rA(Z)G (z.0]= Eq(zat) (6)

ez( t)_ (7)
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0.z = £y D E@S[—aw(z’ d )] ®)

oz

Introducing previous fractional derivative stress-strain relation into equilibrium's
equation (6), following fractional derivative-partial-differential equation can be gotten:

M_ 1 i[ aW(Z,t):|_ 1 i a[aw(z,’c):| 1
a>  pA(z) oz Eod@=—3— T AG) o Eq A(2)¢ | — +pq(z,t) 9)

If we mark 2 _Eo and 2= Eq than previous equation gets the following form:

L Pz L mien) Lo agfoll, Ly o
cg o A(z) 0z |:A() oz _cg A(z) oz A oz +E q(z,0)- (10)

V NATURAL LONGITUDINAL CREEP VIBRATIONS OF A FRACTIONAL DERIVATIVE ORDER
RHEOLOGICAL ROD WITH VARIABLE CROSS SECTION

Solution of the following fractional derivative-partial-differential equation:

1 °w(z,0) 1 [ aw(zl)] 1 9 a|:aw(z,t):|
2 or  ame? 2 A | ¥ T (1

can be looked for Bernoulli's method of particular integrals in the form of multiplication
of two functions, from which the first Z(z) depends only on space coordinate z, and the
second is time function 7(¢):

w(z,t) = Z(z)T(¢) (12)
Assumed solution is introduced in previous equation bringing to the following expression:

2
c_Z( )T(r)———[A(z)Z 70 == ]

z 13
yErs Syt L ezeeireon  13)

Introducing the constant o =k’c; it is easy to share previous equation on following
two:

* first, a second order differential equation on unknown eigenfunction Z(z) of space
coordinate z, with variable coefficients :

A(2)

Z'(z)+ )Z( 2 +k*Z(2)=0 (14)

and * second, fractional-differential equation on unknown time-function 7(¢):

T(t)+ 0T (1) = —0g DT (1)] (15)
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or in the form:
T(t)+ 02 DT (1)]+ 03T (1) =0 (15.a)
Both equations can be solved independently. These are connected only with

characteristic coupled constants w3 =k*c?. The first differential equation (14), can be, in

some cases, solved for characteristically specified function of variation of cross section of
the rod. As it was solved in ref. [10] for different cases of functions of variation of cross
section, in following, we will recall the outcomes from that paper.

VI THE TIME-FUNCTION SOLUTION OF A FRACTIONAL DIFERENTIAL EQUATION

The second, fractional-differential equation on unknown time-function 7 (t) we can
rewrite in the following form:

T(t)+ o, T () + g T(t) =0 (15.b)

This fractional-differential equation (15*) on unknown time-function 7(¢), can be
solved applying Laplace transforms (see Ref. [29] and [33]). Upon that fact Laplace
transform of solution is in form:

2(p) = 217 = — OO (16)
P wé{l +°";R(p)}
g
where £[®[T(¢)]]= R(p)Q[T(¢)] is Laplace transform of a fractional derivative LZ;(I) for
dt
0<a<1. For creep rheological material those Laplace transforms are in the form:
d a-1 o-1
LD TO)]]1=R(P)LT(N]-——T(0) = p*T (O] -——T(0) (17)
dt dt
where the initial initial value are:
o1
% =0 (17a)
dt =0

So, in that case Laplace transform of time-function is given by following expression:

pTy "‘To

[p2 +0\)0%poc +(1)§]

LT @)} = (18)

For boundary cases, when material parameters o take following values: o.=0 and
o =1 we have the two special simple cases, whose corresponding fractional-differential
equations and solutions are known. In these cases fractional-differential equations are:
1* 7+ T @)+ wir@) =0, fora=0, (19)
where 79 (1) = T(¢), and
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2* Ty + ol TV (0)+ T (6) =0, for o =1 (20)

where TV (1) =T(1) .

The solutions of equations (19) and (20) are:

T,
1* T(t) = Ty costy of + ®f +———2—sin /@] + @, (21)
() 0 0 0 m 0 0

_oi, e T o’
2%a. T(t)=e 2 {T, costy|®f —— + ——2——sint,| @) ——— (22)
4 o 4
Q)O—T

for oo =1, and for @, >%0)12 (for soft creep) or for strong creep:

o, 4 7 4
2¥b.T() =e 2 AT,Cht;| b — R +—L—Sh 1|2 — 2 (23)
\ 2 o \ 2
O _ @2
4

for .= 1, and for w, <%m12.

for o= 0.

For critical case:
_o ; 1
2%c. T(t)=e 2 Z{TO +2i20;} for a=1 and for o, = 5(012 (24)
o
Fractional-differential equation (15. b*) for the general case, when o is real number
from interval 0 < o < 1 can be solved by using Laplace's transformation. By using that is:

o o1
2{%}1?“290)}—% = p (T} (25)

t=0

o—

and by introducing initial conditions of fractional derivatives in the form (17.a), and after
taking Laplace's transform of the equation (15. b) we obtain the following.

By analysing previous Laplace transform (18) of solution we can conclude that we
can consider two cases.

For the case when co(z) #0, the Laplace transform solution can be developed into

series by following way:

pTO +TO i\ 1 1 (26)

=T, +

o; o] {0 PJP o2 o}

p? 1+— pa+—g 1+—- Pa"'*z
p ® p

o

T} =
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k 2k 2 ¥
2{T(t)}=[TO ] 2( Do (;;%‘”—3} 27)
p @,
T = (—] k (kY p% @l
2{T(t>}=(To le( Yo 2( P2 (28)
P P k=0 p j=o\ J w,’

In writing (28) it is assumed that expanssion leads to convergent series [7, 4]. The
inverse Laplace transform of previous Laplace transform of solution (26) in term-by-term
steps is based on known theorem, and yield to following solution of differential equation
(15. b) of time function in the following form of time series:

k 2]t—0!J
T 9_1 T T 1 k Zk 2/(
) =€{T()} = oZ( ) o, j%( j msz(2k+1—(Xj) (29)
k /Y
7 N 2k 2k+ ¢
+ 02( ) o Z(L 0,/ T2k +2 - 0y)

T(t)=¢" {T(r)}—2< 1)"0)2%2"20("}“’2“ [ To Tyt } (30)
()

or

Tk +1—-aj)  TQk+2-0p)

Two special cases of the solution for @} =0 are:

T(t)=T0cos(7)0t+f—°sin(7)0t fora=0and wj =0. 31
0

T, .
T(t) =Ty +-%(1-¢™") fora=1and o} =0. (32)
(01
For the case m(z) =0 and when o is real number from interval 0 <o <1 we can write
following Laplace transform of solution:
ey - 20D (33)
[p*+

2
®,p”]

and corresponding expasion into convergente series

B 1 2= 1)k 2k
Q{T(t)}_(To , Jp %W. (34)

Taking the inverse Laplace transform of (34) we obtain the general solution of time
function corresponding to fractional differential equation (15.b) for the case w? =0 and

0 <o <1 in following form:

ol 2k 2k, (2mo)k Ty Tyt
rn=*2 {T(”}‘EJ D7 ot |:F(2k+1—(xk)+1"(2k+2—0ck):| (33)
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In Figure 2. numerical simulations and graphical presentation of the solution (30) of
the fractional-differential equation (15.b) of the system are presented. Time functions
T(t,o0) surfaces for different rod (beam) longitudinal vibrations kinetic and creep material
parameters in the space (7(z,0),t,00) for interval 0 < a0 < 1 are visible:

in a* for Do =1; in b* for Do =l; in ¢* for Do =l; in d* for Do =3.
O)Ox wa 4 wa 3 wa

\\‘
yu\\“« \

U
i

T
'

Fig. 2. Numerical simulations and graphical presentation of the results. Time functions

T(t,0.) surface for the different beam transversal vibrations kinetic and creep
material parameters:

a* _1; b* Lo (O |21 d¥ | Pox |3
O*)Ox O‘)Ox 4 [ 3 w()x

In Figure 3. the time functions 7(¢,cr) surfaces and curves families for the different
rod (beam) longitudinal vibrations kinetic and discrete values of the creep material

parameters 0 < o < | are presented. In Figures a* and ¢* for [m;‘“
o

J: 1; in Figures b* and

d* for (m&]: l; in Figure e* for (Q&Jz %; and in Figure f* for (m&)=3.
W, 4

O, Wy
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q\“\i}\\\ \\\\\\
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e # t
WU 1
\/ \/

e¥ f*

Fig. 3. Numerical simulations and graphical presentation of the results. Time functions
T(t,o0) surface and curves families for the different beam transversal vibrations
kinetic and discrete values of the creep material parameters 0 < a < 1:

a* and e* | Qo =1;b*and d* Qo :l;e* Do :l;f* Do =3.
wa mOx 4 O*)Ox 3 ('OOx
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VII BOUNDARY CONDITIONS FOR DIFFERENT CASES ROD FORMS

In order to determine characteristic numbers of =k’c; and o} =k’c; for different

cases of boundary conditions of the rod of variable cross section that vibrate
longitudinally, stresses and displacements of boundary cross sections would be expressed
in dependence on eigenfunction and time-function.

Axial displacements of the ends of the rod are:

w(0,8) = Z(O)T(£) , w(l,t) = Z(O)T (1) . (36)

Normal stress in interior cross sections is:

6. (2,1) = Z/(ET (1) + E, DT (O] = —— E,Z () (1) - (37)
®y

Therefore in left and right base-cross-section it will be:

6.(0,0)= Z'(O)[ E,T () + E, DT (1)]] = —éEOZ'(O)f(t) (38)
0

o, (1,0)=Z'(OE (1) + E,DT(1)]]= —#Eoz'(f)f(t) (39)
0

Example I: Eigenvalue equation, eigenfunctions of conical-shape rod.

Following Figure 4. shows the rod of variable cross
section A(z), of length ¢, with geometrical axis z , and with
diameters D; and D, at the left and right bound
respectively.

Let, diameter of cross section d(z) changes according
to expression:

Fig. 4. The rod of variable

cross section A(z). dz)=Di(1 - 0z) (40)

where o is parameter:

a:l{l—(&ﬂ:l[l—N] (41)
¢ D | ¢

For this case, taking in account differential equation (14), eigenfunction is:
Z(z)= L(Cl coskz + C, sinkz) (42)
l—az
If we consider rod with free ends, stresses on these free boundary bases must be equal
to zero and therefore boundary conditions can be written in the form:
c6.(0,0=0 Z'(0)=0

(43)
6.(L,H=0 Z'(()=0



338 K. (STEVANOVIC) HEDRIH, A. FILIPOVSKI

For boundary conditions defined with above relations, eigenvalue equation can be
written in the form of determinant:

k

A(kl) = =0
a—k(l-ol)tgkt oughkl+k(1—or)

(44)
When relation between diameters of end of the rod N = D,/D, is taken into account,

eigenvalue equation, introducing non-dimensional number & = k¢, can be written in the
form of transcendental equation:

tggzﬁzNL (45)
T +1

whose roots (eigenvalues) were given in Table 1.

Table 1. Eigenvalues of eigenvalue equation for the rod with free ends.

N 0 0.01 {0.02 {0.06]0.08] 0.1 |02]03]04(05]06]07]|08]09]10
E1| 4.493|4.448|4.403]|4.230(4.148(4.070| 3.749| 3.529| 3.383(3.286( 3.222| 3.181| 3.157(3.145| =

Ex| 7.725|7.648|7.572|7.290(7.169( 7.062| 6.702] 6.520] 6.420( 6.360| 6.325| 6.303]| 6.291( 6.285( 2w
&3] 10.90{10.79(10.69/10.32] 10.18| 10.06{9.732|9.591| 9.518]9.477| 9.453|9.438| 9.430| 9.426| 3m
€ 4| 14.07(13.93|13.79(13.36] 13.21| 13.10{ 11.81| 11.69[ 11.64| 11.61| 11.59( 11.58| 11.57| 11.57| 4n

Table 2. Eigenvalues for the cantilever rod with exponential shape

N | 0.01 |0.02]0.04]0.06(0.08] 0.1 | 02]|03]041]05([06]07]08]|09]1.0
E1| 1.624| 1.562( 1.484| 1.429( 1.385] 1.347| 1.202( 1.093| 1.000{ 1.918] 1.841| 1.770( 1.701| 1.635

Ex| 5.417| 5.344] 5.261| 5.208( 5.167| 5.134| 5.022( 4.951| 4.897| 4.854| 4.818| 4.787( 4.759| 4.735

kn/2
&3] 8.358( 8.295( 8.227| 8.185] 8.154| 8.130( 8.051| 8.003| 7.968| 7.941| 7.918| 7.899] 7.882| 7.867

& 4| 11.380{11.328(11.274|11.241]11.217|11.198(11.139| 11.104| 11.078| 11.058| 11.042( 11.028| 11.016| 11.005

Eigenfunctions take following form:

7 ()=S0 cosk 2= Lsink z |:n=12,.. (46)
n l—az n k n

n

Amplitude magnification factor on n-th eigenvalue can be defined with relation
between values of eigenfunctions at the ends of the rod:

Z,(0)
le (O)

! cosk, ! —&sinknﬁ cn=12,.. 47)
1—ol k

n
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Example II: Eigenvalue equation, eigenfunctions of exponential-shape rod

We consider the rod of exponential shape whose length is ¢, geometrical axis z and
with diameters D, and D, at the left and right bound. Cross section diameter d(z) changes
according to expression:

Table 3. Eigenvalues for the exponential shape cantilever rod with weight on the free end

W =0.4 w=1.0 W =38.0

S 1 & | & | & [ & [|& |& |& | &

0.01 ]3.521]6.564 [ 9.655[3.261 | 6.639 | 9.513 | 3.152 | 6.294 [ 9.433
0.02 ]3.595]6.607 [ 9.664 [ 3.289 | 6.405 | 9.518 | 3.154 | 6.295 [ 9.434
0.03 ]13.638]6.619 [9.669 [ 3.308 | 6.411 ] 9.520 | 3.155 [ 6.295 [ 9.434
0.04 10.318 | 3.668 [ 6.627 [ 3.322 | 6.415]9.522 | 3.157 | 6.296 [ 9.434
0.05 10.738 | 3.689 [ 6.663 | 3.334 | 6.418 | 9.522 | 3.159 [ 6.296 [ 9.434
0.06 10.927]3.707 | 6.637 [ 3.344 | 6.421 | 9.524 | 3.160 | 6.297 [ 9.435
0.07 11.045]3.719 [ 6.640 [ 3.353 | 6.423 | 9.525 | 3.160 | 6.297 [ 9.435
0.08 ]1.128 ] 3.730 | 6.643 [ 3.360 | 6.425 | 9.525 | 3.161 | 6.297 [ 9.435
0.09 11.189]3.734 | 6.645 [ 3.366 | 6.426 | 9.526 | 3.162 | 6.297 [ 9.435
0.10 ]1.236 | 3.745 | 6.646 [ 3.372 | 6.427 | 9.526 | 3.163 | 6.297 [ 9.435
0.20 ]11.41313.776 | 6.654 [ 1.198 | 3.406 | 6.434 | 3.167 | 6.298 [ 9.435
0.30 ]1.433]3.780 | 6.655 [ 0.749 | 3.420 | 6.436 | 3.169 | 6.299 [ 9.435
0.40 11.416|3.777 [ 6.653 [ 0.892 | 3.427 | 6.438 | 3.171 | 6.299 [ 9.435
0.50 ] 1.382]3.770 | 6.652 [ 0.946 | 3.430 | 6.438 | 3.172 | 6.299 [ 9.435
0.60 ]1.341]3.763 | 6.650 [ 0.960 | 3.431 | 6.438 | 3.172 | 6.299 [ 9.435
0.70 11.296 | 3.755 | 6.649 [ 0.952 | 3.431 | 6.438 |1 0.904 | 3.173 [ 6.308
0.80 |1.2473.747 [ 6.647 [ 0.931 | 3.430 | 6.438 | 0.265 | 3.173 [ 6.300
0.90 ]1.196 | 3.740 [ 6.645 | 0.899 | 3.428 | 6.438 | 0.310 | 3.173 [ 6.300
1.00 | 1.142 | 3.732 | 6.643 | 0.860 | 3.425 | 6.437 [ 0.311 | 3.173 | 6.300

N

d(z) =D, (48)
where
5=Lm 2L |=_Lyn (49)
¢ | D, ‘
and eigenfunction is:
Z(z) =% (C, cosk’z+ C, sink’z), (50)

where k'=~+k*-67 .
For the case of cantilever rod, boundary conditions are:

w(0,£)=0 Z(0)=0

(51)
. (L,1)=0Z'(¢)=0
and with non-dimensional number: & =&’/ , eigenvalue equation takes form:
g = 2= (52)

_§: InN
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and eigenfunctions take form

(53)

Z,(z)=C,e¥ sink, z
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Boundary conditions for cantilever rod with weight (mass M,) on the free end can be

written:
w(0,6)=0, Z(0)=0

2
[EA(K)%_:V] ) {Mz aazzw ]
z=l

where we wrote: |1, =M, /p4,{ , and got eigenvalue equation:

LZ'(0) = ok 0Z(0) (54)
z=l

, , 8207 ) 8¢
ctgl =, &+ —— |-—> (55)
Eigenfunctions take the form:
Z,(2)=C,e%sink,z ;n=12,..0. (56)

Eigenvalues for the exponential shape cantilever rod with weight on the free end
where is given in Table 3.

Example III: Eigenvalue equation, eigenfunctions of catenary shape rod

As in previous cases we consider oscillatory characteristics of rod of length ¢, with
geometrical axis z, with diameters D; and D, of the cross section but with catenary law of
change the diameter of cross section:

d(z)=D,Chy(l —z) (57)
where 7 is denoted as:
1 D 1 1

= — ArChl =~ |=— ArChH — 58

yzr(Dszr(NJ G
Eigenfunction has the form :
Z(z) = ;(Cl cosk’z+C, sink’z), (59)
Chy(l -z)

where: ;7 _ /kz_yz '

Boundary conditions for the rod with weights at the free ends are given in the form:
s Z/(0)=—p,k>0Z(0)

ow _ 92w
pogz] ] o

2
] e
z=/

Denoting as non-dimensional mass factor y, =M, /p4;¢, (i=1,2) eigenvalue equation
can be written in the form:

I AGEITN VA

z=(
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i (W +R)IKD? +(r0)* ]+ Ytk 3k 61)
(K0 (o207 = 1)+ o ¥ [(0) + 2060021+ 1, [(K 0 + () ehytyye

Eigenfunctions are in the following form:

12,52 2,2
Z,(2)= Gy cosk)z — Yh,hw+},t1 k't ,+Y ‘ sinkl,zp; n=12,.0 (62)
Chy(l—z) k,t k,?

Amplitude magnification factor on the n-th eigenvalue is:

1252 242
= Chyﬁ{cosk;f—liyiéhzf +u1[k” fk'-'_fy ! ﬂsinkﬂ} ; (63)

Z,(0)
Z,(0)

VIII THE FINAL EXPRESSION OF THE SOLUTIONS

From transcendent eigenvalue (characteristic) equation we can find roots set &,,
n=1,234,.. (see Table 1,2,3) and eigenvalues k,=¢&,/(, n=1,2,3,4,... of the longitudinal
vibrations of the rod with changeable cross section for chosen boundary conditions. By
using these eigenvalues we obtain: a* eigen frequency values or chracteristic kinetic

2
parameters of the free creep longitudinal vibrations ¢? = k2ck =§—363’ n=1234,.., and
on n é

2
o, =k2c2 =21ck 0<a<l, = 1,2,3.4,...; b* set of eigen orthogonal functions Z,(z),

on n-o 2

n=123,4,.. and c* set of the time functions 7,(¢), n=1,2,3,4,... . Than we can write set of
particular solutions in the form:

w,(z,t)=Z,(2)T (1), n=1234... (A)

each one of which satisfies the boundary conditions. Generalized family solutions
which satisfies the boundary conditions is:

W(z0 = 22, ()T ,(0) (A%)
n=1
For different cases of parameter 0 < o < 1, time functions are in the following forms:
1* for ¢ =0
T,(t) = Ty, costy @3, + 02, +T0—”sintﬂmén +ap, > n=1234.. (64)

2 ~2
(‘OOn + ('00}1

2* a. for o.=1 and for w,, > %u)lzn, n=123.4.... (for soft creep)

o , 4 ; , 4
- 0} T . ) =
T,,(t)ze 2 TOn cost (Dgn_ 4I.n + On y sint u)én_ ;n s n 1,2,3,4.... (65)
2 Wy,
o, —
V 4
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or 2% b. for e =1 and for w,, < %mfn , n=1,23,4.... (for strong creep)

T,()=e EX Ty, Ch )2t O, A SR TR
mln
wOn

‘”m w2 b n=1234.. (66)

1 .
2* ¢. For o, = 50)12” , n=1234..... (for critical case):

(,l)| .
T,(t)=e 2 {T0n+2T%z} for o =1. (67)

1n

3*ForO<a<l1

o _ Fatk kY \wzjfw{ Ty, Tyt
T,() =T, (1)} = kZO( "o j_{) o | Tk aj)+F(2k+2 o |. %)

n=1234..

Two special cases of the solution for wén =0 are:

T,()=T,, for =0 and @, =0. (69)

T (0) =Ty, +22(1— ™) for a=1 and o, =0. (70)
In
Sets of eigen orthogonal functions Z,(z), n=12,3,4.... are in following forms:
a* Eigenfunctions of conical rod with free ends take following form:

Z,(2)= lfzz[cosknz—k&sinknz}n: 1,2,... (71)

n
b* Eigenfunctions of exponential-shape rod, for the case of cantilever rod, take form:
Z,(2)=C,e% sink, z

¢* Eigenfunctions of exponential-shape rod, for the case of cantilever rod with weight
on the free end takes the form:

Z,(2)=C,e%sinkz ;n=12,.0. (72)

Eigenvalues for the exponential shape cantilever rod with weight on the free end are
given in Table 3.

d* Eigenfunctions of catenary shape rod, and boundary conditions for the rod with
weights at the free ends

122 22
Z”(z)—C— cosk) z— th +1, L :i-Y ! sink, z ¢ . (73)
Chy(f-z) kKt k0
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VIII 1* SOME EXAMPLES OF SOLUTIONS OF LONGITUDINAL CREEP VIBRATIONS
OF CONICAL ROD WITH FREE ENDS

1* Solution of longitudinal vibrations of conical rod with free ends, for oc=0 take

following form:
n=e | C
w(z,t)= 3 {—2| cosk,z —ﬁsink,,z
n=1 1- BZ kn (74)
~ T, : ~
T, costyog, +@;, +%sm 13 @5, + @,
V ®g, + O,

2. a*, Solution of longitudinal vibrations of conical rod with free ends, for o= 1 and

for w,, >=o?, , n=1234.... (for soft creep) take following form:

w(z,t)= Y, p:

n=l1
4 a 4

) T, . )
1n + On sin¢ ('0(2);1_ In

4 o \ 4
2 _ Pn
o,

4

or
2. b*. for oo =1 and for w, < lmfn , n=1234..... (for strong creep)

o
n=co _Oin,
{i(cos k,z - Esin k,z J}e 2
k
(75)

o
n=eo —ny
w(z,t) = Z‘l {1?52 [cosknz —%sin k,,z]}e 2
(76)
* 170, Ch ta| =%~ @0, +——=2o=Sh 1| =%~} ¢
O _ 2
4 On
2. ¢*. For critical case: a.= 1 and for o,, =—?,, n=12,3,4.
o o ;
wz,t)= Y, Con cosknz—ﬁsinknz 2! T,, + 210, t (77)
= [1-Pz k, u)lzn
3*ForO0<a<l1
w(z,t)= nf Cou cosk,z— £sin k,z
= |1-Pz k, (78)
koot T, . Tyt
Tk +1-0j) TCk+2-oj) [

. i 2j
J=0 -/J mon

°{i(—1)"miﬁt”‘ s
k=0
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Two special cases of the solution for wén =0 are:

w(z,t) =n§° Lo cosknz—ﬁsinknz Ty, cOs®,,t + 73)” sin®,, for o.=0 and m%n =0.(79)
1-Bz k, ®

n=l1 n

n=1 1_132 n 1n

o E { Con [COS fs kﬁ n k"z]HTO" +L;(1_em,at)} foroo=1and @, =0. (80)

VIII. 2* SOME EXAMPLES OF SOLUTIONS OF LONGITUDINAL CREEP VIBRATIONS
OF EXPONENTIAL-SHAPE ROD

Solution of longitudinal vibrations of exponential-shape rod, for the case of cantilever
rod (or of exponential-shape rod, for the case of cantilever rod with weight on the free

end) take form:
1* Foraa=0

n=co — T ) —
w(z, )=, {C,,eESZ sink;, 23Ty, costwlcog,, + m%n +—2sin twlmén + m%n (81)
-1 2 =2
" g, + g,

2* a. For oo =1 and for ®,, > %wlzn ,n=1234,.. (soft creep)

n=l1

2
n=co —m'"l‘ (,04 T 0)4
wz,t)= 3 {C,e%sink. z}e 2 {T,, costy|03, — i” +¢4sint o, — i" (82)
o — @y,
On
\ 4

or

1
2* b, For o= 1 and for ®;, < 5(1)12,, , n=1,2,3,4....(strong creep):

— i}
w(z,t)= 3, {C, e% sink! z}e

n=1

4
Din _ 2 1,(83)

o, [o4 :
t 0} T
2 Tp,Cht J—wén +—0 Shy
4 o 4
n _(Dgn
4

1
2. ¢*. For oo =1 and for ®,, = 50)12,, , n=1,234... critical case:
2

e T 27,
w(z,t)= Y {C,e¥sink!zle 2 {T()n +%t} (84)

n=1

1n
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3* For general case 0 <. < 1

n=co C ﬁ
w(z,t) = Z{ (cosk z———sink ZJ}
—Bz k, (85)

Fodk kS e Lo, Tyt
{2( Ve ,-o( )l [r(zkﬂ—aj)+F(2k+2—af>]}'

Two special cases of the solution for 2, =0 are:

®

n=1

w(z,t) = nf{cneazsink;z}{To,, cos @, + {O” sin (T)(mt} foroo=0and @, =0. (86)

n=oo

T —?, _ >
w(z,t)= Y, {C, e sink’, Z}{TOn (1 —e )} for =1 and oy, =0. (87)
wln

n=l

VIII 3* SOME EXAMPLES OF SOLUTIONS OF LONGITUDINAL CREEP VIBRATIONS
OF CATENARY-SHAPE ROD WITH WEIGHTS AT THE FREE ENDS.

Solution of longitudinal vibrations of of catenary shape rod, and boundary conditions
for the rod with weights at the free ends, takes form:

1*foro=0
el C , 0 thy! k20t 4yt ,
w(z,t)= Y ——2——cosk,z— ki . i +uy| 22— Y sink), z
w1 | Chy(l —z2) k, ¢ k,t
(88)
= T ~
o T, costy|@p, + @2, +——2—sinty 03, + @3,
Vg, + B,
2* a. For =1 and for o, > %0)12,1 , n=1,23,4..... (soft creep):
2
Nn=oo C k/ZZZ ZZZ _ Oy
w(z,t)= Y {——2—cosk, z— yft’hyf +u,| 2 ’+Y sink,, z 2"
n=l1 Ch’Y(f - Z) kn L knz
(89)

/ o]
e {T,, costy|w?, ——= Jismt o, - 1"
@y,

g,

or
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2. b*. For o.= 1 and for o, < %mfn , n=12,3,4..... (strong creep):

n=oo 12,2 22 O,
wz,t)=Y <, cosk,z— wt,hw +U, kit ,+Y ! sink, z 2
2\ Chyt—2) Kt K0

(90)

2% ¢. For o= 1 and for o, = %(,)lzn , n=1234..... (For critical case):

oo 12,2 2,2
w(z, )= Y, <, cosk, z — Wt,hw +1y kit ,-‘rY £ sink, z
“ -2 K K0 on

703712”[ 2T
ec 2 {T0n+ ;’”z}

In

3* For general case 0 <o < 1:

o 12,2 2,0
wz, )= Y G, cosk) z— '\{Zt,h'\{f +1, kit ,+Y ‘ sink,, z
“\chyi—2) [ Kl ©2)

oo k(K \w?/ % T T
.{z(_l)k o2k 2k 2{ .\mocn;j [ 0n " onl .
k=0 _

=¥, } w2 |TQk+1-0y)  T(2k+2-0y)

Two special cases of the solution for (1)(2),, =0 are:

n=oo

12,2 022
w(z,t)= G cosk, z — '\{Zt,h'\{é +1y k! ,+"{ ! sink, z
=\ chy-o k¢ P

(93)
{ ® Ton ! ® }
e 1Ty, cos®,,t +——sin®,,t
@y
for ao.=0 and co(z)n =0.
n=co 72,2 2,2
wz, )=, _ G cosk),z — yﬁt,hyf +1, L ,+Y ! sink, z
n=1 Ch'Y(Z _Z) kn ¢ kne
(94)

T, _
.{TOH +(00_2n(1 —-e mlznt)}

In

for =1 and ), =0.
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VIIT CONCLUDING REMARKS

From the obtained analytical and numerical results for natural longitudinal creep
vibrations of a fractional derivative order hereditary rod with variable cross section, it can
be seen that a fractional derivative order hereditary properties are convenient for
changing time function depending on material creep parameters, and that fundamental
eigen-function depending on space coordinate is dependent only on boundary conditions
and geometrical properties for considered models.

The first four eigen values for natural longitudinal vibrations of rheological conical
rod (with variable cross section) with free ends are monotonously decreasing when ratio
between ends diameters is increasing in interval: [0,1].

Changes of the first four eigen values for natural longitudinal vibrations of a
fractional derivative order hereditary rod with variable cross section for different
boundary conditions, as well as for different forms of rod can be seen from tables as a
result of numerical experiment shown in paper.

Acknowledgment: Parts of this research were supported by the Ministry of Sciences, Technologies and
Development of Republic Serbia trough Mathematical Institute SANU Belgrade Grants No. 1616 Real Problems
in Mechanics and Faculty of Mechanical Engineering University of Nis Grant No. 1828 Dynamics and Control
of Active Structure.
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LONGITUDINALNE OSCILACIJE REOLOSKE GREDE,

PROMENLJIVOG POPRECNOG PRESEKA, OD MATERIJALA

KONSTUTUTIVNE RELACIJE IZRAZENE IZVODIMA
NECELOG REDA

Predstavijeni su rezultati izucavanja longitudinalnih oscilacija reoloske grede promenljivog

poprecnog preseka, a od materijala sa svojstvima puzanja za koje je konstitutivna relacija izrazena
izvodima necelog reda. Izvedena je parcijalna diferencijalna jednacina i odredena reSenja za
slucaj sopstvenih longitudinalnih oscilacija grede, Ciji materijal ima svojstva puzanja, a koja se
opisuju izvodima ne celog reda. Za slucaj sopstvenih oscilacija grede promenljivog poprecnog
preseka odredeni su sopstveni brojevi, sopstvene funkcije i viemenske funkcije za razlicite granicne
uslove na krajevima grede, koji se javljaju u inZenjerskim primenama. Sastavijene su tablice
sopstvenih vrednosti za razlicite granicne uslove. Pomocu MathCad programa sastavljene su
graficke ilustracije svojstava vremenske funkcije pri promeni parametra puzanja materijala.
Pokazano je da se za usvojeni model grede promenljivog poprecnog preseka sopstvena funkcija ne
zavisi od parametra izvoda necelog reda, ve¢ samo funkcija vremena.



