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Abstract. Isothermal rarefied gas flow in micro-channels of slowly varying cross
section is treated in this paper. It is assumed that the ratio of the reference Mach
number square and the reference Reynolds number is a small quantity, so that inertia
can be neglected and the effect of viscosity is spread over the whole cross-section of the
channel. Higher order slip boundary condition on the wall is used for the solution of
governing equations. Gas rarefaction leads to increase of mass flow rate for the same
inlet and outlet pressure ratio.
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1. INTRODUCTION

More than three decades had passed since famous physicist Richard Feynman, in his
inspiring lecture presented on the Annual Meeting of the American Physical Society, held
at Caltech, in 1959, under the title "There is plenty of room at the bottom", raised the
question of making miniature electro-mechanical devices, before his visionary ideas
became reality. In recent years several manufacturing processes have been developed which
can create extremely small machines, so that the term Microelectromechanical systems
(MEMS) technology is now widely used to refer to devices with characteristic dimensions
measured in microns. It is usually thought that MEMS technology "is a giant step, and it
cannot be excluded that microelectromechanical systems will have in the near future the
same impact on society and economy as the IC has had since the early 1960s", [2].

Problems of fluid mechanics, and in particular of gas dynamics, arise in several
microdevices intended for important industrial and medical applications. They can be
successfully applied for measurements in turbulence (even on Kolmogorov microscales!),
for active flow control, as micropumps and microturbines, for integrated cooling of
electronic circuits and superconducting magnets, in cryo-coolers for infra-red detectors
and diode lasers, etc.

Low pressure gas flows in several microdevices, say in micro-channels, can seldom be
treated as a continuum flow with no-slip boundary conditions, because the values of the
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Knudsen number attained in such a flow are usually not extremely small. Rather, slip
boundary conditions should be used for the solution of Navier-Stokes equations, or at
extremely low pressures gas should be considered as a collection of molecules, and not as a
continuum. In this paper we treat a continuum gas flow in a micro-channel of variable cross
section. We assume the flow is compressible, isothermal and of low Mach number, so that
viscosity prevails over inertia in the entire cross section of the channel. At that we employ
the higher order slip boundary conditions at the channel walls, defined recently in [1].

2. PROBLEM STATEMENT AND GOVERNING EQUATIONS

We study the problem depicted in Fig. 1 in which the upper half of a symmetric chan-
nel is presented. The flow in the channel is supposed to be a steady, two-dimensional,
isothermal, compressible flow of a rarefied, perfect gas. System of equations governing
such a flow consists of equation of continuity, the momentum equations in x and y direc-
tion (Fig. 1), and the equation of state. They will be written in nondimensional form by
using the following scales (Fig. 1): δ0 for all lengths, and average velocity in x direction,
pressure and density at the entrance (x = 0) cross section of the channel, u0, p0 and ρ0 for
all velocities, pressure and density, respectively.
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Fig.1 Rarefied gas flow in a micro-channel.

Also, they will be simplified by assuming that 1Re/M2
0 <<ε=γ  is a small parameter,

where γ is the ratio of specific heats, M0 is the reference Mach number, and Re is the refer-
ence Reynolds number, and the channel varies its cross-section slowly, on the scale of ε, so
that a slow coordinate ξ = εx can be introduced in order to make these slow variations ex-
plicit. The equations read:

- continuity equation
0/)(/)( =∂∂+∂ξ∂ ypVpu (1)

- momentum equation in x-direction,
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- momentum equation in y-direction,

)(/ 2ε=∂∂ Oyp  . (3)

where the nondimensional form of the equation of state: p = ρ has been incorporated and
V(ξ,y) is defined as: v(x,y) = εV(ξ,y), where v(x,y) is the small transverse velocity
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component. This system should be solved by using the following symmetry and boundary
conditions:
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where σv is the accommodation coefficient of the solid wall surface, and Kn is the
reference Knudsen number defined as the ratio between the free molecular path at the
entrance of the channel and δ0. Since for an isothermal flow free molecular path is
inversely proportional to pressure, Kn/p appearing in the slip boundary conditions
obviously represents a local value of the Knudsen number. As mentioned in the
Introduction, the slip conditions stated in this form were first proposed by Beskok at al.
[1] with the aim to extend their validity to as high values of the Knudsen number as
possible – the highest predicted value being about 0.6, if it is defined via the width of the
channel. Since in this problem the Knudsen number is defined via the half width of the
channel (δ0), we may expect that the theory presented will be applicable to even higher
values of Kn. In what follows we will apply our results for Kn up to 0.9.

It follows from (2) that for high subsonic and supersonic flow inertia terms on the left
is of the same order of magnitude as the dominant viscous term, and the problem is one
of boundary layer type. However, for low subsonic Mach numbers, inertia term can be
neglected, and the flow is viscosity dominated. This case is particularly simple because
equation (2), taking into account (3), can be easily integrated yielding:
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Since we are primarily interested in the derivation of an equation for the pressure
distribution inside the channel, we will now circumvent the determination of V from (1).
We will simply integrate (1) in y from 0 to δ(ξ), apply the boundary conditions: for y = 0,
V = 0, and for y = δ(ξ), V = Vw = uw dδ/dξ, and Leibnitz's formula to get: .10∫

δ =pudy

Finally, utilizing (4), the following equation governing pressure is obtained:
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which should be solved with the boundary condition: for ξ = 0, p = 1. Obviously,
equation possesses two singular points – cross sections of the channel: one in which
p = 0, and one in which the term in the bracket is zero for some p > 0. The integration of
(5) makes sense only up to the cross section in which dp/dξ → ∞ for some finite non-zero
value of p. In what follows we will call this cross section the critical one (ξk) and the
pressure in it - pk, the critical pressure.
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3. RESULTS AND DISCUSSION

For a channel consisting of plane walls (δ = 1) the solution of (5) can be readily
obtained by quadrature in the form: ξ = ξ(p,Kn,σv). For σv = 1 it is:

ppp ln
2

Kn)1Kn()1(
6
1 2

2 +−+−=ξ ,

and is plotted in Fig.2, for pk ≤ p ≤ 1. Critical pressure increases linearly with Kn as:
pk = 0.436Kn, while the critical length of the channel increases whit Kn up to the
maximum value of ξk = 0.36 for and decreases for higher values.
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Fig. 2. Pressure distribution between parallel walls for different Kn-number.

The drop of the pressure to a non-zero critical value at a finite distance from the
channel entrance bears some resemblance to the phenomenon of so-called
"mathematical" choking, described for the first time by Schwartz [3]. While in Schwarz's
problem the flow near the critical cross section was not realistic due to an infinite
increase of the Mach number, whereby the basic assumption of low Mach number flow
was violated, here, in addition to the same reason for the break of the theory (note that
u → ∞ as dp/dξ → ∞ (4)), there is another reason for which the above stated result should
be accepted with caution. Namely, since Kn/p represents the local value of the Knudsen
number, it increases downstream and reaches the value of 2δ in front of the critical
length, which means that the mean free path in the cross section in which Kn/p = 2δ
becomes equal to the width of the channel! In spite of using higher order slip boundary
conditions on the wall, aimed at increasing values of the Knudsen number for which the
theory is applicable, we do not believe that such an extension of the theory can be
acceptable in this case. Anyhow, cross sections in which Kn/p = 2δ are designated in
Fig. 2, and figures to follow.
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Fig. 3 Pressure distribution in a convergent channel (a), and in a divergent channel (b)
for different Knudsen number.

In order to get some insight into the effect of the varying cross section of the channel,
we performed the numerical integration of equation (5) for: δ(ξ) = (1−a)/(1+ξ2) + a, for two
values of a: a = 0.5 – convergent channel, and a = 2 – divergent channel. Results presented
in Fig. 3 are qualitatively very similar to those obtained for parallel walls. Critical pressure
increases with the opening of the exit cross section, while at the same time critical length of
the channel decreases.
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STRUJANJE GASOVA U MIKRO-KANALIMA
PRI MALIM VREDNOSTIMA MAHOVOG BROJA,

KORIŠĆENJEM GRANIČNIH USLOVA KLIZANJA VIŠEG REDA
Nevena Stevanović, Vladan D. Djordjević

U radu se tretira izotermsko strujanje razređenog gasa u mikro-kanalima promenljivog
poprečnog preseka. Pretpostavlja se da je odnos kvadrata Mahovog broja i Rejnoldsovog broja
mali, tako da se inercioni članovi u osnovnim jednačinama mogu zanemariti, a uticaj viskoznosti je
dominantan u celom preseku kanala. Koriste se granični uslovi klizanja gasa na zidu višeg reda i
pokazuje da razređenost gasa dovodi do povećanja masenog protoka pri istom odnosu ulaznog i
izlaznog pritiska.


