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Abstract. In the paper the case of transversal vibrations of the thin elastic metallic
plate produced by impulsive electromagnetic radiation at the upper surface is
considered. As each electromagnetic wave can be represented as a sum of simple plane
waves, an analytical solution is given for only one plane wave. It is assumed that all
field quantities of the wave vary with time as exp(jωt) and are represented in the
complex form. As a result of time-changing electromagnetic field conducting currents
are appearing. Using complex calculation we arrive to the distribution of the power of
the eddy-current losses in the plate. That power can be treated as a volume heat source.
Impulsive radiation can be represented mathematically as the sum of Heaviside
functions. Using integral transform technique we can solve differential equations
governing temperature field, transverse vibrations and stress field. In the case when the
skin depth is small compared to the plate thickness, the problem can be treated as a
thermal shock problem. The power which electromagnetic wave gives to the plate can
be calculated by Pointing's vector. If we want to solve some geometrically complicated
problem, we have to discuss Snellius laws. Using Fresnel coefficients of reflection and
transmission the power of the interrupted wave can be found as a function of an
interrupted angle. The calculation (for example, for radar and air space structures) can
be performed using FEM.

Key words: electromagnetic field, temperature, plate, induction, heat, vibration,
finite element.

1. INTRODUCTION

Theory of electro-magneto-thermoelasticity investigates interaction between strain
and electromagnetic field in a solid elastic body. It has received considerable attention
because of the possible applications in detection of flaws in ferrous metals, optical
acoustics, levitation by superconductors, magnetic fusion and many other electro-
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mechanical devices. On metallic deformabile solids subjected to electromagnetic fields
two types of forces are exerted. The first type are forces between the stationary magnetic
field and magnetized material (which are reacted as a moments). The second types are
volume dynamic forces on a conducting currents appeared in electric conductors as a
result of their motion or a time changing magnetic field. The influence of the elastic field
on the magnetic field is described by modified Ohm's law.

In the paper it is assumed that the material of the plates is elastic, isotropic, soft
ferromagnetic, which possesses a good electric conductivity. Many nickel-iron alloys
used for motors, generators, inductors, transformers are of this type.

The vibrations of the thin metallic plates of soft ferromagnetic materials are described
using three coupled systems of differential equations based on the classical theory of thin
plates and linear theory of thermoelasticity.

The first system is a system of Maxwell's equations with the relations for slowly
moving media and modified Ohm's low [4]:
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∂
∂+= , 
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BKrot

∂
∂−= ,  0=Ddiv , 0=Bdiv , (1.1)

)(0 BuKD ×+ε= , )( DuHB ×−µ= , )( BuKJ ×+σ= .

The following notations are applied: H – magnetic intensity, K – electric intensity,
B – magnetic flux density (magnetic induction), D – electric induction, J – current density,
u – deflection, µ0 – permeability of free space, σ – electric conductivity, ε0 – dielectric
constant of free space.

 In linear theory of thermoelasticity it is assumed that the temperature changes
linearly across the thickness of the plate. Temperature field θ(x1,x2,x3,t) can be described
using two values, τ0 and τ1; τ0 represents the temperature in the middle surface of the
plate and τ1 is the rate of temperature across the plate thickness [1]
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So, the second system of equations describes temperature field in a thin plate. It
consists of two partial differential equations
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where κ is coefficient of thermal intensity, η* is representing the coupling between the
temperature and the deformation fields, ε is the tensor of deformation, h is the plate
thickness and ∇1

2 is Laplace operator. Losses in a plate Q(x1,x2,x3,t) consist of three
factors: volume heat source intensity, hysterisis losses and Joule's heat (eddy-current
losses).
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In the consideration of the vibrations of the plate, the assumption that the
longitudinal vibrations are independent of the transverse vibrations is taken. Transverse
vibrations can be obtained using the next differential equation [2]
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and the bending stresses are given by the following relation
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δταν++ν+ν−
ν−

−=σ . (1.4)

w denotes deflection of the plate in x3-direction, ν is Poisson ratio, αt is coefficient of
thermal expansion, D is flexural rigidity of the plate, E is modulus of elasticity, X
mechanical force, f Lorenz force, σ and T are mechanical and magnetic stresses, and ρ is
plate density.

Of course, appropriate boundary and initial conditions have to be added to the
presented system of equations.

2. ELECTROMAGNETIC WAVE

In the paper the case of transversal vibrations of the thin elastic metallic plate
produced by impulsive electromagnetic radiation at the upper surface is considered.

Impulsive radiation can be displayed as a sum of pulsation functions (Fig. 2.1) and
mathematically represented as a sum of Heaviside functions with delay.
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Fig. 2.1 Impulsive electromagnetic wave

On the basis of the fact that each electromagnetic wave with complex time changing
field can be represented as a sum of the simple plane waves (using by methods of Fourie
analysis), an analytical solution is given for only one plane wave with Exo and Hyo
components on the upper surface of the plate. It is assumed that all field quantities inside
one impulse vary with time as exp(jωt) and are represented in the complex form.
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3. CONDUCTING CURRENTS. JOULE'S HEAT

In the case of high conductivity dielectric current is negligible compared with the
conducting current. So, for the homogeneous and isotropic medium (without free electric
charges) system of Maxwell's equations can be presented in the next form (linear
magnetic):

KHrot σ= ,  0=Kdiv ,
t

HKrot
∂

∂−= µ ,  0=Hdiv . (3.1)
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Fig. 3.1 Primordial coordinated system

Using symbolic-complex method ( tjeAA ω= ) we arrive to the equations

KHrot σ= ,  0=Kdiv ,  HjKrot )( ωµ−= ,   0=Hdiv . (3.2)

If the direction of the wave propagation is z-axe and if the field components are
independent of x and y, from the equations of divergence we can conclude that the
components zH  and zK  are zero. In the case of the plane wave, only normal
components of the electric and magnetic field depend on each other. So, we have to make
the analysis only for one wave with components xK  and yH . Let in the plane z = 0 they
have next values

itKiKK x )cos(0 ϕ+ω== , (3.3)
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Maxwell's equations have next form
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where

σµω=γ j2 , β+α=γ j , 
2

σµω=β=α . (3.6)

If we want to find the solution only for one progressive wave, the basic solution of the
equation (3.5) we can represent as
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z
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and using boundary condition for z=0
ϕ= jeHC 0 .

Characteristic impedance is
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and the obtained result for the field components has the form
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Electromagnetic wave is followed by the conducting currents, density
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Field amplitudes and current amplitudes decrease according to the exponential law
e−αz along the trajectory of the wave propagation. The constant of the penetration is
proper to the decay of one Neper (0.368) and its value is
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Skin depth is decided with increasing of frequency, conductivity and permeability.
The reason for that phenomenon is heat losses in the metal. Active power which the
conductor absorbs throw the part S of the surface can be obtained using the method of
Pointing's vector (for z = 0, ϕ = 0)
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Presented formulas are valid for the conductors with the skin depth negligible
compared with the curvature diameter. If the skin depth is much less then the plate
thickness, the whole absorbed power is converted in heat on the surface (the case of
thermal shock).

Otherwise distribution of the Joule's heat has to be determined in the following:
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The whole power of the eddy-current is
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Using coordinate system shown on Fig. 3.2 last express can be presented as
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That power we can treat as a volume heat source with intensity Pv(x3).
In the case of nonlinear magnetic material the factor which involves heat losses of the

hysterisis loop has to be added to presented calcualtion. For the most of the soft
ferromagnetic materials the basic curve of the magnetization is nearly linear. This fact
improves that the middle value for permeability µsr can be used in calculation.

y

h/2

z

h/2 xi

x3

Fig. 3.2 Coordinate system (middle surface of the plate)

Hysterisis losses are proportional to the square of the frequency and field amplitudes

fHPH
2
max≈ , fekHzP z

H
α−= 22

0)( , (3.18)

which improves that their distribution is the same as the distribution of the eddy-current
losses. Coefficient k is the known material characteristic.

So, density of the power of the heat losses is approximately
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Expressions (3.17) and (3.19) show that the heat source intensity increases on
exponentially with the plate thickness. Gradient of the exponential curve increases with the
increasing of the wave frequency, permeability and electric conductivity of the material.

The phenomenon of the conducting current concentration on the surface, valid for
conductors with very high electric conductivity and magnetic permeability subject to high
frequency wave, is known as skin effect.
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4. TEMPERATURE FIELD

Let the plate is isolated on the upper and the lower surface and the temperature along
the lateral sides is equal to initial temperature T0(θ = 0). The initial and the boundary
conditions have the form
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Using (3.17) the power of the heat source is

33 2222
03 2

1)( xxh
PeeeHxW ασµω

σµω−
=ωµ= , (4.2)

∑
=

α +−−−=
I

i
ii

x tittHittHPetxW
0

0
2

3 ))](()([),( 3 .

According to the presented boundary conditions, from equations (1.2), using integral
transform technique we arrive to the solution for the temperature field in the form
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Distribution of the isotherm lines in the middle surface of the plate for the case of one
impulse of t0 = 10s is presented in Fig. 4.1. Plate dimensions were a = 30cm, b = 16cm,
h = 1mm.

t = 5s t = 20s
Fig. 4.1 Isotherm lines in the middle surface
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5. TRANSVERSAL VIBRATIONS. STRESS FIELD

Let the plate be simply supported along the entire edge. Boundary conditions have the
form
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Initial conditions are responsible to the natural undeformed state
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Applying the integral transform technique to the equation (1.3) the solution for the
transversal vibrations is represented in the form
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Stress field is obtained using equation (1.4).
In Fig. 5.1 deformation of the plate during impulse is presented, and Fig. (5.2) shows

appropriate stress field.

Fig. 5.1 Deformation of the plate Fig. 5.2 Stress field
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6. HIGH FREQUENCY WAVES.
APLICATION ON THE GEOMETRICALLY COMPLICATED PROBLEMS

In the case of the high frequency wave skin depth is very small. It denotes that the
hole Pointing's vector

 *

2
1

yx HK=Γ , SHS 2
022

1]Re[
σ

ωµ=Γ=Ρ , (6.1)

converts to heat on the plate surface.
Than we have thermal shock problem.

To obligate the power of the
electromagnetic wave penetrated in the
plate, we have to discus Snellius's
lows. So, look at the plane of incidence
of an interrupted, reflected and
transmitted waves (Fig. 6.1).

Snelius's low of transmission is [5]

            ti Θγ=Θγ sinsin
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.         (6.2)

Fresnel's coefficients of reflection and transmission can be determined using
boundary conditions, which for the case of the electric field normal to the plane of an
incidence have the next form (n)
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and in the case of the electric field parallel to the plane of an incidence (p)
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When medium 1 is an are and medium 2 metal conductor, appropriate complex
impedance and complex angles are
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Fig. 6.1 Plane of incidence



414 V. MILOŠEVIĆ-MITIĆ

. 
sin)1(cos

cos)1(2

, 
)sin(cos)1(

cos)1(2

1
2

1

1

1
2

1

1

Θωε−σ
σ
++Θ

ε
µ

Θ+=

Θωε−σ
εσ
µ+Θ+

Θ+=

jjk
jkT

jjk

jkT

p

n

 (6.7)

Using presented relations diagrams between coefficients Tp and Tn and the interrupted
angles can be formed. As for the solving of the problem we have to know only the power
of an interrupted wave, finding only absolute values |Tp| and |Tn| is necessary.

This is very important for the geometrically complicated constructions, which can be
approximate with the system of the thin plates.

For example, in the case of the calculation using finite element method, parabolic
emission antenna can be represented as a system of thin plates. The requested value for
the calculation is the power of the interrupted wave. It can be obtained by determining the
interrupted angle. For example, for observation radar, width of one impulse is 6.5µs,
frequency over one impulse 2.9-3.1GHz and it's highest power 2.5MW. Because of the
skin effect, using Pointing's vector, we have possibility for very efficient appliance of
FEM method. On Fig. 6.2 deformation and stress fields are presented for one spherical
and one cylindrical antenna system.

Described effects enable simple calculation in the case of the moving laser heat
sources [7].

 
Fig 6.2a Deformation

For the problems with low frequency and conductivity, real temperature distribution
across the plate thickness is of exponential type. For that nonlinear case of temperature
loading it is very difficult to find vibrations in analytical form. So, finite element method
(FEM) has to be involved in calculation. The stiffness matrix and the load matrix for
plate element can be formed using analogy with the finite element of composite plate.
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Corresponding values of the deflection obtained from the analytical solution and the
numerical solution (real and reduced model) are the same, but there is a large dissipation
between the stress distributions based on the real and the reduced FEM model. Reduced
model can be used for dynamic modeling of the problem because of small computation
time [6].

Fig 6.2b Stress field
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POLJA TEMPERATURE, NAPONA I DEFORMACIJE TANKE
METALNE PLOČE IZAZVANA IMPULSNIM

ELEKTOMAGNETSKIM TALASOM
Vesna Milošević-Mitić

U radu su razmatrane poprečne vibracije tanke elastične metalne ploče izazvane delovanjem
impulsnog elektromagnetskog talasa (na gornjoj površini ploče). Kako svaki elektromagnetski talas
može da se prikaže kao zbir prostih ravanskih talasa, analitičko rešenje je dato samo za jedan
ravanski talas. To podrazumeva da se sve karakteristike polja menjaju po eksponencijalnom
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zakonu exp(jωt), pa se prikazuju u kompleksnom obliku. Kao proizvod vremenski promenljivog
elektromagnetskog polja pojavljuju se kondukcione struje. Primenom kompleksnog računa
dolazimo do raspodele snage toplotnih gubitaka u ploči, koja se može tretirati kao zapreminski
izvor toplote. Impulsni talas može se matematički prikazati preko sume Hevisajdovih funkcija.
Primenom tehnike integralnih transformacija možemo rešiti diferencijalne jednačine koje opisuju
polje temperature, napona i pomeranja. U slučaju kada je dubina prodiranja mala u poređenju sa
debljinom ploče problem može da se tretira kao termički udar. Energija koju elektromagnetski
talas predaje ploči može da se odredi pomoću Pointingovog vektora. Ako želimo da rešimo
geometrijski komplikovaniji problem moramo da razmotrimo i Snelijusove zakone prelamanja.
Primenom Frenelovih koeficijenata refleksije i transmisije snaga upadnog talasa može se odrediti
na osnovu upadnog ugla. Račun (na primer za radare i aero strukture) može se izvesti primenom
metode konačnih elemenata


