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Abstract. It is shown by operational method that the boundary value problem of the
theory of elasticity related to stresses, which can be reduced to three strains
compatibility equations and to three equilibrium equations, in fact is of sixth order.
Hence, one do not have to formulate additional boundary conditions.
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1. INTRODUCTION

The problem related to the degree of compatibility conditions of thc theory of elasticity
has pure academic interest. However, it still draws attention of many researches, and there
is a number of recent publications in this field [1,2]. Some manuals stress out that these
conditions are independent [3-5], others say about it's mutual dependence [6-12] (but they
often have no considerations concerning which of the compatibility conditions are
independent [6,7,9]). At last, some authors do not touch upon this question at all. As
concerns paper:, devoted to this problem, some researches propose to keep only three strain
compatibility conditions [15-18]. Other authors point out that such way leads to
mathematically incorrect results, because a governing system (three equilibrium and three
compatibility conditions) is of nine order, whereas the boundary conditions correspond to a
six order. Additional boundary conditions are formulated in different ways [17-18]. Finally,
some researches consider the elastic problem related to stresses using six compatibility
equations (directly [2,11,12] or after some transformations [19, 20]). Then the equilibrium
equations are used as additional boundary conditions [11,19-21].

To solve the problem we are going to apply the operator method described in
references [22, 23].

2. FORMULATION OF THE PROBLEM

The six compatibility equations related to stresses have the following form [1]:
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where: s = σx + σy +σz .

As it has been shown in reference [1], inside of a body, the equations (1), (2) are
linearly dependent. This can be demonstrated using three dimensional Fourier
transformation in relation to x, y, z.

Observe that the compatibility relations are obtained using some differentiatrons.
However, in general this procedure is valid inside of the considered space but not on its
boundaries. This observation implies that in general the equation systems (1) and (2) are
only equivalent inside of the space. Consider the following example. Let a body be
bounded by the planes z = 0, h. Inside of the space 0 < z < h both equation systems (1)
and (2) can be taken as an input one, since they are there equivalent. However, on the
boundaries z = 0, h the first equation of (1) must be satisfied, i. e.
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where: S = σx + σy .

In other words, it can happen that on the boundaries the equation systems (1) and (2) can
be not equivalent, and therefore the boundary surfaces must be considered separately [9].

Let us take as the equations (2) as the input equations, and the following
homogeneous equilibrium equations (note, that an account of the mass forces do not
change the problem):
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To wit, each three of independent compatibility relations can be expressed using 17
different methods [3, 18]. Here we focus only on the equations (1) and (3), since the
approach used here holds also for other possible variants of equations.

3. RESULTS AND DISCUSSION

Formally, the system of equations (1), (3) has ninth order with regard to the
coordinates. It is caused by an artificial increase of the system order introduced by
differentiation in the process of their derivation.

However, the partial differential equations (1), (3) have constant coefficients, and one
can use the operator method of solution to differential equations with constant coefficients.
In accordance with the main idea of this method one can operate with derivatives ∂/∂x, ∂/∂y,
∂/∂t  like with constants and use methods of linear algebra [22, 23].

If one applies the operator method to equations (1) and (3) than the following
equation is obtained

DΦ = XYZ∇2∇2∇2Φ = 0,

where: D s the determinant of the system (1); ;,,
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∇2 = X2 + Y2 + Z2; Φ is the potential function.

The stresses are defined by the function Φ using the operator method in the following
way:
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where: Dj6 (j = 1 − 6) are the minors of the determinant D, obtained by cancelling the j-th
row and 6-th column.

Integrating (4) in relation to x, y, z one gets

),(),(),( 321
6 zxzyyx ϕ+ϕ+ϕ=Φ∇ (6),

where ϕ i are unknown functions.
For an elastic space a condition of the functions ϕ i = 0 holds, since stress derivations

decay in infinity. In an arbitrary internal point A(x0,y0,z0) of an elastic body the constants
ϕ i (x0,y0,z0) are equal to zero, which can be shown in the following way. Indeed, the
compatibility relations must be satisfied in any plane containing the point A. Let us
choose three orthogonal planes x = x0, y = y0, z = z0 . It is not difficult to check that in
those planes the equations related to the potential function F have the form
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Observe that a comparison of equations (7)−(9) and equation (5) yields ϕ i = 0
(i = 1,2,3).

Therefore, we get the sixth order equation in relation to each of the space variables x,
y, z of the form

∇2F = 0. (10)

Let us now give a brief comment on the boundary conditions. Knowing the function F
which is a solution to the equation (10), one can define the stresse: due to the formula (5).
Therefore, the formulated boundary value problem with canonical boundary conditions
related to stresses can be solved. However, a boundary value problem related to
displacements needs a separate consideration.
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