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Abstract. In this paper a selective preview of methods applicable to piezoelectric
bodies with initial defects under the assumption that they have infinite dimensions is
given. Considered  is a semi-infinite crack which lies in the interior of the piezoelectric
material. Characteristic quantities which affect the process of crack propagation under
external mechanical stresses and electrical field polarization are determined. Using
different methods, analytical solutions for the problems of piezoelectric materials were
obtained for all three modes of crack deformation. Results  for a  PZT piezoceramic
material gained spatial diagrams of state, numerically processed by computer
programming in MATLAB, are presented. It is expected that the obtained solutions of
such problems in the theory of electroelasticity can be directly used in engineering
practice.
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1. INTRODUCTION

Recently, an intensive work is undertaken on application of Linear Elastic Fracture
Mechanics (LEFM) in studying piezoelectric materials. Practically, fracture mechanics
enables reliable calculation of the lasting period of piezoelements in the design phase
already based on mechanical characteristics of the used piezoelectric materials and
stresses which occur during exploitation. Also, fracture mechanics can determine reliably
the critical error for a crack type, which, once achieved, leads to the fracture of the
piezoplate, due to unstable crack propagation.

Spatial analysis of the stress and strain state of the stressed piezoelectric material in
the vicinity of the crack tip is performed by linear-elastic fracture mechanics. Different
analytical methods used in the papers of K. Hedrih and Lj. Peric [6, 7, 8, 9] for the study
of the stress and strain states of loaded piezoelectric materials will be presented here.
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Some of these methods are: a) spatial analysis of stress and strain state in the loaded
piezoelectric material with crack by the method of representing the components (u, v, w)
of the displacement vector s  by double infinite series of arbitrary functions, b) analysis
of stress and strain state in the piezoelectric material in the vicinity of the crack tip, in
case of plane deformation, c) analysis of stress and strain state in the piezoelectric
material in the vicinity of the crack tip, in case of material subjected to out-of-plane
shear, and d) application of complex variable function in spatial analysis of stress and
strain state in the piezoelectric material with crack. The basic theory of the method of
complex functions for the solution of elasticity problems is given in the monograph of
Mushelisvili [13].

A representation of the components (u, v, w) of the displacement vector s  (method-a)
by a double infinite series of arbitrary functions was suggested by Hartranft and Sih,
1969 [5], and later it was further elaborated in 1990 by H. A. Sosa and Y. E. Pak [19],
while the procedures of analysis of crack problem in piezoelectric material quoted under
b, c, and d conditions above can be found in references [6-9]. Despite the fact that
piezoelectric materials are used for decades in many electromechanic devices, a small
number of papers has been published related to their mechanical behavior. From all these
papers, the most renowned ones are those of Parton (Fracture mechanics of piezoelectric
materials) [16] and Deeg (The analysis of dislocation, crack, and inclusion problems in
piezoelectric solids) [1] which deal with fracture problems at piezoelectric materials. In
1990 Pak obtained a more precise solution for the fracture problem of piezoelectric
materials (Crack extension force in a piezoelectric material) [14]. In his paper, Pak
described the behavior of a crack in the interior of a piezoelectric material, as well as, the
influence of the piezoelectric material on fracture occurrence. He also proved that crack
growth could be accelerated or decelerated depending of the magnitude and the direction
of the applied electric field. Research published by Pak is in agreement with that of Deeg
(1980), and concerns the treatment of the problem of fracture of piezoelectric materials
by the method of divided dislocation. Related papers are those of Freiman (Mechanical
behavior of ferroelectrics ceramics, 1986) [2] and Pak (Force on a piezoelectric screw
dislocation, 1990) [15].

So far, a great number of experimental papers have been published regarding the
strength and toughness of piezoceramic materials which contain faults and defects of
different shapes and sizes. The most important are the papers of W. B. Harrison et al.
(Monolithic multilayer piezoeletric ceramic transducers, 1986) [4] and G.G. Pisarenko et
al. (Anisotropy of fracture toughness of piezoelectric ceramics, 1985) [18]. This paper is
also based on contents of the monographs on fracture mechanics by  E.E. Gdoutos [3]
and Krajcinovic – Sumarac [12].

2. BASIC FORMS OF CRACK DEFORMATION

In fracture mechanics a crack is understood as an absence of cohesive bonds
(adhesion) between two adjacent atom layers.

Separated crack surfaces represent boundaries of the stressed body, and therefore stress
distribution near the crack tip depends of the form of the fracture surface formation.

There are three basic shapes (modes) of crack deformation (see E. E. Gdoutos [3]).
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Mode I KI ≠≠≠≠ 0,  KII = KIII = 0  – crack opening

Mode I of crack deformation (Figure 1) is defined with separation of the fracture
surface symmetrically in regard of the primary crack plane: u = u(r,ϕϕϕϕ), v = v(r,ϕϕϕϕ), w = 0.

x
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z

Fig. 1. Mode I  of crack deformation

 Mode II KI = 0,  KII ≠≠≠≠ 0,  KIII = 0  – shear (slide)

Mode II of crack deformation (Figure 2) is defined by the movement of one crack
surface with respect to the other in the same plane, but in opposite directions: u = u(r,ϕϕϕϕ),
v = v(r,ϕϕϕϕ), w = 0.
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Fig. 2. Mode II of crack deformation

Mode III KI = 0,  KII = 0,  KIII ≠≠≠≠ 0  – shear out of plane

Mode III of crack deformation (Figure 3) is defined by the movement of one fracture
surface along the front of the crack, so that points which were in the same vertical plane
before crack growth (development), are allocated on different vertical planes after crack
growth: u = 0, v = 0, w = w(r,ϕϕϕϕ).
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Fig. 3. Mode III of crack deformation
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Parameters KI, KII and KIII are stress intensity factors for Mode I, II, and III
respectively.

In case of state of plane strain, the front of the crack is an in-plane curve. In an
arbitrary point on the curve two modes of crack deformation are present (Mode I and
Mode II). Using polar coordinate system (r,ϕ), the general expressions for components of
the tensor of mechanical stress state can be written in the following form:
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In case when the crack front is spatial curve, in an arbitrary point all three modes of crack
deformation can be present (Mode I, Mode II, and Mode III). If the observation is performed
in polar-cylindrical coordinate system (r,ϕ,z), general expressions for components of the
tensor of mechanical stress state can be written in the following form:
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3. STRESS INTENSITY FACTOR

Linear Elastic Fracture Mechanics (LEFM) is based on the validity of  Hooke's law of
the material, which contains a crack. However, in the vicinity of the crack tip nonlinear
effects dominate, so that the stresses and strains cannot be calculated according to the
theory of linear elasticity. For determining of the radius of the plastic area, the most
frequently used criteria are those of Tresca, Mises, Rosengreen, Irwin, etc. [12, 11, 17].

If the characteristic dimensions of the plastic zone are very small compared to the size
of the initial crack and to the dimensions of the specimen, then use of the LEFM in an
analysis of stress and strain state in the vicinity of the crack tip is possible. This is
justified by the fact that, if the nonlinear area is small, then its influence on the stress
distribution at some distance away from the crack tip can be neglected, so that plane
elastic solution for the stresses can be used. In that case the stress intensity factor is a
measure of the stress magnitude in the neighborhood of the crack tip.

The stress intensity factor is defined for a known stress state and geometry. In this
case, a fictitious infinite body with a central crack of length 2a loaded along three
perpendicular directions is introduced. The stress intensity factors are defined as:
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et consider an infinite plate along the x-y plane of finite thickness, with a central crack of
length 2a, stressed in its plane in y-direction (Figure 4), in that case we have: σx = 0,
σy = σ∞, .0=τxy

y = 

y = 

x

y

a a

Fig. 4. Infinite plate with central crack

For that problem the Westergaard's solution is known and given by [20]:
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where: z = x + iy – complex variable.

By substitution of expression (6) into expression (3), for y = 0, we obtain:
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In an analogous way, by the described procedure for an infinite plate, we obtain the
stress intensity factors for the three modes of crack deformation, also for an infinite plate
stressed spatially, which has a central crack of length 2a in it:
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Expressions (8) define the stress intensity factors for a central crack loaded at infinity
with mechanical stresses σ and τ. Stress intensity factors for characteristic cases which
occur most frequently in technical practice, can be found in literature [12, 17].

It can be concluded that, when r → 0 (in the crack tip), stresses become, theoretically,
infinitely large, and the stress intensity factor is a measure of the stress field as well as the
safety for the stress of destruction at the crack tip.

From expression (8) it can be seen that the dimension of the stress intensity factor
Nm−3/2. The stress intensity factor K is proportional to the stress σ  or τ and  the square
root of the crack length.
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4. STARTING EQUATIONS IN POLAR-CYLINDRICAL COORDINATE SYSTEM

For the solution of the problem of mechanical stress and strain distribution in a
stressed piezoelectric material, it is necessary to establish relations among the following
quantities: tensor of mechanical stress (σij), vector of piezoelectric polarization (electric
displacement - Di) [17, 19], tensor of strain (εkl), and vector of electric field magnitude
(Ek). The definition of the piezoelectric effect that it occurs through mutual action of
mechanical stress and electric field, demands establishing relations between specified
states of the coupled fields. This is one of the important tasks of the mechanics of the
deformable continua. Experiments are needed to determine the large number of
independent material constants in the piezoelectric material.

Equations valid in the spatial theory of LEFM, in absence of volume forces and
free electric charges at piezoelectric material, can be written in the following form:
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where indexes: i, j, k, and l, take values 1, 2, and 3, and other values: σij, Di, εkl, cijkl, ekij,
dik, Ek, ψ, are coordinates of tensor, i.e. vector of: mechanical stress, piezoelectric
displacement, specific strain, constants of elasticity, piezoconstants, dielectric constants,
magnitude of electric field, and electric potential, respectively. Value H, equation (9)
represents function of electric enthalpy.

Equation (10) gives a general relation between components of displacement vector s
and elements of relative strain tensor.

Equation (11) represents extended Hooke's law expressed in tensor form in curvilinear
system of coordinates of the mechanical stress, strain and electric field..

Equation (12) is an expression for piezoelectric displacement components, which are
also expressed in curvilinear system of coordinates by electric field components and
strain.

Equation (13) gives relation between coordinates of electric field and electric
potential ψ.
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 Equations (14) and (15) represent Navier's equations of equilibrium of piezoelectric
body for mechanical stresses and equations of equilibrium for componential piezoelectric
displacements, respectively.

For a hexagonal crystal system of crystal class 6mm (C6v), generalized Hooke's law (11)
has this form:
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From matrix relation (16) we get the following expressions for the components
mechanical stresses:
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From matrix relation (17) we get the following expressions for the components
piezoelectric displacements:
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5. POSTULATE FOR THE PROBLEM  OF A SEMI-INFINITE CRACK

Piezoelectric ceramics with a hexagonal crystal system of crystal class 6mm, with
infinite dimensions are analyzed. This ceramics has five elastic, three piezoelectric and
two dielectric material constants, i.e. altogether ten independent material constants. This
kind of piezoelectric material is most often used in ultrasound high power transducers,
because it possesses great efficiency of conversion of electric energy into mechanical
energy, and vice versa.

Polar-cylindrical system of coordinates r, ϕ, z, (Figure 5) are used. Limits of polar-
cylindrical coordinates are: 0 ≤ r < ∞, −π ≤ ϕ ≤ π, −∞ < z < ∞.

For the purpose of easier solving, it is needed to
define orientation of the crack (Figure 5). It is assumed
that the front of the crack is straight, along the z-axis,
while the y-axis is perpendicular on the base plane of
the crack. Further, it is assumed that  the crack has no
surface micro-defects, and that it is not under pressure.
The origin of the adopted coordinate system is situated
at the tip of the semi-infinite crack. Such configuration
and orientation of the crack leads to special interaction
between the tensors of mechanical stress and the vector
of the electric field, as well as between the vector of
the piezoelectric displacements and the tensor of the
relative mechanical strain. Examination of other crack
orientations and their consequences will not be studied

in  this paper
On the crack surface, when ϕ = ±π, it is assumed that the following components of

the mechanical stresses and piezoelectric displacements are equal to zero:
− normal mechanical stress for the surface with normal in circular direction:

,0=σϕ (20)

− shear mechanical stress in radial direction for the surface with normal in circular direction:

,0=τϕr (21)

− shear mechanical stress in axial direction for the surface with normal in circular direction:

,0=τϕz (22)

− piezoelectric displacement in circular direction in the spots of the crack surface:

.0=ϕD (23)

These boundary conditions on the sides of the crack surface were first suggested by
Y.E. Pak, in 1987 [14]. Thus the problem of the semi-infinite crack in an infinite
piezoelectric material was defined.

x
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z
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0

Fig. 5. Semi-infinite crack
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6. METHOD OF SOLUTION BY DOUBLE INFINITE SERIES OF ARBITRARY FUNCTIONS

The problem of the three-dimensional semi-infinite crack, as defined earlier, is solved by
expressing the physical coordinates (u,v,w) of the displacement vector s , and electric
potential ψ(r,ϕ,z), by double infinite series of arbitrary functions (Rn, Φn, Zn, and Kn), i.e.:
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The introduced arbitrary functions (Rn, Φn, Zn, and Kn) depend on: polar angle ϕ,
cylindrical coordinate z and eigenvalue λm, and they are equal to zero for n < 0, because
infinite displacements and electric potential in the crack tip are impossible. Eigenvalues
λm (m = 0, 1, 2, 3,) are considered as constants to be determined.

Further procedure of deriving the above quantities for the final solution, is shown in
papers [17] and [19].

7. METHOD OF DECOMPOSITION TO PLANE STRAIN AND OUT-OF-PLANE SHEAR STATES

In the solution of problems of LEFM for the general case of the three-dimensional
deformable body, substantial mathematical difficulties are encountered. For that reason,
in some cases, we switch to plane problems of LEFM. Thus, we will deal with the stress
and strain state in a piezoelectric material in the vicinity of the crack tip for the case of
plane strain and out-of plane shear.

It is mentioned before (article 2), that the decomposition of any spatial problem, when
the crack front is a spatial curve, can be done in three basic, mutually independent forms
(modes) of crack deformation (mode I, mode II, mode III) [12, 17].

Under plane strain conditions we obtain the first two basic modes of crack
deformation (mode I and mode II)..

The third basic mode of crack deformation is related to the case of out of crack plane
shear (mode III).

7.1 Plane strain state

Plane strain state is defined by displacement field:

,0  ),,(  ),,( =ϕ=ϕ= wrvvruu (26)
and by electric field:
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).,(  ,0  ,0 z ϕ=== ϕ rEEEE zr (27)

The solution of the problem is performed by Maxwell's partial differential equation,
method of parting variables, and using Airy's stress function. General solution for Airy's
stress function Φ(r,ϕ) in the vicinity of the crack tip is expressed using trigonometric
series, and the coefficients that depend on crack shape and load are expressed by stress
intensity factors KI and KII [8, 17].

7.2 Shear out of crack plane

In case of out of plane shear, it is assumed that all in plane displacements are equal to
zero, and that only displacements in z-direction exist, i.e.:

).,(  ,0  ,0 ϕ=== rwwvu (28)

Introducing the expressions for the components of mechanical and piezoelectric
stresses into the modified Navier's equations of equilibrium, we get the  differential
equations for the problem of  out of crack plane shear:

.0
,0

=ψ∆
=∆w

(29)

The boundary conditions on the crack surfaces are given by mechanical stresses and
piezoelectric displacements:

− that shear stress in axial direction for the surface with normal in circular direction is
equal to zero:

,0),( =π±τϕ rz (30)

− that normal piezoelectric displacement for the surface with normal in circular
direction is equal to zero:

,0=ϕD (31)

The unknown constants, that depend on the crack shape and applied load, are
expressed by stress intensity factor KIII. A more detailed derivation can be found in
papers [9] and [17].

8. METHOD OF APPLICATION OF COMPLEX VARIABLE FUNCTION

In this part of the paper, a spatial analysis of the stress and strain state in the vicinity
of the crack tip of the stressed piezoelectric material is performed using analytical
functions of complex variable (analytical complex functions), expressed in polar
coordinates (r, ϕ).  These functions are assumed in the form of infinite exponential series
(Laurent's series). The problem is to determine analytical solutions of the stress and strain
states, for n-members of the series, when n → ∞ [10, 13].

As in the previous analysis, decomposition of the spatial problem into the three basic,
mutually independent modes of crack deformation (mode I, mode II and  mode III) is first
performed. Each of these modes is then treated separately.
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8.1 Plane strain state

In solving problems of plane theory of elasticity, the normal and tangential components
of the stress tensor, can be expressed by Airy's stress function Φ(r,ϕ). When volume forces
are absent,  the stress function satisfies the Maxwell biharmonic partial differential equation
[10].

For the application of the method of complex variable function, we  express the stress
function by analytical functions of complex variable, and then we define the components
of the displacement vector and stresses, which satisfy  the boundary conditions on the
crack surfaces.

By decomposition of the state of plane strain one gets two basic modes of crack
deformation: mode I – crack opening (Figure 1.) and mode II – shear (Figure 2.).

8.1.1. Application of the complex variable function

The stress function Φ(r,ϕ) is defined by two analytical functions F(z) and χ(z) of the
complex variable z = r eiϕ [3, 10]. The normal and shear stresses as well as the
displacement vector are expressed by the stress function in polar coordinates as:
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Relation between stress function Φ(r,ϕ) and complex function F(z) can be found in
literature [10] and [17], in the form of:
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A more detailed derivation, of the final solution, can be seen in literature [6], [7] and
[17].

8.2 Shear of material out of crack plane

Mode III of crack deformation is shown in Figure 3. Out –of –plane shear of the
material is characterized by the displacement along the direction of  the z-axis i.e.,  w =
w(r, ϕ), while the other two displacements (u = 0, v = 0) are zero.

8.2.1. Stress and strain state for Mode III

The complex functions W(z) and Φ(z), which are used in analysis of the stress and
strain state in case of out of crack plane shear (mode III) have a form of a series:
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where z = reiϕ is complex variable.
Further details to determine the components of displacement w, the electric potential

ψ, the components of strain tensor,  the components of mechanical stress tensor, the
components of the vector of  piezoelectric displacement, the components of the vector of
the electric field can be found  in references [6], [7] and [17].

9. REVIEW OF DERIVED EQUATIONS – SOLUTIONS

A general characteristic of all described methods is that they lead to identical general
solutions for a specific number of series members. The most general method is that of
applying  the complex variable function (article 8), whose solutions can be shown for all
three modes of crack deformation individually [6], [7] and [17] as:
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Coefficients which appear in solutions for: Mode I, Mode II i Mode III (An, Bn, Cn,
Dn, E2n, F2n, E2n+1 i F2n+1), equations: (36) (66), depend from the crack form, dimensions
and shape of the specimen and the external load. They can be expressed by the stress
intensity factors KI, KII, and KIII [12, 17].

The crack behavior is studied in a piezoelectric material PZT-4 with density
ρ = 7500 kg/m3. This material belongs to hexagonal crystal system of crystal class 6mm
(C6v), and its material tensors are:

− matrix of elastic constants tensor at constant electric field:
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− matrix of piezoconstants tensor:
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− matrix of dielectric constants tensor at given strain:
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At this time, a numerical analysis of equations (36) (66) was performed in MATLAB.
The  system of equations represents a spatial solution of the crack problem in
piezoelectric material. As a result of a numerical analysis in MATLAB one gets spatial
diagrams of states, for Mode I, Mode II, and Mode III, of crack deformation of
normalized values: ψετετεεετσσσ ϕϕϕϕϕϕϕϕ ,,,,,,,,,,,,,,,,,,, wEEDDvuD rzzrzrrzrrzrzr

(Figs. 6 31).
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Mode I

Fig. 6. Mechanical stress ),( ϕσ=σ rrr Fig. 7. Mechanical stress ),( ϕσ=σ ϕϕ r

Fig. 8. Mechanical stress ),( ϕσ=σ rzz Fig 9. Mechanical stress ),( ϕτ=τ ϕϕ rrr

Fig. 10. Piezoelectric displacements
),( ϕ= rDD zz Fig. 11. Specific strain ),( ϕε=ε rrr

rσ

zσ

ϕσ

rϕτ

zD
rε
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Fig. 12. Specific strain ),( ϕε=ε ϕϕ r Fig. 13. Specific strain ),( ϕε=ε ϕϕ rrr

Fig. 14. Component displacement
),( ϕ= ruu

Fig. 15. Component displacement
),( ϕ= rvv

Mode II

Fig. 16. Mechanical stress ),( ϕσ=σ rrr Fig. 17. Mechanical stress ),( ϕσ=σ ϕϕ r

ϕε ϕεr

u v

rσ ϕσ
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Fig. 18. Mechanical stress ),( ϕσ=σ rzz Fig. 19. Mechanical stress ),( ϕτ=τ ϕϕ rrr

Fig. 20. Piezoelectric displacements
),( ϕ= rDD zz

Fig. 21. Specific strain ),( ϕε=ε rrr

Fig. 22. Specific strain ),( ϕε=ε ϕϕ r Fig. 23. Specific strain ),( ϕε=ε ϕϕ rrr

zσ ϕτr

zD rε

ϕε ϕεr
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Fig. 24. Component displacement
),( ϕ= ruu

Fig. 25. Component displacement
),( ϕ= rvv

Mode III

Fig. 26. Components of mechanical stress,
electric displacements and specific strain

),(],,[],,[ ϕετ=ετ rDD rzrrzrzrrz

Fig. 27. Components of mechanical stress,
electric displacements and specific strain

),(],,[],,[ ϕετ=ετ ϕϕϕϕϕϕ rDD zzzz

Fig. 28. Electric field ),( ϕ= rEE rr Fig. 29. Electric field ),( ϕ= ϕϕ rEE

u v

rzrrz D ετ ,, zz D ϕϕϕ ετ ,,

rE
ϕE
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Fig. 30. Component displacement ),( ϕ= rww Fig. 31. Electric  potential ),( ϕψ=ψ r

10. CONCLUDING REMARKS

From the analysis of the solutions of the methods presented in this work (references 6,
7, and 8), one can conclude that all methods lead to equal approximate solutions for a
finite number of the members of the series (n = 0,1,2,...). However, the method of
application of complex variable function (article 8) gives analytical solutions for n-
members of the series, when n → ∞. In the general case, these series are divergent, but
for finite number of series members, a satisfactory precision can be achieved

The method of representing the components (u, v, w) of the displacement vector s  by
a double infinite series of arbitrary functions (article 6) is complicated and lengthy and
gives solution in several steps (n = 0,1,2). Contrary, the other two methods are
substantially faster. In the method of decomposition into a state of  plane strain  and a
state of out of crack plane shear (article 7), in the first step one performs a decomposition
of the spatial problem into three basic modes of crack deformation, and then an analysis
of every single mode (Mode I, Mode II, Mode III) is performed. At last, when the crack
front is a curve in plane, or a curve in space, summing of the results according to
expressions (1) or (2), respectively, is performed.

One can see that in solutions (36)÷(66)  two independent variables, the polar radius r
and the polar angle ϕ appear. Numerical results of the analysis of obtained solutions, for
all three modes of deformation are processed in MATLAB, for a polar-cylindrical system
of coordinates. Thus one gets spatial diagrams of the normalized values of tensor
components of mechanical stress, piezoelectric displacements, specific mechanical strain,
displacement vector s , electric field, and electric potential (Figure 6. ÷ Figure 31).
Spatial diagrams obtained by programming in MATLAB show influence of every
component on crack growth process in piezoelectric material, which represents a detailed
spatial analysis of the state of previouly mentioned tensors in the vicinity of the crack tip.
The influence of the values that reach their extremes on the crack surfaces, and on its
front is significant, because they substantially affect the propagation (growth) of the
crack in a piezoelectric material, and must not be neglected.

From figures 6 to 31 one can observe that the singularity of the components of the
tensor  of mechanical stress, piezoelectric displacements, relative mechanical strain, and

w ψ



Methods for Solving Problems of Electroelastic Piezoelectric Bodies with Defect Applying Spatial Analysis...531

electric field, results from the theoretical solution only, because pure elasticity practically
does not occur (ideally elastic materials). Even at small deformations of any type, a
plastic zone is formed immediately around the crack tip, which makes the stress values
finite. If the nonlinear area at the crack tip is so small, that it is completely contained in
the field of elastic stresses, then its influence on the stress distribution at some distance
from the crack front can be expressed by stress intensity factors KI, KII, KIII, which
represent a measure of the stresses near the crack tip.

From the obtained results, one can conclude that the existence of a crack in a stressed
piezoelectric material leads to a stress redistribution and concentration, and the tensors of
mechanical and piezoelectric stress at the crack tip become infinitely large. The crack tip
is then a point of stress singularity, and the location of the highest stress concentration. In
that point the piezoelectric material is most sensitive to the subsequent occurrence of
fracture.

The methods of analysis presented in this paper contribute to the methodology for
analysis of the influence of the various parameters on crack growth, which helps in the
design and reduces unnecessary cost of very expensive experiments.

General characteristics of the present work are summarized as:
- An analysis of the form and orientation of the crack was performed. Other forms

of cracks and their orientation were not studied of this paper.
- The methods of spatial analysis presented in this work can be applied to other

kinds of materials with cracks.
- These methods can be used for the analysis of the crack behavior in piezoelectric

materials, as well as to control a great number of parameters, which can affect
crack growth.

- An analysis is given for determining the critical size of a fault of crack type, and
for other forms of crack deformation and directions of load action. These results
are useful  for producers and users of piezoceramic materials.

- Agreement of results obtained by different analytical methods was obtained.
The method of decomposition into plane strain state and out of plane shear, as well as

the method of application of complex variable function (reference 7 and  8) represent a
qualitatively new approach in research of these problems. Decomposition of the spatial
stress into three components of  stress for the three basic forms of crack deformation was
needed not only to enable an easier approach in determining analytical solutions, but also
to individually identify the influence of every component on crack propagation in
piezoelectric materials. Based to such approach, analytical solutions and spatial diagrams
of the state of crack deformation in piezoelectric material for all modes of deformation
were obtained  individually (Figures 6 to 31).
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METODE ZA REŠAVANJE PROBLEMA  NAPREZANJA
ELEKTROELASTIČNIH PIEZOELEKTRIČNIH TELA SA

DEFEKTIMA PRIMENOM SPECIJALNE ANALIZE I MATLABA
Katica (Stevanović) Hedrih, Ljubiša Perić

U radu je dat pregled metoda koje su primenljive za izučavanje stanja mehaničkih napona,
stanja deformacija i stanja električnog polja polarizacije u okolini vrha konstruktivne prsline u
ploči beskonačnih dimenzija i od piezoelektričnog materijala. Korišćenjem različitih metoda
proučena su analitička rešenja, kao i grafičke vizualizacije stanja mehaničkog napona, stanja
deformacije i stanja električnog polja polarizacije u tačkama u okolini vrha prsline u ploči od
piezokeramičkog materijala. Korišćene su mogućnosti MATLABA.
Ključne reči: Piezoelektrično telo, prslina, defekt, analitičke metode, stanje napona,

stanje deformacija, električno polje, vizuelizacija, MATLAB.


