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Abstract. The theory of fracture mechanics has two main approaches to the problem of
crack propagation: the continuum mechanics, and the atomic approach. They are
presented in classical literature of fracture mechanics listed in [3], [4], [5], [9], [10],
[11], [15], [18] and [19]. Expecting that duality of approaches will be over passed by
integrative theory in the future, this paper deals with the atomic approach of cracks
inside a discrete model of material (atomic lattice).  Solids may be represented as
systems of discrete masses linked by interacting forces, interatomic forces or simple
bonds. Not only mechanical loads are involved in crack growth, but also chemical,
thermo-mechanical, electro-mechanical, acoustic and other physical phenomena are
also involved. Ability of a discrete model to explain crack healing, slow subcritical
crack growth, sound generation during crack propagation, effects of chemical
processes at the tip of the crack, nonlinearity of stress, strain and energy distribution in
the crack tip region, influence of temperature on crack propagation and gives great
advantage to procedures based on model of discrete masses (atomic lattice). Two
intrinsic interatomic force functions are used to represent mechanical interaction
between the neighboring atoms (discrete masses) in lattice. Released potential energy,
as a result of crack propagation through the lattice, by breaking interatomic bonds is
presented. One- and two-dimensional models of lattice and relations for total potential
energy of selected models of lattice are presented.
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1. INTRODUCTION, FRAMEWORK

Fracture is a complex phenomenon caused by rapture of chemical bonds between the
neighboring atoms. Many different sources of fracture exist. The beginning of the
fracture can be caused by defects in the lattice, like the irregular position of the arbitrary
atom in the lattice, or the absence of an atom in the lattice knot, or substituting of a one
element atom by another (chemical element) atom. Bond force is defined as the
differential with respect to distance between atoms of the function of the interatomic
potential energy. Lattice of discrete model interferes with the free development of the
crack and acts as a barrier to the crack development. One of the first discrete models was
developed by Thomson, Hsieh, Rana and Fuller. Orowan (1949) and Gilman (1960) had
already discussed single nonlinear crack-tip bond. If smaller and smaller elements of
volume are considered, models of continuum based fracture mechanics are more and
more inadequate. The introduction of discrete model and lattice spacing takes us closer to
real physical structure of material, but mathematically, simplicity and generality of
continuum mechanics are lost.

According to G. C. Sih [17]: "Classical thermodynamics and continuum mechanics
have not been able to explain the irreversible nature of material behavior, simply because
their formulations are based on oversimplifying and physically unrealistic assumptions."
Locally, material elements can experience multiaxial stress and strains even though the
remotely applied load is pure tension or  compression [12-14]. On the other hand, it is
shown that a great number of physical objects with localized energy are described
theoretically with the same mathematical structure [1]: the energy is the sum of two terms
(one is a nonconvex function of field variables and the other is quadratic function of their
derivatives).  From this arises a question about the mathematical form which has the
possibility to describe the localized energy structures as regions of high field gradients.
Such theory should be nonlinear. Following this, the mathematical form of localized
energetic structure should be [1]:
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where: u(x) - is a scalar field, F(u) - is the energy density (nonconvex).
In paper [1] the authors suggested that if we denote by u(x) the relative displacements

of atoms on both side of a sliding plane, the elastic energy of distortion is due to
interaction of atoms along the sliding plane, and this is periodic function sin(2⋅π⋅u/b) of
displacement u(x) with period b (b- is lattice parameter).

"On the other hand: the argument that whether matter is made of invisible atoms or of
an underlying continuum has been debated, but still is not completely resolved in
scientific terms. The possibility that the two opposite concepts of particle and field may
not be mutually exclusive and may represent different aspects of the same reality is still
open. The late Albert Einstein argued strongly against the coexistence of field and matter.
He regarded matter as being constituted by the regions of space in which the field is
extremely intense and believed that field is the only reality. (Sih G. C. [18])
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2. INTRINSIC INTERATOMIC COHESIVE FORCES

One of the sources of crack-tip singularity in continuum linear elastic solutions is the
application of Hooke's law  beyond its limits of validity (see Figure 2 and 3). The
simplicity of linear elastic fracture mechanics solutions provides useful physical insights
into the nonlinear nature of crack initiation and propagation. Approximation of Hooke's
law is replaced by sine function or by more accurate potential function to describe stress -
strain or force - deformation function. Stress (force) separation function rise up to a
maximum, as the crack tip approaches to atomic bond, and decrease asymptotically to
zero, when atomic bond is broken. In this way, process of crack propagating can be
described as a step by step breaking of atomic bonds, but at the same time as a continual
process (described by continual functions). Before the atomic bond is completely broken
(force of interatomic interaction is close to zero), next bonds along the chain are stretched
(see Figures 12, 17 and equation 3). Propagation of the crack tip through the chain of
atoms is connected with nonlinear response of the atomic bonds at the surrounding.
Rheological models for corresponding materials can be used to represent the response of
atomic bonds in the lattice of discrete material points as [6].

Gilman approximated the interatomic bond force-displacement function by a half-sine
curve [10, 11]:
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Interatomic forces are dependent on the type of bonding, and can be presented as
related to interatomic distance b, by [10]:
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where:  n  represents attractive forces (n is 2 for ionic bonding and n=7 for Van der
Waal's bonding), m represents repulsive forces (for closed electron shells m can be 12), bo
is the spacing in atomic lattice on zero stress level (equilibrium lattice spacing) and b is
the  lattice spacing on some stress level.

If  (b − b0) is equal to 2u (see Figure 12), we may write strain of atomic bond as:
εb = 2u/bo.

From the  stand point of approximated forces of interatomic bonds which are given by
equations (2) and (3) it is understandable why the maximum of σy [15] is shifted from the
crack tip up to some distance (Figure 1). Atomic bonds behind σmax on Figure 1 are
stretched over maximum of interatomic force, and interatomic force is decreasing like it
is shown in Figures 2, 3 and 4. Interatomic bonds are not broken at that region, but there
is irreversible part of deformation and it looks like the crack tip as determined by forces
is ahead of the crack tip as determined by the geometric contour.
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3. INTERATOMIC  POTENTIAL  ENERGY

The cohesion energy for the separated crack-tip bond when the bonds are stretched up
to the breaking displacement 2ui is defined by:

)2()(0 iiBBB uduFU ∫
δ= (4)

Let's consider a system of tree atoms or discrete material points conected with bonds.
If we create a three dimensional surface, representing the potential energy of this system,
low regions  correspond to low potential energy, and high regions corespond to high
levels of potential energy (shown in Fig. 5). Crack propagates from one valley to the
another, through a saddle point between the crests of the hills of energy surface. The path
of the crack trajectory from one valley of energy to the other is the activation path wich
depends on the level of the activation energy. The system is stable at the bottom of the
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valley. The height of the saddle point between two valleys is the level of activation
energy needed to activate crack propagation or to breake interatomic bond.
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Fig. 5. Surface of potential energy for system of three atoms
bonded by atomic interaction

Influence of  potentials m and n od the value of potential emergy of an atomic bond is
shown on Figure 7. Values of m are changing from 5 to 12 and values of n are changing
from 2 to 7.

Ep

valley

saddle

saddle

isoenegy lines

Ubond

Fig. 6. Isoenergy lines projected on x-y plane Fig. 7. Surface of potential energy
for system of three atoms bonded depending on value of m and n
by atomic interaction
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4. DISLOCATION OF ATOMS IN TWO AND THREE  DIMENSIONAL LATICE

It is shown that the interatomic force is directly related to the interatomic distance.
Displacement of one atom in latice causes changes of distancesbetween neibouring atoms.
Further, changing of interatomic distances from zero equilibrium configuration (asumption
that interatomic forces are equal to zero) in the lattice, to some new equilibrium
configuration, when forces in atomic bonds are different from zero, cause change of the
interatomic forces and the interatonic potential energy. Changes of distances between the
knots in latice cause changes of volume as well as changes of directions (angle between
atomic bonds) and this generates new shape of lattice (see Figures 8, 9 and 17).
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According to Figure 8, absolute deformations ∆lx and ∆ly of atomic bonds in x and y
direction, for two-dimensional lattice are given by the following relations
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According to Figure 9, absolute deformations∆lx, ∆ly and ∆lz, of atomic bonds in x and
y direction, for three-dimensional lattice are given by the following relations
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5. TOTAL POTENTIAL ENERGY OF THE SYSTEM

If we consider a pair of atoms, we can draw a curve to represent a force of interatomic
interaction, as well as a curve to represent the energy of their interaction as a function of
interatomic distance. The released strain energy U in relation (16) is equal to the area
under the F-curve in Figure 3. The released strain energy U in relation (18) is equal to the
area under the F-curve in Figure 2. For the force-displacement function given by relations
(2) and (3), by using relations (4), we get the released potential energies given by
equations (17), and (19). Graphical visualization of the released potential energy for both
assumed force - displacement functions are presented in Figures 10 and 11.
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The total potential energy of the lattice presented in Figure 12 may be written as a
function of displacements uj of atoms along the chain [11]. The first term in relation (20)
is the energy of the nonlinear strained bond in front of crack tip. The second term in
relation (20) is the released potential energy of broken bonds behind the crack tip. The
third term is the strain energy of stretchable elements ahead of the crack tip. The fourth is
the strain energy is potential energy of applied loading system.
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where: cy , cxy - rigidity of atomic bonds (y - direction and bending, respectively), and:



Potential Energy State During Crack  Propagation in Discret Model of Material 567

∫
δ

⋅=
0

)2()( iiBBB uduFU (21)

The released strain energy UBB  in relation (21) is equal to the area under the F-curve
on Figures 2 and 3. For force-displacement function given by relations (2) and (3), by
using relations (4), we are getting released potential energies given by equations (16),
(17), (18) and (19). Released potential energy for both assumed force displacement
functions are presented on Figures 10 and 11.

Continual motion of crack tip through one-dimensional model of lattice (see Figures
12) may be described by relation (22) (Lawn B. [11]) and its graphic is presented in
Figure 13.
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where: ao is the interatomic distance, G* is the rate of released mechanical energy, ΓB - is
the lattice-trapping modulation factor in cohesion energy, γB  - is the intrinsic surface energy
of solid body, ΓB, γB are material quantities).

If we assume that the potential energy of atomic two-dimensional cubic lattice is
distributed according to the sine law:
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we get the  surface of potential energy shown on Figure 14,  15, and 16.  Shape of potential
energy surface depends on prescribed parameters a, b and c in assumed function.
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dimensional atomic chain (Fig. 12) possible trajectories of crack

propagation through a saddle points

To produce crack growth for one step, available activation energy must be higher than
height between the bottom of the valley and saddle point. Sources of activation energy
are mechanical waves, fluctuation of thermal energy, and random changes of interatomic
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distances caused by vibrations of atoms around their geometric locations (equilibrium
positions) and external loading conditions. When external load is applied in this way that
the atomic distances are increased up to the critical level, the force rises up to a maximum
and the activation energy is high enough to overpass the crest of the saddle point. In the
case when the breaking of atomic bonds supplies enough energy for the next step of crack
propagation (breaking next bond or overpassing next saddle point), the crack continues to
propagate without external sources of energy (see Figures 13, 14, 15, and 16). Randomly
distributed, varying kinetic energy is in fact the thermal energy, and local fluctuation of
interatomic distance is connected with fluctuation of thermal energy.

zU (x, y)

U(x,y)

Fig. 15. Surface of potential energy for Fig. 16. Projection (x-y) of potential energy
two-dimensional x-y lattice and surface and possible directions
possible trajectories of crack propagation of crack propagation

The total potential energy of the system of material points (two-dimensional lattice
shown on Figure 17) may be written as a function of displacements u j and released
potential energy of broken atomic bonds as
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Total potential energy of two-dimensional lattice is:
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Research done in references [12], [13] and [14] (on macroscopic level and by using
FEM) indicated that the influence of crack on the distribution of strain (deformation)
energy is limited over relatively short distances.

The surface of the specific strain energy Adef  = f (x,y) for plane z = 0 is presented in
Fig. 19. It can be seen from Fig. 19 that redistribution of deformation energy resulted
with high energy on crack front, where the "mountain of energy" has a peak. On the other
hand, there is a valley, with an energy level lower than the general (or global) energy
level 1=defA . The bottom of the valley has 185.0=defA . It is visible in Fig. 19 that
distribution of strain energy resulted with high value of energy in front of crack tip,
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where the peak of energy stored in material exists. It can be seen from Fig. 18 that the
specific deformation (strain) energy increases from the  middle plane z = 0 to the front
and back free surface of the plate, and that peaks of energy are close to free surfaces of
the plate.

Regions of the plate further from the crack remain undisturbed and deformation energy
is clearly constant. Also, the stress state at a distance higher than one plate thickness is
evidently two-dimensional, and the stresses are independent of the thickness coordinate.
This gives us the opportunity to draw the conclusion that the influence of the crack is local
and the rest of the plate stays “undisturbed”. This analysis suggests that analytical solutions
should be locally three-dimensional.

The derivation that the peak of energy is located not just on the edge of the crack, but
on some distance [14], coincides with the conclusions driven from the atomic (discrete)
model of material (see Figures 1, 2, and 3).

crack  tip  front

Fig. 18. Reconstructed surface of  the specific Fig. 19. Reconstructed surface  of  the specific
deformation (strain) energy deformation (strain) energy
Adef   = f (x,y) for plane y = 0. (Ref. [14]) Adef  = f (x,y) for plane z = 0. (Ref. [14])

6. CONCLUSIONS

Interactions of different physical phenomenon involved in initiation and propagation
of cracks, and in the process of fracture and damage, have directed research towards
analyzing processes at atomic and molecular level. Capability of modern experimental
equipment gives the opportunity to record data about values and processes at atomic
level. A synthesis and a short review of the results produced by the researchers listed in
the references of the present paper, and some results of author are given. There is
consistency between conclusions based on discrete (atomic) and macroscopic models,
related to potential energy distribution in vicinity of the crack tip. Two assumed
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functions of interatomic forces are presented and their relation with the potential energy
is analyzed. Is is shown that: The site of fracture coincides with the location of
minimum strain energy density, and yielding with maximum strain energy density (Sih
G. C., see Ref. [17]).

Acknowledgment: This research is supported by Science and Technology Ministry of Serbia, grant
number 1616, Project: Real problems of Mechanics, through Mathematical Institute SANU, Belgrade.

REFERENCES

 1. Berdichevskii V., Truskinovskii L., Energy Structure of Localization, Local Effects in the Analysis of
Structures, Edited by Pierre Ladeveze, Elsevier, New York, 1985

 2. Brankov G., Fracture Theory at Atomic Level, Journal of Theoretical and Applied mechanics, Year
XXIV, No 2, Sofija, 1993.

 3. England A., (1971), Complex variable Methods in Elasticity, London.
 4. Gdoutos E. E., Fracture Mechanics, Kluwer Academic Publishers, Dordrecht, 1993
 5. Gdoutos E. E., Problems of mixed mode crack propagation, Martinus Nijhoff Publishers, Kluwer

Academic Publishers, The Hague, 1984
 6. Goroško O. A., Hedrih (Stevanović) K., Analitička dinamika (mehanika) diskretnih naslednih sistema,

Izdavačka jedinica Univerziteta u Nišu, 2000, Niš
 7. Gurtin E. Morton, The Nature  of  Configurational Forces,  Arch. Rational Mech. Anal. 131 pp 67-100,

Springer-Verlag, 1995
 8. Hedrih (Stevanović) K., Discrete Continuum Method, Symposium, Recent Advances in Analytical

Dynamics-Control, Stability and Differential Geometry, pp.30-57, 2002, Mathematical Institute SANU
Belgrade

 9. Krausz A. S.,  Krausz K., Fracture Kinetics of Crack Growth, Kluwer Academic Publishers, Netherlands,
1988

 10. Knott J. F., Met B., Fundamentals of Fracture Mechanics, Butterworth & Co (Publishers) Ltd London, 1973
 11. Lawn Brian., Fracture of brittle solids, Cambridge University Press, Cambridge, 1993
 12. Jovanović  B. D.,  Jovanović  M.,  Local stress and strain state in the region of crack for different global

stress states in a plate, YUSNM,  Niš 2000, Facta Universitates, Series  Mechanical Engineering, Vol. 1,
No. 7. , 2000, pp 925-934.

 13. Jovanović  B. D., Jovanović  M.,  Stress state and strain energy distribution at the vicinity of elliptical
crack with compression forces acting on it's contour, YUSNM,  Niš 2000, Facta Univers., Series
Mechanics, Automatic Control and Robotics, Vol. 3, No. 11, 2001, pp. 223-230

 14. Jovanović B. D., Stress state and deformation (strain) energy distribution ahead crack tip in a plate
subjected to tension, Facta Universitatis., Series Mechanics, Automatic Control and Robotics, Vol. 3, No.
12, 2002, pp. 443-455

 15. Parton V. Z., Fracture Mechanics - From Theory to Practice, Institute of Chemical Engineering,
Moscow, Gordon and Breach Science Publishers,  1992

 16. Pindera J. T., and Wen B., Isodyne Evaluation of Three-Dimensional Stresses in Standard Compact
Specimen, SEM Spring Conference on Experimental Mechanics, Proceedings,  895-902, June,
Milwaukee, Wisconsin, 1991

 17. Sih G. C.,  Prediction of crack growth characteristics, Proceedings of an International Symposium on
Absorbed specific energy and/or strain energy density criterion, pp 3-16, Martinus Nijhoff Publishers the
Hague, 1982

 18. Sih G. C.,  Thermal/Mechanical interaction associated with the micromechanisms of material behavior,
Institute of Fracture and Solid Mechanics, Lehigh University, Bethlehem, Pennsylvania,  1987

 19. Theocaris P. S.,  The strain-energy-density criterion-investigation for its applicability, Proceedings of an
International Symposium on Absorbed specific energy and/or strain energy density criterion, pp 17-32,
Martinus Nijhoff Publishers the Hague, 1982



572 D. B. JOVANOVIĆ

STANJE POTENCIJALNE ENERGIJE
U TOKU NAPREDOVANJA PRSLINE

U DISKRETNOM MODELU MATERIJALA
Dragan B. Jovanović

Teorija mehanike loma ima dva osnovna pristupa problemu napredovanja prsline:
− mehanika kontinuuma i
− atomistički pristup.
Oni su prikazani u klasičnoj literaturi mehanike loma [3], [4], [5], [9], [10], [11], [15], [18],

[19]. Očekujući da će dualnost ovih pristupa biti prevaziđena integrativnom teorijom mehanike loma
u budućnosti, ovaj rad se bavi atomističkim stanovištem. Atomistički pristup razmatra prsline unutar
diskretnog modela materijala (atomska mreža). Čvrsta tela se mogu prikazati kao sistemi diskretnih
masa povezanih silama uzajamnog dejstva, međuatomskim silama ili jednostavno (vezama). Nisu
samo mehanička opterećenja uključena u rast prsline, već takođe hemijske, termo-mehaničke,elektro-
mehaničke, zvučne i druge fizičke pojave. Sposobnost diskretnog modela da objasni zarastanje prsline,
spori podkritični rast prsline, stvaranje zvuka u toku napredovanja prsline, uticaje hemijskih procesa
na vrh prsline, nelinearnost rasporeda napona, deformacija i energije u oblasti vrha prsline, uticaj
temperature na napredovanje prsline, daje veliku prednost postupcima zasnovanim na modelu
diskretnih masa (atomska mreža).

Dve svojstvene funkcije međuatomskih sila su korišćene da prekažu mehaničku interakciju između
susednih atoma (diskretnih masa) u mreži. Prikazana je oslobođena potencijalna energija kidanjem
međuatomskih veza, kao posledica napredovanja prsline kroz mrežu. Prikazani su jedno dimenzionalan
i dvodimenzionalan model mreže i relacije za totalnu potencijalnu energiju izabranih modela mreže.

Ključne reči: prslina, matematička forma lokalizovane energetske strukture, diskretni model
materijala, atomska mreža, funkcije međuatomskih sila, potencijalna energija
atomske veze, totalna potencijalna energija mreže, energija aktiviranja, površine
energije deformacije.


