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Abstract. In this paper the problem of a crack lying along the interface of a thin film
and a substrate is considered. For thin layers, the residual tensile stresses that develop
in the layer are of major importance. In the present paper an interpretation of this
problem by the concept of linear elastic fracture mechanics is presented. The energy
release rate and the stress intensity factor are determined in terms of a dimensionless
factor,ω, that is function of specimen geometry and elastic material properties. The
problem of thin layers under conditions of residual tensile stresses is of utmost
importance in applications related to composite materials manufacturing, electronic
devices design, protective coating, among others.
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1. INTRODUCTION

The most interesting problem of thin films is that of films subjected to residual tensile
stresses. Films in tension can decohere from the substrate by relaxing the residual stress
in the film above the interfacial crack. Decohesion takes place when energy release rate
of interface Gint., exceeds the interface debonding energy Gcleav., i.e.,

..int cleavGG ≥ (1)

However, interface-debonding energy may be a strong function of the mode mixity ψ.
It is not sufficient to know only the energy release rate of the interface but the mode
mixity ψ must also be calculated.
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2. INTERFACE CRACK

The specific problem of crack lying along bimaterial interface of two linearly elastic
isotropic materials, is presented in Figure 1.
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Fig. 1. Interface crack between two dissimilar materials

Let a material with elastic properties E1, ν1, µ1 occupy the upper half - plane, y > 0,
and material with elastic properties E2, ν2, µ2 occupy the lower half - plane, y < 0. The
two materials 1 and 2 are bonded along the positive part of the x - axis.

The near tip stress field for an interfacial crack between dissimilar isotropic
bimaterials is a linear combination of two types of fields. The first is coupled oscillatory
field defined by a complex stress intensity factor K, while the second is non - oscillatory
field scaled by a real mode III stress intensity factor KIII. The near tip stress field for an
interface crack has the form:
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here r and θ are polar coordinates and indices α, β refer to coordinates x, y, z. )(,, θΣαβ
IIIIII

are the angular functions which correspond to tensile tractions, in - plane shear tractions
and anti - plane shear tractions across the interface, respectively, so that the tractions, at
distance r ahead of the crack tip, take the form:
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and in this sense may be said that )(,, θΣαβ
IIIIII  correspond to modes I, II and III of crack

growth, [3].
There is no unique physical interpretation for bimaterial interfacial crack, such as in

homogeneous materials. Namely, symmetry and anti - symmetry modes are entirely
separated for homogeneous material. For interface crack, symmetry and anti - symmetry
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modes are coupled together. However, )(, θΣαβ
III  also depend on elastic properties of

bimaterial combination through the parameter ε. The parameter ε is called the bielastic
constant or the oscillatory index, and is given by:
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Here β is one of two Dundurs parameters, [4]:
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where: µi  is the shear modulus, κi = 3 − 4νi for plane strain and κi = (3 − νi)/(1 + νi) for
plane stress and νi  is the Poisson's ratio and subscripts 1 and 2 refer to materials 1 and 2,
respectively.

In equation (1) KIII presented the mode III stress intensity factor, which has the same
form as for homogeneous solid. As opposite to homogeneous material, where mode I and
II factors are separated, KI and KII, for the interface crack there is a single complex stress
intensity factor K for in - plane modes. Those two stress intensity factors have different
dimensions, K = [stress][length]1/2-iε and KIWI = [stress][length]1/2.

The complex stress intensity factor is a property of interface crack. That complex
stress intensity factor has the generic form:

ψ−ε−= ii eLLYTK , (5)

where T is a stress magnitude due to load applied to specimen (load), L - a characteristic
length (crack length, layer thickness), Y - a dimensionless real positive quantity, and ψ is
a phase angle of  Kaliε. It is often called the phase angle of the complex stress intensity
factor, or the phase angle of the applied load. Both Y and ψ are dependent on applied load
in general, on the ratio of elastic moduli and of characteristic dimensions of the cracked
body.

Considering equations (1) and (2), one may conclude that for bimaterial case KI and
KII are not constant. In fact, they are  defined as functions of r and denoted as K1 and K2:
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For ε = 0 the mode mixity ψ can be defined in the usual way, [5]. When all three
modes are present, the mode mixity is fully specified by two solid angles, ψ and φ, in the
space of the interface traction vector t = {σyx, σyy, σyz}, [3]:
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An equivalent definition can be given in (KI , KII, KIII) space:



576 J. M. VELJKOVIĆ, R. R. NIKOLIĆ

222
cos,

IIIIII

III

I

II

KKK

K
K
Ktg

++
=φ=ψ (8)

For ε ≠ 0 tension and shear effects, near the interface crack tips, are inseparable. A
measure of the relative proportion of shear to normal tractions (or mode II to mode I)
requires the specification of a characteristic length quantity L̂ . For oscillatory fields the
mode mixity is uniquely specified by:
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The length L̂  is arbitrary but must it be constant for a material pair, i.e., L̂  must be
independent of the overall specimen size and type. A length, which is between the inelastic
zone size and the specimen size, depends on selection of L̂ . For example, mL µ= 100ˆ  is
suitable for many brittle bimaterial specimens in laboratory research.

Using the stress field (1), or the tractions (2), the mode mixity ψ̂  and φ, can also be
defined in  the K space as:
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The energy release rate is related to K and KIII by:
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3. INTERFACE CRACKS IN BILAYERS

The above results are used to analyze a semi-infinite interface crack between two
isotropic elastic layers under generalized edge loading conditions, Figure 2, [2]. The
problem shown in Figure 2(c) is obtained as superposition of problems shown in Figures
2 (a) and (b).

Force and moment equilibrium dictate that, [6]:

0321 =−− PPP  (12)
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Only four among these six loading parameters are actually independent. These are P1,
P3, M1 and M3. The number of independent load parameters can be further reduced to
only two, through superposition (Figure 2). These parameters are force and moment,
given by:
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where the C's are dimensionless numbers. Following calculations in [2], section 2.3.1,
one obtains the necessary variables for calculating the complex stress intensity factor.
Force and moment parameters are then:
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and the energy release rate can be computed from the difference between energy stored in
the structure per unit length far ahead and far behind the crack tip.
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Fig. 2. Superposition scheme for the bimaterial structure with generalized edge loading
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with:
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Thus, the corresponding stress intensity factor is:
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where:
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The linearity and dimensional considerations lead to the following general expression:
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where a and b are dimensionless complex numbers, which can be found by substitution of
equation (18) into equation (19), yielding:

baba +=γsin2 , (20)
such that:
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where ω is a real angular function of α, β and η, tabulated by Suo and Hutchinson, [1]. In
this paper their results are substituted by Mathematica program simulation of ω and it is
presented by the following expression:
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Taking as the reference length the film thickness h, one obtains:
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In accordance with equation (10), the mode mixity, at the prescribed length r = h
ahead of the crack tip for the planar conditions, is given by:
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The mode mixity ψ is plotted in Figure 3 as function of α for various film/substrate
thickness ratios η. This diagram is obtained with variable ω calculated by Mathematica
program package.

The mode mixity obtained from (24), for various bimaterial systems, is shown in
Figure 4. This phase angle is small for bimaterial system, while it takes value ψ = 50° for
homogeneous case and thin film/substrate systems.
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Fig. 3. Mode mixity versus parameter α
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Let us denote the energy release rate for semi - infinite crack lying along the interface
as Gi, (given by equation (11) for planar problem), and energy release rate for steady -
state substrate as G, (given by  equation (16)). The ratio G/Gi is shown in Figure 5 as a
function of α for various values of the ratio η of the film to substrate thickness. This ratio
is relatively independent of the  bimaterial system properties and it varies between 0.55
and 0.83.

Let GC be the substrate toughness and let GiC be the interface toughness. If
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the system is more likely to fracture by interface then substrate failure and visa-versa.

4. CONCLUSION

In this paper the problem of the crack lying along the interface between two layers
and the problem of the crack on joining of thin film and the substrate are considered,
using the linear elastic fracture mechanics concept of a crack along an interface. The
energy release rate can be calculated from equation (16). Comparing those values with
the values of the energy release rate for the substrate or thin film, we can define where
the crack is going to propagate: into the substrate, into the thin film or along the interface.
Values of the energy release rate, the stress intensity factor and mode mixity parameter
are determined in terms of only one dimensionless factors ω, which is a function of sample
geometry and materials elastic properties. The thin layers problem, under conditions of
residual tensile stresses, gives the appropriate model for solving problems in the area of
composite materials manufacturing, electronic devices design, protective coatings problems,
as well as for other applications.
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PRIMENA KONCEPTA INTERFEJSNE PRSLINE NA PROBLEM
PRSLINE IZMEDJU TANKOG SLOJA I OSNOVE

Jelena M. Veljković, Ružica R. Nikolić

U radu se razmatra problem prsline na spoju tankog filma i osnove. Za tanke slojeve najvažniji
je problem slojeva izloženih zaostalim zateznim naponima. U radu je prikazana interpretacija ovog
problema primenom koncepta linearne elastične mehanike loma za prslinu na intefejsu. Odredjene
su veličine brzine oslobadjanja energije i faktora intenziteta napona u zavisnosti od samo jednog
bezdimenzionog faktora ω, koji je funkcija geometrije uzorka i elastičnih karakteristika materijala.
Problem tankog sloja, u uslovima zaostalih zateznih napona, predstavlja adekvatan model za
rešavanje problema u oblasti proizvodnje kompozitnih materijala, projektovanja elektronskih
uredjaja, problema zaštitnih prevlaka i drugih.

Ključne reči: koncept interfejsne prsline, tanak film, zaostali naponi, faktori intenziteta napona.


