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Abstract. The notion of the quasi conformal curvature tensor C* of type (1,3) in a
Riemannian manifold (Mn,g) (n>3) was introduced by M. C. Chaki and M. L. Ghosh
[1] according to whom

C*(X,Y,Z) = aR(X,Y,Z) + b[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX – g(X,Z)QY]

− r
n

[
1

a
n −

 + 2b][g(Y,Z)X –g(X,Z)Y]

where a and b are  constants, R is the Riemann tensor of type (1,3), S is the Ricci tensor
of type (0,2), Q is the Ricci tensor of type (1,1) and r is the scalar curvature of the
manifold.
In this paper, a four-dimensional perfect fluid space-time with a Lorentz metric of signature
(+,+,+,−) and non-zero scalar curvature, admitting a quasi conformal curvature tensor
,has been considered.
It is shown that, if such a fluid space-time with unit timelike velocity vector field obeys
Einstein’s equation with cosmological constant and its quasi conformal curvature
tensor is divergence-free then the fluid is shear-free, irrotational and its energy density
is constant over the hypersurface orthogonal to the velocity vector field.

1.  INTRODUCTION

The notion of the quasi conformal curvature tensor C* of type (1,3) in a Riemannian
manifold (Mn, g) (n>3) was introduced by M. C. Chaki and M. L. Ghosh [ 1 ] according
to whom

* ( , , ) ( , , ) [ ( , ) ( , ) ( , ) ( , ) ]

                     [ 2 ][ ( , ) ( , ) ]
1

C X Y Z aR X Y Z b S Y Z X S X Z Y g Y Z QX g X Z QY
r a b g Y Z X g X Z Y
n n

= + − + −

− + −
−

(1.1)
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where a and b are  constants, R is the Riemann tensor of type (1,3), S is the Ricci tensor
of type (0,2), Q is the Ricci tensor of type (1,1) and r is the scalar curvature of the
manifold. Defining

( , ) ( , ) ( , )
2( 1)

rL X Y S X Y g X Y
n

= −
−

, (1.2)

g(NX,Y) = L(X,Y) (1.3)

and
g(QX,Y) = S(X,Y) (1.4)

the following relation is obtained

NX = QX − 
2( 1)

r
n −

X        or       N = Q − 
2( 1)

r
n −

I . (1.5)

Consequently (1.1) can be expressed as follows:
* ( , , ) ( ( , , ) [ ( , ) ( , ) ( , ) ( , ) ]

                     [ ( , ) ( , ) ]
C X Y Z aR X Y Z b L Y Z X L X Z Y g Y Z NX g X Z NY

r g Y Z X g X Z Y
= + − + −

− β −
(1.6)

with
( 2)
( 1)

a n b
n n
+ −β =

−
. (1.7)

In this paper, a four-dimensional perfect fluid space-time with a Lorentz  metric of
signature (+,+,+,−) and non-zero scalar curvature, admitting a quasi conformal curvature
tensor ,has been considered.

It is shown that, if such a fluid space-time with unit timelike velocity vector field
obeys Einstein’s equation with cosmological constant and its quasi conformal curvature
tensor is divergence-free then the fluid is shear-free, irrotational and its energy density is
constant over the hypersurface orthogonal to the velocity vector field.

2. PRELIMINARIES

From (1.5) we obtain

N = Q − 
2( 1)

r
n −

I (2.1)

Taking the divergence of this equation we have

div N = div Q − 
2( 1)

dr
n −

(2.2)

where "d" denotes the operator of exterior differentiation. But

div Q = 1
2

dr. (2.3)



 On a Perfect Fluid Space-Time Admitting Quasi Conformal Curvature Tensor 845

Therefore from (2.2) we get

div N = ( 2)
2( 1)

n
n
−
−

dr. (2.4)

Next, differentiating (1.6) covariantly with respect to W, we obtain

 (∇WC*)(X,Y,Z) = a(∇WR)(X,Y,Z) + b[(∇WL)(Y,Z)X – (∇WL)(X,Z)Y (2.5)
                            + g(Y,Z)(∇ WN)(X) – g(X,Z)(∇ WN)(Y)] – βWr[g(Y,Z)X – g(X,Z)Y].

Contracting (2.5) and using (2.4) we get

 (divC*)(X,Y,Z) = a(div R)(X,Y,Z) + b[(∇XL)(Y,Z) – (∇YL)(X,Z)] (2.6)

+ [ ( 2)
2( 1)
n b

n
−

−
 − β] [g(Y,Z)dr(X) – g(X,Z)dr(Y)].

But we know that
(div R)(X,Y,Z) = (∇XS)(Y,Z) – (∇YS)(X,Z). (2.7)

In view of (2.7) we get from (2.6)

 (div C*)(X,Y,Z) = a[(∇XS)(Y,Z) – (∇YS)(X,Z)] + b[(∇XL)(Y,Z) – (∇YL)(X,Z)] (2.8)

+ [ ( 2)
2( 1)
n b

n
−

−
 − β ] [g(Y,Z)dr(X) – g(X,Z)dr(Y)].

Let
F(X,Y,Z) = a[(∇XS)(Y,Z) – (∇YS)(X,Z)] + b[(∇XL)(Y,Z) – (∇YL)(X,Z)] (2.9)

+ m[g(Y,Z)dr(X) – g(X,Z)dr(Y)]

where    m = [ ( 2)
2( 1)
n b

n
−

−
 - β ].

In that case
(div C*)(X,Y,Z) = 0  (2.10)

if and only if
F(X,Y,Z) = 0. (2.11)

If we write

H(X,Y,Z) = [(∇XS)(Y,Z) – (∇YS)(X,Z)] − 1
2( 1)n −

[g(Y,Z)dr(X) – g(X,Z)dr(Y)], (2.12)

then in view of (1.2) we get

(∇XL)(Y,Z) – (∇YL)(X,Z) = H(X,Y,Z). (2.13)

Consequently, we have
F(X,Y,Z) = a[(∇XS)(Y,Z) – (∇YS)(X,Z)] + bH(X,Y,Z) (2.14)

+ m[g(Y,Z)dr(X) – g(X,Z)dr(Y)].
Let

( )( , , ) 0.divR X Y Z = (2.15)
In that case we shall have

( , , ) 0.F X Y Z = (2.16)
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From this it follows that
( ) 0.dr X = (2.17)

Hence, from (1.2) we obtain
( , ) ( , ).dL X Y dS X Y= (2.18)

We can therefore state the following theorem:

Theorem 1: A Riemannian manifold (Mn, g) (n>3) will have divergence-free quasi
conformal curvature tensor if and only if (div R)(X,Y,Z) = 0.

3. RESULTS

Let (M 4,g) be a general relativistic perfect fluid space-time with divergence-free quasi
conformal curvature tensor. In that case in view of equations (1.2) and (2.13) to (2.17) we
shall have

( )( , ) ( )( , ).X YL Y Z L X Z∇ = ∇

Hence using (1.4) and (1.5) we get

( )( ) ( )( ).X YN Y N X∇ = ∇ (3.1)

Let λ be the cosmological constant, T be the energy-momentum tensor of type (1,1), ρ
be the energy density, p be the isotropic pressure and U be the velocity vector field of the
fluid, such that g(U,U) = −1, that is U is timelike.

Further, let ( , ) ( )g X U A X=  ∀X.
Then the Einstein field equations for the perfect fluid can be expressed as follows

[2 (p.336 & 339)]:

 ,
2
rQ I I T− + λ = (3.2)

where we have
( ) .T p A U pI= ρ + ⊗ +  (3.3)

In other words,

( , ) ( , ) ( , ) ( ) ( ) ( ) ( , ).
2
rS X Y g X Y g X Y p A X A Y pg X Y− + λ = ρ + +  (3.4)

Taking a frame field and contracting (3.4) over X and Y we obtain

3 4 .r p= ρ − + λ  (3.5)
Hence,

. . 3( . )X r X X p= ρ − . (3.6)

Substituting for Q from (3.2) in (1.5) we get
( 2) .

2( 1)
r nN T I I

n
−= + − λ
−

  (3.7)

In that case, using (3.1) we obtain

( )( ) ( )( ) 0X YT Y T X∇ − ∇ = (3.8)
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since r is constant. From (3.3) we get

( )( ) [ .( )] ( ) ( )( )( ) ( )( ) ( ) ( . ) ,X X XT Y X p A Y U p A Y U p U A Y X p Y∇ = ρ + + ρ + ∇ + ρ + ∇ + (3.9)

and a similar expression for ( )( ).YT X∇  Putting Y = U in (3.8) we obtain

( )( ) ( )( ) 0.X UT U T X∇ − ∇ = (3.10)

Putting Y = U in (3.9) we get in virtue of (3.10)

( ) [ .( )] ( ) ( ) [( . ) ( . ) ]
                      ( )[( )( ) ( ) ( )].

X

U U

p U X p U U p A X U X p U U p X
p A X U U A X

ρ + ∇ = − ρ + − ρ + + −
− ρ + ∇ + ∇

(3.11)

Using (3.6) and remembering that r is constant we obtain from (3.11)

1( ) [ .( )] [ .( )] ( ) [( . ) ( . ) ]
3

                      ( )[( )( ) ( ) ( )].

X

U U

p U X p U U p A X U X U U X

p A X U U A X

ρ + ∇ = − ρ + − ρ + + ρ − ρ

− ρ + ∇ + ∇
(3.12)

Further, we have the energy and force equations [2(p.339)] as follows:

( , ) . ( )g grad U U p divUρ = ρ = − ρ + (3.13)
and

( )( ) [ ( , ) ] ( . )Up U grad p gradp g gradp U U gradp U p U⊥ρ + ∇ = − = − − = − − (3.14)

where the spatial pressure gradient grad⊥ p is the component of grad p orthogonal to U.
Using (3.14) we can express (3.12) as follows:

2 1( )( ) ( . ) ( . ) ( ) ( . ) ( ) ( ) ( . ) .
3 3Xp U X U U A X U U p A X U A X gradp U Xρ + ∇ = − ρ − ρ + + − ρ (3.15)

Taking the inner product with U we get

[( ) , ] ( . ) .Xg p U U grad U Uρ + ∇ = ρ + ρ (3.16)

Since the left hand side of (3.16) is zero, we obtain

( . ) .grad U Uρ = − ρ (3.17)

It is therefore evident that the velocity U is proportional to a gradient. Hence U is
hypersurface orthogonal [3]. Using (3.17) we get from (3.15)

1( ) ( )[( . ) ] ( . )[ ( ) ].
3Xp U A X U U gradp U X A X Uρ + ∇ = ρ + + ρ + (3.18)

Once again using (3.13) and (3.14) we obtain from (3.18)

1( ) [ ( ) ].
3X UU A X U divU X A X U∇ = − ∇ + + (3.19)
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Now, for the vector field U, ∇UU is the acceleration vector and divU is the expansion
scalar, both of which may be non-zero [ 2 (p.340)]. It is also known that [2 (p.95)]

( )( , ) ( , ) ( , ).X YcurlU X Y g U Y g U X= ∇ − ∇ (3.20)

Let h denote the projection tensor, such that hX = X + A(X)U The vorticity tensor
ω(X,Y) is the projection of curl of U. From (3.20) we get

( , ) ( , ) ( , ) 0hX hYX Y g U hY g U hXω = ∇ − ∇ =  [by (3.19)].

Again the shear tensor σ(X,Y) is given by [4]:
1 1( , ) [ ( , ) ( , )] ( , ) 0
2 3hX hYX Y g U hY g U hX divUg hX Yσ = ∇ + ∇ − =  [by (3.19)].

From this we can conclude that the space-time under our consideration is both shear-
free and irrotational. From (3.17) we obtain ( , ) ( , )g grad X g U U Xρ = − ρ  that is

. ( ).X U A Xρ = − ρ (3.21)

If X is orthogonal to U, then from (3.21) we shall have

. 0X ρ = . (3.22)

This means that the energy density is constant over a spacelike hypersurface
orthogonal to the velocity vector U. These results can be stated in the following way:

Theorem 2: A general relativistic perfect fluid space-time obeying Einstein’s
equation with cosmological constant and admitting a divergence-free quasi conformal
curvature tensor is shear-free, irrotational and its energy density is constant over the
spacelike hypersurface orthogonal to the velocity vector field.

Remarks: The converse of this theorem follows easily from Ray Chaudhuri equation
[4] by imposing the condition of shear-free irrotational flow and then using the condition
of hypersurface orthogonality.
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O PROSTOR-VREMENU, KOJI DOZVOLJAVA
KVAZI-KONFORMNI TENZOR KRIVINE,

I PREDSTAVLJA IDEALNI FLUID
Sarbari Guha

Pojam kvazi-konformalnog tezora krivina C* tipa (1,3) na Riemannian višestrukosti (M*,g)
(n>3) su uveli M.C.Chaki i M.L.Ghash [1] u saglasnosti sa:

C*(X,Y,Z) = aR(X,Y,Z) + b[S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX – g(X,Z)QY]

− r
n

[
1

a
n −

 + 2b][g(Y,Z)X –g(X,Z)Y]

gde su gde su ba, konstante, R Reimann-ov tenzor tipa (1,3), S je Ricci-jev tenzor tipa (0,2),  Q  je
Ricci-jev tenzor tipa (1,1), i r je skalar krivine mnogostrukosti.

U ovom  radu, četvoro-dimenzionalni prostor-vreme, koji predstavlja idealni fluid,  sa Lorentz-
ovom metrikom  signature (+,+,+, -) i ne nultom skalarnom krivinom, koji  dozvoljava
kvazikonformni tenzor krivine,  je razmotren. Pokazano je daako takav  prostor vreme, koji
predstavlja fluid, sa jediničnim vremeski sličnim vektorskim poljem brzine zadovoljava Einstein-
ovu jednačinu sa kosmološkom konstantom i njegov kvazi-konformni tenzor krivine je bez
divergencije, tada je fluid slobodno- smičući, nerotirajući i njegova gustina energije je konstantna
nad hiperprostorom ortogonalnim vektorsko polje brzina.


