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Abstract. In this paper research results of influences, of masses debalances of car system
and of rough spot (prominence) in the way on which the car is in move, at nonlinear
dynamics properties of car are presented. Also, the properties of nonlinear dynamics of
car model are investigated by using the corresponding equations of phase trajectories of
corresponding basic scleronomic nonlinear model to the rheonomic car dynamics model.
Particularly we were analyzed homoclinic orbits and their transformation shaped by
number eight, there appear and disappear are caused by changing some parameters of
system. By using Math-Cad program for drawing families of phase portraits visualization
of nonlinear phenomena in dynamic of car model are presented, also on that graphics it is
barely noticeable a influence of masses debalances parameters like as of rough spot
(prominence) in the way at nonlinear dynamics features of car.
It is observe one system of tree degree of mobilities and with one degree of freedom and
we narrow our problem on research of  following nonlinear differential equation:
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like as homogenous equation appropriate to this equation:

0sinsin1 1
22

1
2

2
1 =





 ++





+++

λ
ϕ

λ
λϕ

λλ
λϕ k

r
g

mr
J

mr
Jk

From characteristics visualizations we can noticeable the phenomena of trigger of
coupled singularities and homoclinic orbits shaped by number eight like as double
number eight. Analyzing the properties of basic nonlinear system we comes to
conclusion that with modification of parameters of system appears a separation of one
homoclinic orbits in more, like as that becomes to bifurcation of relative rest position in
rheonomic system, apropos in equivalent scleronomic system which correspond to him.
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INTRODUCTION

Series of articles (see Refs. listed from [5] to [12]), by first author of this article and
hers collaborators, presents results of original researches of nonlinear dynamic of
mechanical systems with properties of periodic exchanges, which has application in
engineering systems. Volume [5] presents reviews of the basics methods of theory of
Ljupanov’s stability applying them in nonlinear oscillations with special chapters
consecrate to the method of phase plane underlining importance of phase trajectories and
singularities in researching qualitative properties of nonlinear system dynamics.

Like as basic properties of a linear oscillatory system with one and more degrees of
oscillatory freedom are the own frequencies of discreet material particle system who has
linear oscillatory motion, also for nonlinear system with one degree of freedom we may
considered phase portrait with singularity structure, which gives nonlinear dynamic’s
properties and phenomena of system in phase plane. Therefore for nonlinear dynamic’s
systems and their subsystems it’s important to study a structure of phase portraits, their
stability like as their transformations and transformations of phase trajectories which we
obtained exchanging any parameters of systems. Except in very often-mentioned
monographs (see Refs. [1], [2], [3], [13] and [14]), contributions to this knowledge’s we
can find also in articles listed by [5], [6], [7], [8], [9], [10], [11] and [12] with theory and
applied results. There was studied a nonlinear dynamic’s of rotors, by influence of
deviation properties on phase portraits, coupled rotors, like as planetary reductor and
gyrorotors, ad also nonlinear dynamics of the systems with coupled rotations.

 First author defines a series trigger of coupled singularities theorems and existence of
homoclinic orbit and their transformation shaped by number eight, like as theirs
application on systems relevant for technical practice in hers articles [6] and [8], also she
constructs phase portraits and particularly considers phenomena of homoclinic orbits
transformations and their disintegration, appearance and disappearance of these
homoclinic orbits shaped by number eight, like as trigger of coupled singularities.

In this paper research results of influences, of masses debalances of car and of rough
spot (prominence) in the way on which the car is in move, at nonlinear dynamics
qualitative properties of car are presented. Also, the properties of nonlinear dynamics of
car model are investigated by using the corresponding equations of phase trajectories of
corresponding basic scleronomic nonlinear model to the rheonomic car dynamics model.
Particularly we were analyzed homoclinic orbits and their transformation shaped by
number eight, there appear and disappear are caused by changing some parameters of
system. By using Math-Cad program for drawing families of phase portraits visualization
of nonlinear phenomena in dynamic of car model are presented, also on that graphics it is
barely noticeable a influence of masses debalances parameters like as of rough spot in the
way at nonlinear dynamics phenomena of car.

As an example of practical application theorem of trigger of coupled singularities and
homoclinic orbits shaped by number eight we used researched results of nonlinear
dynamic of car model. This theorem is published in article [8].
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THE BASIC EQUATIONS OF CAR MODEL DYNAMICS

Figure 1. shows one simple car model, which has following geometric and kinematics
parameters: 1J  and J - mass axial moments of inertia of geared; r  and rλ - radius of
cog-wheels. Assumption that discs and shafts are nonhomogeneous rigid discs with
nonhomogeneous “points”, which can be present like material mass particles with masses
m  and km  being on distances of r and r1λ  from their centers. Mentioned model is in
the field of gravity and persistent forces are unattended, and is in move on bumpy with
the low of rough spot (prominence) in the way given on following equation:
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xπ=Ω . (1)

It is observe one system of tree degree of mobilities and with one degree of freedom and
for generalized coordinate we chose the angle of relative rotation ϕ . With )(tz  and )(tx
we denote rheonomic coordinate, as a known kinematical, depending of time,
perturbation to the system.
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Fig. 1. One simple model of nonlinear dynamics of car: The influence of coupled rotation
of debalances masses and their deviations properties.

Assumption that cog-wheel band is coulisse which slide on bumpy with neglect of
friction force we obtained expression of the kinetic energy of mentioned system in
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because 
λ
ϕ=ϕ1 . We can see that system is rheonomic, kinematicaly perturbed.
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Exchange of potential energy of system compose of exchange of potential energy of
heavy particles in the field of gravity, due to car motion by bumpy with rough spot
(prominence) in the way on which the car is in move, define with rheonomic coordinate
z(t), as a kinematical perturbation on the car system, which we measure from x axis.
Expression of the exchange of potential energy of system we obtain in the following form:

)()1()()1( 11 λ
ϕλ+ϕ−λ+++= coskcosmgrkmgrtzk~mgpE .   (3)

We observe one system of tree degree of the mobilities and with one degree of
freedom and by using extended system of Lagrange second kind equations, and for
generalized coordinate ϕ we obtain the nonlinear differential equation in following form:

r
kz

r
kx

r
kz

r
kxk

r
g

mr
J

mr
Jk

1coscos1sinsin1sinsin

1coscossinsin1

2
1

2
11

11
22

1
2

2
1








λ
ϕ

λ
λ+ϕϕ−







λ
ϕ

λ
λ+ϕϕ+







λ
ϕ

λ
λ+ϕ−

−






λ
ϕ

λ
λ+ϕ−−=







λ
ϕ

λ
λ+ϕ+











λ
++

λ
λ+ϕ

 (4)

Homogenous nonlinear differential equation correspond to the previous equation (4)
is in following form:
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Original model of the car system dynamics is rheonomic system, and last differential
equation corresponds to the basic scleronomic system, which correspond to the original one.

EQUATION OF PHASE TRAJECTORIES AND INTEGRAL OF ENERGY

If we denote 
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For assignment a phase trajectory equation in phase plane ),( ϕϕ  let’s multiple bought
of two sides of last equations with dtϕ2  and after integration in interval from ϕ0 till ϕ we
obtained:
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and presents equation of curves of constant energy in  phase plane.
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CONFIGURATIONS OF SYSTEM’S RELATIVE EQUILIBRIUM POSITIONS

Researching conditions of definite for form of expression of the potential energy
exchange of the corresponding basic scleronomic conservative system and defining their
extreme and stationary values, we appropriate a positions of system’s equilibrium and
relative rest, their stability or instability, and with that the structure of phase portrait, too.
Because of that let’s appoint first and second derivatives, with respect to generalized
coordinate ϕ, of the expression of potential energy exchange of the basic system:
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Fig. 2. Qualitative analysis of stationary relative equilibrium positions of rheonomic
car dynamical model by using the conservative scleronomic system, which
correspond to the rheonomic system of the movable car model.
Potential energy exchange curve for different parameters values of the basic
system correspond to the car dynamic model.
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Investigation of relative equilibrium positions and conditions of stability of equilibrium
it accomplish for particularly construction of mass debalance configuration in form of
material particle situated on cog-wheel or rotation parts of car. The configuration of mass
debalance of systems parts who rotating coupled with different velocities, shown in figure,

for 0=ϕ  is the configuration of equilibrium if it is 01 1 ≥
λ

λ+ k because of  0min =pE .

In Figure 2. we can see presentation of the qualitative analysis of stationary relative
equilibrium positions of rheonomic car dynamical model by using the conservative
scleronomic system which correspond to the rheonomic system of the movable car
model. Potential energy exchange curve for different parameters values of the basic
system correspond to the car dynamic model are done.

NUMERICAL EXPERIMENTS AND PHASE PORTRAITS

Using MathCad program on accomplished numerical experiment for researching of
existence, like as number and character of stationary values of potential energy, as
number of configuration of equilibrium positions and character of their stability, and
transformations of phase trajectories with exchanging one of the kinematic parameters of
system: value of radius and deviational masses of cog-wheel (rotating masses), value of
coupled rotating deviation masses their distance from axis of shifts, ratio gear between
cog-wheel in catch, like as elementary conditions: elementary angel and angular velocity
of shifts.

Graphs of potential energy exchange of corresponding basic system are obtain on
numerical way and for characteristic values constructive and kinematic parameters of
system shown in Figures 2.

In Figure 3. we can see characteristic potential energy curves, and corresponding
homoclinic separatrix phase trajectories for different parameters values of the basic
system correspond to the car dynamic model. Examples of the trigger of the coupled
singularities and coupled triggers of the coupled singularities are shown. The homoclinic
trajectories in the form of the number eight are presented in Figure, as well as in the form
of the duplicate number eight.

In Figure 4. we can se characteristic phase trajectories portraits for examples of the
potential energy curves from Fig. 3, and corresponding homoclinic separatrix phase
trajectories for different parameters values of the basic system correspond to the car
dynamic model. Examples of the trigger of the coupled singularities and coupled triggers
of the coupled singularities are presented.

In Figure 5. transformations and layering of the homoclinic trajectories with change
of the kinetic parameters values of the basic system correspond to the car dynamic model
are presented. Examples of the trigger of the coupled singularities and coupled triggers of
the coupled singularities and homoclinic trajectories in the form of the duplicate number
eight are, also, presented.

Characteristic phase trajectories of stationary regimes of nonlinear dynamic are obtained
by using the conservative scleronomic system which correspond to the rheonomic system of
the movable car model. Potential energy exchange curve for different parameters values of
the basic system correspond to the car dynamic model are done also.
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Fig. 3. Characteristic potential energy curves, and corresponding homoclinic separatrix
phase trajectories for different parameters values of the basic system correspond
to the car dynamic model. Examples of the trigger of the coupled singularities
and coupled triggers of the coupled singularities and homoclinic trajectories in
the form of the number eight and also in the form of the duplicate number eight.

We can see more than five types of characteristic phase portraits which contains two
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stability apropos instability relative equilibrium positions or relative rest positions, which
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appear respectively. By comparison of the homoclinic orbits and phase portraits in
Figures 3 and 4. for different system parameters, we see that structures of phase portraits
are different by types of phase trajectories and homoclinic orbits (phase trajectories of
separatrix).
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Fig. 4. Characteristic phase trajectories portraits for examples of the potential energy
curves from Fig. 3, and corresponding homoclinic separatrix phase trajectories
for different parameters values of the basic system correspond to the car
dynamic model. Examples of the trigger of the coupled singularities and coupled
triggers of the coupled singularities and homoclinic trajectories in the form of
the number eight and also in the form of the duplicate number eight.

We can see on Figure 4, one-sided separatrix, which are “prolating”, and we see also
open phase trajectories, which are comprising enclosed phase trajectories which are
matching to the periodical oscillator motion-rotations system round stability
configurations of equilibrium positions for specific initial conditions when initial angular
velocity are small and small angles elongation of rotations, and when that condition are
satisfying for any time.

In Figure 4. on phase portrait we notice augmentation of singular points, and we
deduce by researching that for some kinetic parameters of system one stable equilibrium
position loses stability and that positions now on phase portrait response to homoclinic
point by type unstable saddle, but in  symmetrical neighborhood appear two near-by
stable equilibrium positions (configuration of masses), which on phase portrait response
two singular points by center type. We can see also that all of three points are coupled in
one “trigger” (trigger of coupled singularities, see reference  [6] or [8]). Two stable
singular points by type centers enclose one, and the new, closed homoclinic orbit which
goes around three singularities, and passing trough one homoclinic point by type saddle
in which it self-cross, that it is shaped like form of the number eight or in the form of
duplicate of number eight or multiplication. Inside that new separatrix trajectory-
homoclinical orbit we notice a series of common closed phase trajectories which
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correspond to periodic oscillatory motion for certain initial conditions, apropos
oscillations around new stable position of equilibrium. We notice that homoclinic orbit
shaped by number eight and multiplicate of number eight self-cross in points type by
saddles which are issue from stable points type by saddle which is lose stability
exchanging parameters of system an it is “disintegrate” on three, or even number which
are trigger of coupled singularities or coupled triggers of coupled singularities. That
point(s) is (are) also bifurcation point(s), because types of bifurcation, and define triple
point.
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Fig. 5. Transformations and layering of the homoclinic trajectories with change of the kinetic
parameters values of the basic system correspond to the car dynamic model.
Examples of the trigger of the coupled singularities and coupled triggers of the coupled
singularities and homoclinic trajectories in the form of the duplicate number eight.

EFFECT OF BUMPY–WAY ON OSCILLATORY MOTION OF CAR MODEL

Now we observe nonhomogenious differential equation (4) which we obtained like
reasearch resulatat of very simple car model of dynamics on bumpy-way and of the
influences, of masses debalances of car system and of rough spot (prominence) in the
way on which the car is in move by constant horizontal velocity. By respect that this
equation is nonlinear, nonhomogenious differential equation and with member depending
explicitly of time, we appropriate for numerical experiment in MathCad for analize same
solutions of this equation and for abstract characteristics regimes of dynamic.
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Numerical experimenting with this nonlinear  equation we obtain after visualization
some diagrams of elongacy-time and phases trajectories, which are presented on
following Figures for different parameters of system.

On Figure 6. a*, b*, c*, d*, e*, f*, g* and h* it is shown characteristics phase
trajectories of nonstatonary, forced regimes of nonlinear oscillatory motion. These
characteristic phase trajectories, depending of time, in Figure 6 e*, f*, g*, h* are done for
the initial conditions with elongations correspond to the saddle points and with zero
values of the velocities. In Figures 6 a*, b*, c*, d* we can see graphical presentation of
the numerical experiment over the nonhomogeneous nonlinear differential equation for
the initial conditions with elongations correspond to the saddle points and with nonzero
values of the velocities. Different characteristic phase trajectories correspond to the
different value of the ratio between parameters of the system and of the rough spot in the
way. For example, the phase trajectories  in Figure 6 e* and 6. f* correspond to the same
system parameters, but for different initial elongations of the material debalance (initial
positions from relative rest).
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Fig. 7. Diagrams of elongacy-time and phase trajectory for characteristic parameters of the
rheonomic system correspond to the car dynamic model and for two different nonstationary
regime, which follows homoclinic orbit trajectory of the corresponding basic, scleronomic
conservative system.
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In Figure 7.  diagrams of elongacy-time and phase trajectory for characteristic
parameters of  the rheonomic system correspond to the car dynamic model and for two
different nonstationary regime which follows homoclinic orbit trajectory of the
corresponding basic, scleronomic conservative system are presented.
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Fig. 8. Diagrams of elongacy-time and phase trajectory for characteristic parameters of
the rheonomic system correspond to the car dynamic model and for two different
nonstationary regime one of which follows homoclinic orbit trajectory of the
corresponding basic, scleronomic conservative system.

In Figure 8. diagrams of elongacy-time and phase trajectory for characteristic
parameters of  the rheonomic system correspond to the car dynamic model and for two
different nonstationary regime one of which follows homoclinic orbit trajectory of the
corresponding basic, scleronomic conservative system.

CONCLUDING REMARKS

Configuration of debalance masses exchange while system is in motion and
subsystem in coupled rotations, which exchange deviation characteristics and properties
of system and that brings in system apart based nonlinearity called first order also
nonlinearity of second order with periodical character less or more periodical then first
nonlinearity depend if it is reduction or  multiplying of rotation number of second mass
particle around corresponding axis in relation to first material particle rotation, also of
anther constructive parameter of model, so with that on can explain phenomena of
bifurcation of equilibrium position and phenomena of trigger of coupled singularities (see
ref. [6]), like as existence or nonentity on phase portrait homoclinic orbits shaped by
number eight or multiple of number eight. Here we have also two coupled rotations with
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deviation mass particle properties, which are sources of rebalance of masses distribution
of cog-wheel which rotate with different velocities, so we can conclude that deviation
properties of cog-wheel with coupled rotations with different velocities in dynamic of
system moving car brings, under certain constructive parameters of system, bifurcation
phenomena of nonlinear dynamic second order which is property of system which when
on his effects external periodical forces or kinematical excitations can bring a dynamic
similarly to chaoticlike and stochasticlike dynamic process, what we see on figures
number 6, 7 and 8, which shows phases trajectories for nonstationary regimes of motion.
At such time on can appear regime of double period of compulsive oscillation. That
conclusion indicate a need to route research of compulsive dynamic of that car model and
different stationary and nonstationary processes which are consequence of mentioned
structure of nonlinearity of first and second order in this system, which are consequence
of  the coupled rotation motions of debalance masses.
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NELINEARNI FENOMENI U DINAMICI MODELA VOZILA
Katica (Stevanović) Hedrih, Julijana Simonović

U radu su predstavljeni rezultati proučenih uticaja debalansa masa vozila i neravnine puta po
kojoj se posmatrano vozilo kreće na osobenosti njegove nelinearne dinamike. Izvedene su
jednačine faznih trajektorija relativne dinamike i proučena svojstva i struktura faznih portreta
nelinearne dinamike baznpg scleronomnog modela koji odgovara reonomnom modelu takvog
modela vozila. Posebno su analizirani oblici homokliničkih orbita i transformacija homokliničkih
orbita oblika broja osam, čije postojanje i nepostojanje je vezano za odredjenu promenu
parametara sistema. Pomoću MathCad programa sastavljene su familije faznih portreta baznog
sistema, i faznih trajektorija izučavanog sistema, tako da je pomocu njih data vizuelizacija
nelinearnih fenomena u dinamici modela vozila i slikovito je prikazan uticaj parametara debalansa
rotacionih masa, kao i neravnine puta na svojstva nelinearne dinamike modela vozila.

Posmatran je sistem sa tri stepeni pokretljivosti i jednim stepenom slobode kretanja i zadatak
se sveo na izučavanje sledeće nelinearne diferencijalne jednačine
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Sa karakterističnih vizualizacija dinamike baznog sistema uočava se pojava trigera spregnutih
singulariteta i homokliničkih orbita u obliku broja osam, kao i udvojenih brojeva osam. Analizom
svojstava osnovnog nelinearnog sistema dolazi se do zaključka da se sa promenom parametara
sistema javlja raslojavanje jedne homokliničke orbite u više, kao i da dolazi do bifurkacije položaja
relativnog mirovanja u reonomnom sistemu, odnosno položaja ravnoteže u ekvivalentnom
skleronomnom sistemu koji mu odgovara. U tome se objašnjava pojava sličnih haotičnim i
stohastičnim kao odziv na sasvim periodične pobude.


