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Abstract. The motion of the dynamical impact damper is studied using numerical
simulation. Regions of existence and stability of different regimes of the system
response on the harmonic excitation is evaluated. Boundaries of regions are specified
as grazing, period doubling, saddle-node and Hopf bifurcations. Periodic,
quasiperiodic and chaotic impact motions are explained by time series, phase
trajectories, bifurcation diagrams and Poincarè maps.

1. INTRODUCTION

The dynamics of impact dampers was extensively examined theoretically and using
analogue computer simulation approximately forty years ago (see e.g. [1-27]). Their
principle consists in the supplement of a small mass, which can decrease of resonance
amplitudes of vibrating system due to mutually impact interactions. There were several
constructions the mechanical models are shown in Fig. 1. The logical series of impact
dampers (Fig. 2), which express the transition between classical tuned absorber (Fig.
2(a)) and usual impact damper (Fig. 2(d)) was studied in [6]. Impact dampers parameters
were optimised from the point of view of flat amplitude characteristics in the
neighboroughood of the original system resonance [7].

Fig. 1. Examples of impact dampers
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Later were investigated in more detail, especially by numerical simulation, problems
of the influence of dry friction on the impact dampers dynamics [8], bifurcations and
chaos [9, 10].

This paper describes the behavior of dynamical impact damper (Fig. 2 (c)).

 

Fig. 2. Schemes of linear-tuned damper (a) and impact dampers (b) - (d)

1. MATHEMATICAL MODEL OF THE DYNAMICAL IMPACT DAMPER

The damper (Fig. 3) consists from a main mass m1, which is periodically excited and
its resonance amplitudes should be minimised by the influence of the additional mass m2
motion. The additional mass moves in the longitudinal cavity of the main mass and it can
impact on one or both obstacles. Masses are connected by a linear spring k2 and a linear
damper b2. The fundamental motion of this impact damper was solved theoretically
including the influence of the dry friction in [11].
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Fig. 3. Scheme of the dynamical impact damper

The motion of the assumed damper is described by equations
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They can be written in the form
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after the amplitude transformation ,/ 1stxxX =  )/( 1stxr=ρ  and time transformation τ=Ω1t,
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where x1st = F0/k1; Ω1 = 11 / mk ; b = b1/(2 11mk ); β = b2/b1; µ = m2/m1; 

ε = Ω2 / Ω1 ; Ω2 = 22 / mk ; η = ω/Ω1.

Equations (3), (4) determine the numerical simulation of the impactless motion. When
the relative motion of masses  m1, m2  meets the condition of impact

ρ≥− 21 XX ,  (5)

then velocities of masses will change suddenly according to equations resulting from the
Newton theory of direct and centric impacts:
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where )/()´´(´ 212211p mmXmXmX ++= −−  is the velocity of masses after plastic impacts,

−1́X , −2´X  are before-impact velocities, +1́X , +2´X , are after-impact velocities,

−−− −= 21rel ´´´ XXX and 10 ≤≤ R  is the coefficient of restitution (R = 0 and R = 1 for
absolutely plastic and elastic impacts, resp.).

3. REGIONS OF EXISTENCE OF DIFFERENT REGIMES OF IMPACT MOTION

A more general view of the system response in the dependence on dimensionless
excitation frequency η and dimensionless clearance ρ is offered by the evaluation of the
existence and stability regions of different periodic and chaotic motions (Fig. 4). Regions
were ascertained by quasistatic changes of parameters η, ρ . Regions are labeled by
quantity z=p/n, where p is the number of impacts and n is the number of excitation period
T in the impact motion period. Quantity z of the chaotic motion can be ascertained from
the sum of impacts appeared during long time interval (e.g. thousand of periods T).
Fundamental motions are characterised by n=1, e.g. z=0/1, 1/1, 2/1 (see Figs. 5, 6, 7).

Regions are surrounded by boundaries, which are labeled in correspondence with the
type of  the bifurcation appeared on it.

The basic boundaries marked gz correspond to grazing bifurcation, which is
characterized by the appearance of a new impact in the motion period when motion
trajectory begins touch the stop. Grazing boundary g0/1 in plane η, ρ expresses the
amplitude-frequency characteristic of relative impactless motion |X1 − X2|. The grazing
boundary represents the impenetrability condition of moving bodies and it is stronger
then the stability condition. It means, that a certain periodic system motion can be
theoretically stable, but it cannot physically exist, when it does not meet the
impenetrability condition.

Other boundaries represent different kinds of the motion instability. Boundaries
marked PDz and Qz correspond to the continuous transition from one periodic impact
motion into another motion through the Hopf bifurcation. Important is the reversible
quasistationary transition cross these boundaries. The periodic impact motion splits on
stability boundaries PDz. The Feigenbaum cascade of splitting can terminate in the
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chaotic motion, but the transition from periodic to chaotic regimes with impacts is
manifold [12].

Quasiperiodic motion appears on boundaries Qz . Phase trajectories, Poincarè maps
and time series of quasiperiodic z = 2/1 motion are shown as an example, in Figs. 10 (a),
(b), (c), which correspond to point P4 in Fig. 4. Boundaries PDz and Qz  open beat motion
regions, in which exist quasiperiodic and periodic subharmonic motions as well as
chaotic impact motions. Their period n or quasiperiod is higher then one, see for example
n = 3, 7, 73.5867 and Figs. 8, 9, 10(c), respectively.

Topological map of impact motions in beat motion regions is very complex. The
biggest region exists near the second resonance of impactless motion (η=1.28) in
frequency interval 0.95 < η < 1.8. The largest subregion of periodic subharmonic z = 2/3
impact motion with point P2 is shown in Fig. 4. The complexity of motions in beat
motion region is better shown in Fig. 12, where bifurcation diagrams were recorded along
section a in interval 1.1 < η < 1.63 in Fig. 4 . Subharmonic and chaotic motions exhibit
hysteresis phenomena, i.e. the system response is ambiguous. Even two different chaotic
motions for the same system parameters were ascertained. They differ by the extent of
amplitudes and impact velocities. For example, both weak chaos (Figs. 11 (a), (b)) and
strong chaos (Figs 11 (c), (d)) exists in point P5 in Fig. 4.

Remaining boundaries are labeled by SNz and SNCH. They express saddle-node
bifurcation of periodic or chaotic impact motions, respectively. They are characterised by
the nonreversible jump transition from one stationary motion into another one. The
saddle-node bifurcation is generalised also on chaotic motion, because boundaries SNCH
have quasideterministic shape, but their evaluation is more difficult.

Grazing and saddle-node bifurcation boundaries create hysteresis regions, where the
system response is ambiguous. The biggest hysteresis region exists between boundaries
g0/1 and SNCH over the second resonance η =1.28, where either impactless motion z = 0/1
or beat motion z = (0 ÷ 2)/1 can exist. Another example of hysteresis region between
regions of fundamental motions z = 2/1 and z = 4/1 is bounded by boundaries g2/1 and
SN4/1 in frequency interval 0.6 < η < 1.2 for low clearances ρ. The transition beat motion
region between regions of z = 2/1 and z = 4/1, bounded by boundaries PD2/1 and PD4/1,
exists in frequency interval 1.2 < η < 1.8 in Fig.4.

The quantity z increases when clearance ρ approaches to zero. The system becomes
one degree of freedom system with joined masses m1 and m2.

4. MORE DETAIL EXPLANATION OF IMPACT DAMPER DYNAMICS

4.1 Existence of asymmetric regimes of impact motions

In spite of the symmetry of static position of mass m2 relative to obstacles of mass m1,
there exist many asymmetric periodic motions of the impact damper. The reason of this
phenomenon will be explained using the fundamental z=2/1 motion (Fig. 7(a)). Its phase
trajectory is centrally symmetric. When the periodic symmetric z=2/1 motion losses its
stability on the Hopf bifurcation boundary (see point A in Fig. 15), then appears either
new stable, but asymmetric, z=2/1 motion (see development of system motion from
unstable point A1 into fixed points B, C in Fig. 15 and phase trajectory in Fig. 7(b)), or
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quasiperiodic limit cycle z=2/1 (see development of system motion from unstable point
A2 into limit cycle D in Fig. 15 and Fig. 13).
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Fig. 4. Regions of existence and stability of impact motions

The asymmetric z=2/1 motion (Fig. 7(b)) can be assumed as the result of period
doubling of unstable periodic motion z=1/(1/2) in one half period of symmetric motion
z=2/1 (Fig. 7(a)). It is the reason way bifurcation boundaries of regions z=2/1 in Fig. 4
were named PD2/1, even though the period of z=2/1 motion remains the same and the
instability indicates by the transition from symmetric into asymmetric z=2/1 motion.

The asymmetry of impact motion appears also in other periodic, quasiperiodic and
chaotic motions. Asymmetric periodic motions can be subjected, similar as other periodic
motions to grazing, Hopf´s or saddle-node bifurcation. For example the asymmetric
z=2/1 impact motion (Fig. 7(b)) can jump into periodic z=1/1 motion (Fig. 6(a)) on its
saddle-node stability boundary. The existence of z=1/1 motion can be developed
therefore from the symmetric z=2/1 motion (Fig. 7(a)) through the sequence of the Hopf
and saddle-node bifurcation. It follows from Figs. 5-7(a), that there exist four different
response of the impact damper for the same system parameters corresponding to point P1
in Fig. 4: impactless motion (Fig. 5), z=1/1 motion (Fig. 6(a), (b)) and its mirror regime
(Fig. 6(c), (d)) and z=2/1 motion (Fig. 7(a)). It is expressed also by the fact, that point P1
in Fig. 4 belongs as the hysteresis region (z=1/1 or z=2/1) as the hysteresis region
between boundaries g0/1 and SN1/1.
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Fig. 6. Mirror regimes of one-impact motion
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4.2. Quasiperiodic  impact motions

Contrary to impact oscillators with one degree of freedom, where exists the Hopf
bifurcation in the form of motion period doubling, the Hopf bifurcation resulting in
quasiperiodic motion exists in impact oscillators with two and more degrees of freedom
[13]. The substance of this bifurcaton was explained by Fig. 15. Examples of
quasiperiodic  z=1/1, z=2/1 symmetric and z=2/1 asymmetric motions are shown on
Figs. 10, 13 and 14, respectively. Quasiperiods of such motions are n ≅ 8.111, 73.586 and
50.35, respectively.

4.3   Intermitency chaos

The existence of the intermittency chaos was explained in [14]. It can appear after
saddle-node instability of periodic impact motion, when an additional impact interrupts
the development of this instability. An example of the intermittency chaos in the impact
damper is shown in Figs. 16(a),(b),(c), corresponding to point P7 in Fig. 4. This motion
seems like the quasiperiodic motion with n ≅ 1023.39 T, but its substance is the
intermittency. During almost whole quasiperiod n developes the saddle-node instability
of z=2/1 motion (see dark area in Fig.16(a), where approximately two quasiperiods of
motion are recorded), at the end of which some of regular two impacts per cycle
disappears (mean value of z ≅ 1.986) and system motion endeavours jump into impactless
z=0/1 motion, which is shown in Fig. 16(d). In that time an additional impact appears,
which takes the system motion back to the state of the beginning of the instability
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development. This motion has the chaotic character (see also the attracting set in Poincarè
map, Fig. 16 (c)), because the instant and the intensity of additional impact are
unpredictable.

4.4   Chaotic and more complex subharmonic impact motions

It follows from bifurcation diagram in Fig. 12, that there exist many periodic
subharmonic  and chaotic motions in regions of beat motion. Some of them were shown
in Figs. 17 - 22 for more detail view on the dynamics of this impact damper. They are
lucidly described in Tab. 1. Some of them, e.g. motion in Fig. 22, can be heavily
classified, but they can be definitely declared as periodic motions.

Table 1. Characteristics of subharmonic impact motions

Figure Point in Fig. 4 z Characterisation
17 P8 3/8 symmetric
18 P9 9/8 asymmetric
19 P10 5/3 asymmetric
20 P11 6/6 symmetric
21 P12 24/27 asymmetric
22 P13 280/292 symmetric

5. CONCLUSION

This paper gives the more detail insight on the behavior of the dynamical impact
damper. Firstly are evaluated regions of existence and stability of different regimes of its
response on harmonic excitation and then impact motions are explained using bifurcation
diagrams, time series, phase trajectories and Poincarè maps.

It follows from Fig. 12 and [15], that such system wholly eliminates the main
resonance amplitudes of the fundamental vibrating system with one degree of freedom (at
frequency η =1) owing to the additional of linear tuned damper. The original resonance
divides therefore on two resonances, which amplitudes are suppressed, especially in
higher resonance, by the possibility of impact interaction between mass of original
system and additional mass of the damper.
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 DETALJNIJI POGLED U DINAMIKU UDARNIH  PRIGUŠIVAČA
František Peterka

Kretanje dinamički uradnog prigušivača je studirano korišćenjem numeričke simulacije.
Oblasti postajanja i stabilnosti različitih režima odgovora sistema na harmonijsku pobudu je
ocenjivana i vrednovana. Granice oblasti su specificirane, kao opadanja, udvostručenog perioda,
singularne tačke sedlo-čvor i Hopf-ova bifurkacija. Periodička, kvazi-periodička i haotično udarna
kretanja su izražena pomoću redova u zavisnosti od vremena, faznih trajektorija, bifurkacionih
dijagrama i Poincaré-ovih mapa.


