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Abstract. Using a new approach, the nonlinear behavior of an autonomous 2-DOF
mechanical system with friction is investigated. The domains of a chaotic motion are
obtained in various sections of a three-dimensional driving parameter space. Chaotic
and regular motions are detected and classified as stick-slip or slip-slip ones.

1. INTRODUCTION

Our attention is focused on the non-smooth dynamical system analysis that has been
attracting a wide spectrum of both mathematicians [1] and applied oriented researchers
[2]. However, many of the problems occurring in this field are still far from being well
understood and satisfactorily explained. Although the presented method is applicable to
any dynamical system governed by ordinary differential equations, our considerations
will concentrate on a two degree-of-freedom mechanical system with friction, similar to
the systems already investigated by us [3-6]. On the other hand, this paper can be treated
as both application and extension of the novel method reported in [7], which is especially
suitable for estimation of regular and chaotic motions.

2. THE STUDIED SYSTEM

Consider two masses m1 and m2 (as shown in Fig. 1) moving on a driving belt that has
constant velocity v0. Mass m1 is attached to the inertial space by spring k1, while masses
m1 and m2 are coupled by spring k2. Friction force Ti acting between mass mi and the belt
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depends on relative velocity wi (i=1,2). These two-degree-of-freedom autonomous
oscillations are governed by the following second-order set of differential equations:
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where: ii xvw −= 0 ,       (i=1, 2).

Let us  consider the following friction model (see Fig. 2):
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Fig. 1. Coupled oscillators with friction. Fig. 2. Friction model.
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(i=1, 2).

Here the maximum static friction force is denoted by Toi and vi
* is the velocity that

corresponds to the local extremum value of Ti(wi)   (i=1,2).

3. CONDITIONS FOR APPEARANCE OF CHAOS (STICK-SLIP AND SLIP-SLIP MOTIONS)

A chaotic behavior of nonlinear deterministic systems supposes wandering of the
trajectories of motion around various equilibrium states. They are characterized by
unpredictability and sensitive dependence on the initial conditions. By analyzing the
trajectories of motion of these systems, it is possible to determine the regions of chaotic
vibrations in the control parameter space.

Let a dynamical system be expressed as a set of ordinary differential equations

),( xx tf= , (2)

where x ∈ Rn is the state vector, f (t,x) is defined in R × Rn and describes the time
derivative of the state vector. It is supposed, that f (t,x) is smooth enough to guarantee
existence of a solution to set (2) as well as its uniqueness. The right-hand side of (2) can
be discontinuous while the solution remains continuous. For instance, in the cases of
discontinuous vector fields of "transversal intersection" and "attracting sliding mode"
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types a solution to set (2) exists and is unique. This property of the continuous
dependence on the initial conditions x(0) = x(t0) of the solution of set (2) will be used as
follows: for every initial condition x(0),  nR∈)0(~x , for every number T > 0, no matter
how large, and for every preassigned arbitrary small ε > 0, it is possible to indicate a
positive number δ > 0 such that if the distance ρ between x(0)  and )0(~x  ρ(x(0), )0(~x ) < δ
and |t| ≤ T, the following  inequality

ε<ρ ))(~),(( tt xx
is valid.

This means that if the initial points are chosen close enough, then during the
preassigned arbitrary large time interval TtT ≤≤−  the distance between simultaneous
positions of moving points will be smaller than a given positive number ε.

Being interested in tracing chaotic and regular dynamics, we shall suppose that with
the increase of time all trajectories with remain in the closed bounded domain of a phase
space, i.e.

ii
t

i CtxRC ≤∈∃ )(max:       (i=1,2 … n).

Note that if in any case a trajectory tends to infinity, it may be diagnosed easily.
To analyze the trajectories of motion of set (2), let us consider characteristic vibration

amplitudes Ai of the components of motion xi(t):
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i ≤≤≤≤
−= ,       (i=1,2 … n).

Here [t1,T] ⊂ [t0,T], [t0,T] is the time interval in the space of which the motion is
considered, and [t0, t1], [ ]10 ,tt  is the time interval in the space of which all transient
processes are damped.

From the many ways in which metric ρ on Rn can be assigned, for the sake of our
investigations it seems the most convenient to use the embedding theorem and to
consider an n-dimensional parallelepiped instead of a hyper-sphere with the center at
point x.

The embedding theorem may be expressed in the following way:
If })~,(:~{)( ε<ρ∈=ε xxxx nRS  is a hyper-sphere with centre at point x and with radius

ε , and }~:~{)(,...,, 21 iii
n xxRP

n
ε<−∈=εεε xx  is an n-dimensional parallelepiped, then for

any ε>0 there is a parallelepiped )(,...,, 21
x

n
P εεε  such that )()(,...,, 21

xx εεεε ⊂ SP
n

. And

conversely, for any parallelepiped )(,...,, 21
x

n
P εεε  it is possible to indicate ε>0 such that

)()( ,...,, 21
xx

n
PS εεεε ⊂ .

In the parallelepiped )( )0(
,...,, 21

x
n

P δδδ  let us choose two neighboring initial points )0(x

and )0(~x  such that iii xx δ<− |~| )0()0( , where δi is small in comparison with Ai (i=1,2 … n).
In the case of regular motion it is expected that εi in inequality iii txtx ε<−  |)(~)(|  is also
small in comparison with Ai (i=1,2 … n). The wandering orbits attempt to fill up some
bounded domain of the phase space. At instant t0 the neighboring trajectories diverge
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exponentially. Hence, for some instant t1  the absolute values of differences |)(~)(| txtx ii −
can take any values in  interval [0, 2Ai] directly on the boundary values of this interval. If
the differences |)(~)(| txtx ii −  are equal to zero for some instants {tk*}, (tk*∈[t1,T]), then the
trajectories x(t) and )(~ tx  coincide at these instants. Obviously, 2Ai are the maximal values
for these differences, and for some time instants this value is permissible. Let us introduce
an auxiliary parameter α, 0<α<1 and let αAi  be referred to as divergence measures of
observable trajectories in the directions of generalized coordinates xi (i=1, 2, … n). By
analyzing equation (2) and its equilibrium states it is easy to select parameter α, 0<α<1,
such that from the truth of the statement

iii AtxtxTtt α>−∈∃ |)(~)(|:],[ **
1

* ,       (i=1, 2, … n),  (3)

it follows that there is a time interval or a set of time intervals, for which the affixes of
the trajectories x(t) and )(~ tx , closed at the initial instant, move around various
equilibrium states or these trajectories are sensitive to a change of the initial conditions.
Thus, these trajectories are the wandering ones. Indeed, as it has already been mentioned,
all trajectories are in the closed bounded domain of  space Rn. With the aid of parameter
α the divergence measures of the trajectories αAi have been chosen, which is
inadmissible for the case of 'regularity' of the motion. Note that this choice is non-unique
and parameter α can take various values in interval (0, 1). It is clear, however, that if α is
close to 0 and |)(~)(| txtx ii − < αAi when t∈[t0,T], then the trajectories do not diverge and
the trajectories are regular. There are values of parameter α that a priori correspond to the
divergence measures of the trajectories αAi  (i=1, 2, … n) inadmissible in the sense of
'regularity'. For example, α ∈{1/3, 1/2, 2/3, 3/4} or other choices are possible. If the
representative points of the observable trajectories move chaotically, then for another
choice α from the set of a priori 'appropriate' α, the divergence of the trajectories will be
recorded at another time instant t*. As numerical experiments show, the obtained domains
of chaotic behaviour with various a priori 'appropriate' values of  α  are practically
congruent. Therefore, in this work figures for different values of α are not presented.

By varying parameters of the investigated space, and using condition (3), it is possible
to find the domains of chaotic motions (including transient and alternating chaos) and
those of regular motions.

To classify the motion of the considered oscillators as the one of stick-slip or slip-slip
type, the following condition  have been used:

iist Atmaxv δ<∆0             (i = 1, 2). (4)

Here max∆tst i is the maximum of "adhesion" times ∆tst i (i = 1, 2) of the first and the
second oscillator to the belt during time interval [t1,T], in the space of which the motion is
considered as a steady state. When the solution x(t) of equations (1) is obtained, the
maximum "adhesion" times of the first and the second oscillators to the belt are
determined from the conditions

0vxi = ,           (i=1, 2)

for each selected trajectory. An auxiliary parameter δ < 1 defines the smallness of the
"stick"-segments on the phase plane in comparison with the characteristic vibration
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amplitudes Ai of the components of motion xi(t) (i=1,2). Thus, if condition (4) holds, then
the i-oscillator is in the slip-slip motion, and the other one is in the stick-slip motion.

4. DISCUSSION OF THE NUMERICAL SIMULATIONS

After a uniform coordinate sampling, the driving space defined by the maximum
static friction force of the 1-st oscillator T01, the maximum static friction force of the 2-nd
oscillator T02 , and the velocity of the belt v0, have been investigated using conditions (3)
and (4). The domains, in which chaotic behaviors of both the first and the second
oscillator are possible, have been found, including the stick-slip and slip-slip motion. The
coordinate sampling steps of the parameter space (v0, T01, T02) are ∆v0= 0.05, ∆T01= 0.5,
∆T02= 0.5 in a rectangular parallelepiped (0< v0 ≤4; 0< T01 ≤50, 0< T02 ≤50). The time
period for the simulation is 240 time units. During computations, one half of the time
period corresponds to the time interval [t0,t1], where transitional processes are damped.
The integration step size is equal to 2.5×10−3 time units. Initial conditions for the closed
trajectories are distinguished by 0.5 percent in ratio to characteristic vibration amplitudes
Ai (i=1,2), and parameter α is equal to 1/3. Numerical calculations have been carried out
for the following fixed values: m1= 4, m2= 2, k1= 10, k2= 7, v1

*= 4, v2
*= 3.

The regions displayed in section T02=5 (a),(c) of parameter space (v0, T01, T02) and in
section T01=15 (b),(d) in Fig. 3 are the domains, where chaotic vibrations (black color) of
the first (a),(b) and of the second (c),(d) oscillators are possible including transient and
alternating chaos. It is interesting that these regions for the first (a),(b) and for the second
(c),(d) oscillators are almost congruent. In other words, during numerical simulations the
situation when only one of the oscillators moves chaotically is not observed. The gray
color presents the conditions for the stick-slip motion. In the present investigations
parameter δ  has been taken to equal 0.1. It is worth noting that in contrast to the chaotic
behavior of the oscillators, there are conditions when only the first oscillator moves with
"adhesion" to the belt and the other oscillator moves without "adhesion", and vice versa.

Fig. 4 shows the trajectories (a),(c) and Poincaré maps (b),(d) of the 1-st (a),(b) and
the 2-nd (c),(d) oscillator on a phase plane (v0=0.55, T01=23.5, T02=5) corresponding to
the domains (see Fig. 3 (a), (c)) of chaotic vibrations and stick-slip motions. To obtain the
Poincaré maps, the values (xk, vk), corresponding to the local minimums of the velocity of
the oscillator, have been sampled. This has been done for the 1-st and for the 2-nd
oscillator. The phase portraits and Poincaré maps plotted in Fig. 5 (v0=0.85, T01=15,
T02=11.5) correspond to the domains of chaotic behavior and stick-slip motions shown in
Fig. 3 (b),(d).

Fig. 6 (v0=3.35, T01=38.5, T02=5) and Fig. 7 (v0=2.6, T01=15, T02=2.5) display transient
chaos. From the beginning, the oscillators move chaotically and then alight to a periodic
regime (limit cycle). In Fig. 6, the 1-st oscillator moves without a stick condition, the 2-
nd oscillator is in the stick-slip motion. Vice versa, in Fig. 7: the 2-nd oscillator moves
without "adhesion" to the belt and the 1-st oscillator is in the stick-slip motion.

Fig. 8 ((a) v0=1.1, T01=48, T02=5; (b) v0=2.72, T01=15, T02=46.58) displays periodic
vibrations of both oscillators. In Fig. 8 (a) the 1-st oscillator is in the stick-slip motion and
the 2-nd one moves without "adhesion" to the belt. In Fig. 8 (b) the situation is reversed. All
these data demonstrate good agreement with the obtained chaotic and regular vibration
domains and with the domains of stick-slip and slip-slip motion (see Fig. 3).
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Fig. 3. Domains of chaotic (black) and stick-slip (gray) motion of the first (a), (b)

and the second (c), (d) oscillator in sections of  space (v0, T01, T02):
(a), (c) T02=5, (b), (d) T01=15.
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Fig. 4. Phase portraits and Poincaré maps of chaotic trajectories of the first (a), (b) and
the second (c), (d) oscillator for v0=0.55, T01=23.5, T02=5.
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Fig. 5. Phase portraits and Poincaré maps of chaotic trajectories of the first (a), (b) and
the second (c), (d) oscillator for v0=0.85, T01=15, T02=11.5.
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Fig. 6. Transient chaos; phase trajectories and Poincaré maps of the first (a), (b) and
 the second (c), (d) oscillator for v0=3.35, T01=38.5, T02=5.
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Fig. 7. Transient chaos; phase trajectories and Poincaré maps of the first (a), (b) and
 the second (c), (d) oscillator for v0=2.6, T01=15, T02=2.5.
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Fig. 8. Phase portraits of regular trajectories:
(a)  v0=1.1, T01=48, T02=5;  (b)  v0=2.72, T01=15, T02=46.58.

Thus, mainly the stick-slip chaos is exhibited by our system in the  considered
conditions.
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5. CONCLUSIONS

This paper deals with  two parts of the investigation. The first one presents a novel
numerical approach  which, in contrast to the standard numerical methods (including
computations of Lyapunov exponents), is effective, convenient to use, requires much less
computational time in comparison with other approaches, and can be applied to the
investigation of both "smooth and non-smooth" problems.

In the second part, the regular and chaotic stick-slip and slip-slip dynamics of the
studied system of two degrees of freedom with friction are reported and analyzed in some
detail. It has been shown, among others: (i) how only the first oscillator moves with
"adhesion" to the belt (Figure 3); (ii) how both oscillators exhibit stick-slip chaos (Figure
4, 5); (iii) transient chaos (Figure 6,7); (iv) stick-slip periodic motion of either the first or
the second oscillator (Figure 8).
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REGULARNO I HAOTIČNO PONAŠANJE IIZVEDENO
POMOĆU SPREGUNTIH OSCILATORA SA TRENJEM

J. Awrejcewicz, L. Dzyubak

Koristeći novi pristup nelinearno ponašanje autonomnog mehaničkog sistema sa dva stepena
slobode kretanja i sa trenjem je istraživano. Dobijena je oblast haotičnog ponašanja u različitim
oblastima trodimenzionalnog parametarskog prostora. Haotično i regularno kretanje je detektovano i
klasikovano kao stick-slip (lepljivo-sklizavog) ili slip-slip (sklizavo-sklizavog) karaktera.


