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Abstract. By using standard analogies between electrostatic and other potential fields,
Equivalent Electrodes Method can be adopted to the corresponding potential fields of
theoretical physics. In this paper the method is extended to the steady magnetic field, to
the fluid flow, heat flow and grounding problems solving. The theoretical investigations
are supported by several typical examples and the obtained numerical results are
compared with known analytical or numerical values. The very good agreement is
realized, because Equivalent Electrodes Method gives exact solutions in the limit
process with respect to the EE number.

1. INTRODUCTION

Some time ago the present author suggested a new numerical method, so-called the
Equivalent Electrodes Method (EEM) [1], for non-dynamic electromagnetic fields and
other potential fields of the theoretical physics solving. The first very good results were
obtained in [2], when the method was used for calculating the equivalent radius of uni-
form antennas. Afterwards, the good results were obtained in the computations of elec-
trostatic fields [3-6], in the theory of low-frequency grounding systems [7], in the static
magnetic field solving [8, 9] and for transmission lines analysis [10-15, 21-23]. Also, the
method was extended to other potential fields: to plan-parallel fluid flow [16] and for heat
flow problems solving [17].

The basic idea of the proposed theory is that an arbitrary shaped electrode can be re-
placed by a finite system of equivalent electrodes (EE). Thus it is possible to reduce a
large number of complicated problems to equivalent simple systems. Depending on the
problem geometry, the flat or oval strips (for plan-parallel field) and spherical bodies (for
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three-dimensional fields), or toroidal electrodes (for systems with axial symmetry) can be
commonly used. In contrast to the Charge Simulation Method [18], when the fictitious
sources are placed inside the electrodes volume, the EE are located on the body surface.
The radius of the EE is equal to the equivalent radius of electrode part, which is substi-
tuted. Also the potential and charge of the EE and of the real electrode part are equal. So
it is possible, using boundary condition that the electrode is equipotential, to form a sys-
tem of linear equations with charges of the EE as unknowns. By solving this system, the
unknown charges of the EE can be determined and, then, the necessary calculations can
be based on the standard procedures. It is convenient to use Green's functions for some of
electrodes, or for stratified medium, in case when the system has several electrodes, or
when multilayer medium exists, and after that the remaining electrodes substitute by EE.
The general presentation of the direct EEM to the determining electric field of the elec-
trodes systems with multilayer media is presented in [19]. In the formal mathematical
presentations, the proposed EEM is similar to the Moment Method form [20], but very
important difference is in the physical fundaments and in the process of matrix estab-
lishments. So it is very significant to notice that in the application of the EEM an inte-
gration of any kind is not necessary. In the Moment Method solutions the numerical inte-
gration is always present, which produces some problems in the numerical solving of
nonelementer integrals having singular subintegral functions. If the Charge Simulation
Method is used, the potential can be also put in similar form, but the difference between
EEM and Charge Simulation Method is in the choice of the positions of the equivalent
charges and in the choice of matching points.

2. OUTLINE OF THE METHOD

In order to the simplicity, but with sufficient generality, the EEM application is pre-
sented on an electrostatic system of a single infinite conductor having uniform cross sec-
tion and known electric scalar potential U=ϕ  (Fig. 1).

C

Fig. 1. Cross-section of single infinite conductor.

As it is known, the electric scalar potential in the conductor exterior space satisfies
very well known Laplace's equation,

0=ϕ∆ , (1)
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and boundary condition on the surface body S, ϕ = U.
Let An, n = 1,2,...,N (AN+1 = A1) are N points, quite arbitrary selected on the curve C,

which defines conductor cross section. So N oval strip electrodes, An An+1, n = 1,2,...,N,
are formed on the electrode surface. The potential of strips is equal to the electrode
potential and the line charge per unite strip length is .qn′  So total charge per unite
electrode length is

∑
=

′=′
N

n

qq
1

n
. (2)

The presented strips can be replaced by cylindrical conductors having equivalent ra-
dius, aen, in respect to the strips and equal potential, U, and charge per unit length, .qn′
The equivalent radius of flat strip, having length d, is ae = d/4 (Appendix I). For oval
strip, having angular width 2α and radius a, the equivalent radius is ae = a sin(α/2)
(Appendix II).

So the real electrode can be replaced by equivalent cage structure, and, approxi-
mately, the potential can be expressed as
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is potential Green's function of isolated uniform line charge;
r is the field point radius vector;
rn is the radius vector of the electrical middle point (so called barycentre) of the strip, or
of the EE;
rp defines the zero potential point; and
ε is the electrical permittivity.

In the case when N is large, and the biggest width of the strip is small, the logarithmic
potential theory (Appendix III) can be used and the electrode potential is
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and δmn is Kronecker's symbol.

After solving linear equations system (5) the unknown line charges of the EE can be
determined and the values of interest can be evaluated in standard way. So the electric
field strength can be put as
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ϕ−= gradE . (7)

The application of formula (7) gives the biggest error on the electrode surface. There-
fore, the evaluation of the electric field strength on the electrode surface is based on the
boundary condition for normal electric field component,

εη=nE , (8)

where nn lq′=η  is surface charge density and nl  denotes the strip width.
In the presented treatment the EE are located on the electrode surface. They can be

placed into conductor interior region. Then good results can also be obtained, but it is
necessary to notice that the volume distribution of the EE is not physically correct and
produces several numerical problems in matrix inversion.

2.1. EEM, Matrix Method and Charge Simulation Method

In the Matrix Method solution [13] of the presented problem on Fig. 1, the potential
can be expressed as

( ) ( ) ( ) ( ) ( )∑ ∫∫
= +

′′′η=′′′η=ϕ
N

nC nn

lGlG
1 AA 1

d,d, rrrrrrr , (9)

where C is the conductor cross-section curve.
If the strip elements are not large, the surface charge density of each element can be

substituted by mean value,
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so, approximately, the potential is
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After matching potential function (11) to the value of the electrode potential, U, in N
matching points selected on the presented strip elements, the following linear equations
system can be put

mn

N

n
nU γη= ∑
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lG mmn rrr , Nm ,...,2,1= . (12)

By solving this linear equations system, the unknown mean surface charge densities
can be determined.

The difference between EEM and Moment Method is evident, although the similarity
between basic linear equation systems (5) and (12) exists. In the application of the EEM
an integration of any kind is not necessary. In the Moment Method solutions the numeri-
cal integration is always present (13), which produce some problems in the numerical
solving of non-elementar integrals having singular subintegral functions.
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If the Charge Simulation Method is used [12], the potential can be also put in the form
(3), where .qn′  are unknown line charge densities, which are placed in the body interior.
By matching approximate potential value to the real electrode potential in N points on the
electrode surface, the linear equations system, having form (5) can be put. So the
difference between EEM and charge simulation method is in the positions of the
equivalent charges and in the choice of matching points.

2.2 Several examples

In order to illustrate the application of EEM in electrostatics, several examples (for
plan-parallel, axially symmetric and 3D electrode system) will be presented in the next
text.

2.2.1. Example I – Plan-parallel electrostatic system

In order to illustrate the EEM application the infinite isolated cylindrical conductor
having circular cross section with radius a will be presented. Because of symmetry
properties, it is convenient to form N EE having the same angular width α = 2π/N,
equivalent radius ae = a sin(π/2N) and charge per unite length, q' = Q'/N, where Q'
denotes the total charge per conductor unite length. So the potential is (Appendix IV).
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where:
ϕ0 is an additive constant;
r and θ are cylindrical coordinates (r = 0 defines the position of the electrode axis.); and
EE axes are on the directions r = a, θ = (n − 1)a, n = 1,2,...,N.

By using the results from Appendix III the cylindrical electrode potential is

e0 ln
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AQU
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where

N
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2
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π= (15)

is the equivalent radius of cylindrical conductor.

As it is known, the equivalent radius exact value of cylindrical conductor is a. The
Table 1. shows the ratio Ae / a for different number of EE, N.
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  Table 1. The ratio Ae / a for different number of EE, N

EE number, n Ae / a
1 1.000 000 000 000 000
2 1.189 207 115 002 721
3 1.144 714 242 553 332
4 1.112 307 621 429 733
5 1.090 913 895 690 523

10 1.045 762 932 781 543
50 1.009 069 242 738 553

100 1.004 525 625 667 449
1 000 1.000 451 684 272 690

10 000 1.000 045 159 289768
100 000 1.000 004 515 837 249

1 000 000 1.000 000 451 582 807
10 000 000 1.000 000 045 158 272

100 000 000 1.000 000 004 515 827
1 000 000 000 1.000 000 000 451 583

       ∞ 1.000 000 000 000 000

2.2.2. Example II - Electrostatic systems with axial symmetry

Fig. 2. Electrostatic system is with rotational symmetry

h 0

d

thoroidal strip

EE
q

Fig. 3. Thoroidal EE

When electrostatic system is with rotational symmetry, the thoroidal strip elements on
the electrode surface can be replaced by thin thoroidal EE (Fig. 2). Then the EE thorus
radius, d, and radius of thorus cross section, r0, are (Fig. 3):

2
bad += (16)
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and

( )22
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The potential of the thoroidal EE is
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where:
K(π/2,k) is the complete elliptic integral of the first kind (Appendix V);
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=  are the modules of the elliptic integral;

q is the charge of the EE; and h0 = h + H/2.
If b = 0 and H = 0 (EE number 1 and N in the Fig. 2) the observed strip element degen-

erates in thin disk with radius a. Then the EE is a small sphere having equivalent radius
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and the EE potential is
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The total potential of all system can be expressed as
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where:
qn is the charge of the EE;
G(r, z, rn, zn) is Green's function having the following form:
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for thoroidal element;
rn is the radius of thoroidal EE; and
z = zn defines the EE position.

By matching the potential expression (21) to the electrode potential value, U, in N
points selected on the EE, ,, e mnmmmmm azzrr δ+=′=′  where aem denotes the equivalent
radius of spherical EE, or of thoroidal EE cross section, the following linear equations
system can be put
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The EEM values of capacitance of thoroidal electrode (Fig. 4) are presented and
compared with exact results,

( )
( ) ,

1
116

21

21

0 0

22
adP
adQ

adC
n

n

n n −

−
∞

=
∑ δ+
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in the Table 10, where 21−nP  and 21−nQ  are Legendre functions.

Fig. 4. Isolated thoroidal electrode.

Table 2. Capacitance of isolated toroidal electrode, C/εd,
for different ratio d/a and different number of EE, N

d/a N = 10 N = 50 N = 100 N = 150 N = 200 exact
1.1 23.142 22.835 22.802 22.792 22.787 22.760
1.2 24.027 23.719 23.686 23.675 23.670 23.649
1.3 24.906 24.597 24.564 24.554 24.549 24.528
1.4 25.781 25.471 25.438 25.427 25.422 25.405
1.5 26.651 26.340 26.307 26.296 26.291 26.271
1.6 27.517 27.204 27.171 27.161 27.155 27.138
1.7 28.379 28.065 28.032 28.021 28.016 27.999
1.8 29.237 28.922 28.888 28.877 28.872 28.856
1.9 30.090 29.774 29.741 29.730 29.724 29.708
2.0 30.941 30.623 30.589 30.578 30.573 30.555
2.5 35.139 34.814 34.779 34.768 34.763 34.746
3.0 39.256 38.922 38.886 38.875 38.869 38.853
4.0 47.271 46.918 46.880 46.867 46.861 46.843
5.0 55.037 54.662 54.621 54.608 54.602 54.582

10.0 91.284 90.794 90.741 90.724 90.715 90.690

2.2.3. Example III – 3D electrostatic system

When the electrostatic system is three dimensional, the plate elements on the elec-
trode surface can be replaced by small spherical EE (Fig. 5).

So the potential is
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is potential Green's function of isolated point charge;
r is the field point radius vector; and
rn is the radius vector of the electrical middle point of the strip surface element, or of the EE.
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Fig. 5. 3D isolated electrode.

In order to determine the unknown charges of the EE, qn, n = 1,2,...,N, the following
linear equations system, governing boundary condition on the electrode surface, can be put
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where aen denotes the EE equivalent radius.
The capacitance of the isolated electrode is

U
QC = , ∑
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N
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1

. (29)

In the EEM application it is often necessary to determine equivalent radius of thin
plate elements, frequently with rectangular form (Fig. 6).

Fig. 6. Thin rectangular plate electrode.

Then it is possible to form the following dependence Ae/a = f(ae/A), where Ae is the
equivalent radius of the rectangular plate with side a and b, and ae is the equivalent radius
of EE, having sides A and B. Evidently, because of the existing similarity, Ae/a = ae/A. So
it is possible to determine the equivalent radius of the thin rectangular plate. In practice
the following approximation is very useful

( )
( )
( )
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

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≤<
≤<

≤<
=

.abab
abaab
abaab

a
A

3.00,696.0
5.03.0,404.0

5.0,373.0

957.0

5.0

3882.0

e (30)

In the Table 3. the approximate values of Ae/a are compared with exact results. By
using moment method, the equivalent radius of thin square plate with side a is Ae = 0.37a
[20]. This result agrees very well with the presented value, Ae = 0.373a.
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Table 3. Exact and approximate values of equivalent radius of thin rectangular plate

b/a 0.0 0.1 0.2 0.3 0.4 0.5
Ae/a exact 0.000 0.077 0.153 0.220 0.257 0.285

Ae/a formula (30) 0.000 0.077 0.149 0.220 0.256 0.285

b/a 0.6 0.7 0.8 0.9 1.0
Ae/a exact 0.308 0.328 0.346 0.361 0.373

Ae/a formula (30) 0.306 0.325 0.342 0.358 0.373

For isolated electrode (Fig. 7), having parallelepiped shape with sides a, b and c the
small spherical EE replace the rectangular electrode surface elements. Table 4. shows the
values of parallelepiped electrode capacitance for different EE numbers, where M, N and
L are the rectangular element numbers on the half parallelepiped sides.

1M
1

N

L
2

Fig. 7. Parallelepiped electrode.

Table 4. The values of the parallelepiped electrode capacitance, C for different EE numbers

M N L C/4πεa

a = b = c

3
4
5
6

3
4
5
6

3
4
5
6

0.677
0.674
0.672
0.670

a = b = 10c
7
7

7
7

2
3

0.432
0.434

a = 10b = 10c

3
4
5
6
6

2
2
2
2
3

2
2
2
2
3

0.198
0.205
0.208
0.210
0.204

3. ANALOGIES AND EEM APPLICATION TO THE OTHER FIELDS

Using adequate analogies between electrostatic and other potential fields the EEM can
be successfully extended to the theory of low-frequency grounding systems [5], in the
static magnetic field solving  [6, 7], in electroheat [17] and for plan-parallel fluid flow
solving [16]. The following exposition is destined to present the analogies of interest in
the EEM application.
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3.1. EEM application to low-frequency grounding system

By using analogies between electrostatic and electric grounding field in electrostatic
formula the ratio q/ε, where q denotes electrode charge and ε is the electric permittivity,
should be replaced with σI . I  is the grounding electrode current and ωε+σ=σ j
denotes complex conductivity (j is imaginary unite, σ and ε are the soil conductivity and
permittivity and ω is angular frequency). Then the potential of single grounding electrode
can be put in the following form

( )n

N

n
nGI rr,

1
∑

=

=ϕ , (31)

where nI  is the current of the EE on the grounding electrode surface, N is the number of
the EE and ( )nG rr,  is the corresponding Green's functions.

By example, for depth point grounding source placed in the point, which radius vector
is r ', the Green's function is

( )
rr

rr
′−σπ

=′
4

1,G . (32)

If the influence of the soil surface to the grounding system is not neglectable, the
Green's functions is (Fig. 8):

Fig. 8. Point electrode in two-layer media.
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By solving linear equations system,
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where aen is the equivalent radius of the EE and U  denotes the electrode potential, the
unknown currents of the EE can be determined. The ratio

UIBGY =+= j , ∑
=

=
N

n
nII

1

, (35)

defines the grounding electrode admittance.
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In the case of isolated grounding electrode in the homogeneous infinite soil it is

Y C ,= σ ε (36)

where C is the electrode capacitance.

3.2 EEM Application to the static magnetic field solving

Fig. 9. Ferromagnetic body in external magnetic field.

Let an ideal ferromagnetic body (µ → ∞) is placed in the exiting static magnetic field,
,grad0 φ−=H  where φ = φ(r) is the exiting magnetic scalar potential (Fig. 9). Then the

total magnetic scalar potential,
φ+ϕ=ϕ pm , (37)

satisfies Laplace's equation and on the body surface S the boundary condition ϕm = C te or
0ˆ =× Hn . ϕp denotes the perturbed component of the magnetic scalar potential, which

can be expressed as
( ) ( )∫ ′′′η=ϕ

S

SG d,mp rrr , (38)

where ηm defines magnetic charge of the body unite surface and G(r,r') is the correspon-
ding Green's function. By example, for a single point magnetic charge

( )
rr

rr
′−π

=′
4

1,G . (39)

mgrad ϕ−=H  is total magnetic field strength. Total magnetic charge on the body
surface is always equal to zero,

( ) 0dm =′′η∫
S

Sr , (40)

The present analysis brings to the analogies as it is in the Table 5. By using these analo-
gies, it is very easy to extend the EEM application to magnetostatic problems solving.

Table 5. Analogies between magnetostatic and electrostatic field

Magnetostatic field Electrostatic field
Magnetic scalar potential, ϕm Electric scalar potential, ϕ

Magnetic charge, qm Electric charge, q
Magnetic surface charge, ηm Electric surface charge, η

Magnetic field strength, H = −grad ϕm Electric field strength, E = −grad ϕ



 Equivalent Electrodes Method Application in Fluid and Heat Flow  963

3.3 EEM application in the heat conduction

The analogies between temperature field and electrostatic field (Table 6) are useful in
the EEM application to the heat conduction problems solving.

Table 6. Analogies between temperature field and electrostatic field

Temperature field Electrostatic field
Temperature, θ Electrostatic potential, ϕ

Temperature field strength, θ−=θ gradE Electrostatic filed strength, ϕ−= gradE
Heat flux across the surface, θθ λ= ED Electric displacement, ED ε=

Thermal conductivity, λ Permittivity, ε
Thermal power,

SD d∫ θθ =θ∆=
S

CP
Electric charge,

SD d∫=ϕ∆=
S

Cq

Thermal capacitance, Cθ Electrical capacitance, C

Example I: The thermal capacitance of the thin, perfectly thermal conducting tube
with length h and circular cross section having radius a in the homogeneous medium with
thermal conductivity λ is

C h
a h
a h
a h

θ λ =
=
=
=

R
S|
T|

1 939 0 01
3 068 0 05
4 009 0 10

. , for .

. , for .

. , for . .

Example II: The perfectly thermal conducting tube having zero temperature is in an
uniform axial temperature electric field, Eθ0. h denotes the tube length, a and b are the
interior and exterior radius of the tube cross-section, respectively. The temperature values
on the tube axis are presented in the Table 7, when a/h = 0.6 and b = h. θ0 = −Eθ0z is the
non-perturbed temperature defying uniform thermal field. The cylindrical coordinate
origin is in the tube centre and z − axis coincides with the tube axis.

 In the Table 8. are the values of the ratio Dθ /Dθmax on the tube surface, where Dθmax
denotes the maximal value of the absorbed heat flux across the tube surface.

Table 7. The temperature distribution on the tube axis

2z/h θ/Eθ0h θ/θ0 2z/h θ/Eθ0h θ/θ0
0.00 0.000 1.000 0.65 0.397 0.610
0.05 0.014 0.278 0.70 0.453 0.648
0.10 0.029 0.285 0.75 0.512 0.683
0.15 0.044 0.296 0.80 0.572 0.715
0.20 0.062 0.312 0.85 0.633 0.745
0.25 0.083 0.332 0.90 0.694 0.771
0.30 0.107 0.375 0.95 0.756 0.795
0.35 0.135 0.386 1.00 0.817 0.817
0.40 0.167 0.419 1.25 1.115 0.892
0.45 0.204 0.454 1.50 1.399 0.933
0.50 0.246 0.493 1.75 1.673 0.956
0.55 0.293 0.532 2.00 1.939 0.970
0.60 0.343 0.572 ∞ −∞ 1.000
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Table 8. The ratio Dθ/Dθmaxon the tube surface

Interior side
 r = a, 0 ≤ z ≤ h/2

End side
z = h/2,  a ≤ r ≤ b

Exterior side
 r = b, 0 ≤ z ≤ h/2

z/h Dθ/Dθmax r/b Dθ/Dθmax z/h Dθ/Dθmax
0.0125 0.002 0.64 0.710 0.4875 0.986
0.0625 0.011 0.72 0.578 0.4625 0.639
0.1125 0.021 0.80 0.595 0.4125 0.424
0.1625 0.033 0.88 0.679 0.3625 0.321
0.2125 0.047 0.96 1.000 0.3125 0.252
0.2625 0.065 0.2625 0.198
0.3125 0.091 0.2125 0.153
0.3625 0.128 0.1625 0.114
0.4125 0.193 0.1125 0.077
0.4625 0.342 0.0625 0.042
0.4875 0.592 0.0125 0.008

3.4 EEM application in the hydrodynamics

The EEM application to the plan-parallel ideal fluid flow problems solving is based
on the analogies between hydrodynamic field and electrostatic field. Let

Φ z x y x y x y= + = +j , j ,b g b g b gϕ ψ (41)
be an analytical function. So the Cauchy-Riemann equations are adopted and the real and
imaginary part present analytic functions, which satisfy Laplace's equation. The surfaces
families ϕ(x,y) = C te and ψ (x,y) = C te are mutual perpendicular and may be used to
define equipotentials and stress lines in a field of force.

For example, if in electrostatics ϕ(x,y) present electric scalar potential function, then
ϕ(x,y) = C te are equipotentials, ψ (x,y) = C te are lines of force and E = −grad ϕ is the
electric field strength.

In the hydrodynamics of ideal two-dimensional fluids, ψ (x,y) is the velocity poten-
tial, ϕ(x,y) defines stream function and v = −grad ψ is the fluid velocity.

So, the essence of EEM application to the fluid flow problem solving is the generation
of complementary electrostatic system. After solving electrostatic system the complex
potential (63) can be formed and the velocity potential can be determined as imaginary
part of the complex potential. For example, if it solves the problem of infinite cylindrical
body in uniform transversal fluid flow with velocity yv ˆ00 v=  (Fig. 10) the com-
plementary electrostatic system has the form as on the Fig. 11.

   
Fig. 10. Fluid flow problem            Fig. 11. Complementary electrostatic problem
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By using the EEM the potential of the electrostatic system can be put in the following
form

( )∑
=

′+−=ϕ
N

n
nnn yxyxGqxE

1
0 ,,, , (42)

including charge condition

∑
=

=′
N

n
nq

1

0 , (43)

where

( ) ( ) ( )22ln
2
1,,, nnnn yyxxyxyxG −+−
πε

−= (44)

is the Green's function of the EE infinite line charge, nq′ , placed on the direction

yxr ˆˆ nnn yx += .
So the complex potential is

.jj,ln
2
1

1
0 nnn

N

n
nn yxz,yxzzzqzE +=+=−′

πε
−−=Φ ∑

=

(45)

By replacing E0 with v0, the velocity potential can be determined as

{ } .00
1

0 for,arctg
4
1Im vE

N

n n

n
n xx

yyqyE →∑
= −

−′
πε

−−=Φ=ψ (46)

4. CONCLUSION

A new numerical method, so called the equivalent electrodes method, for the potential
fields problems solving, is presented. The basic idea of the proposed theory is: an arbitrary
shaped electrode can be replaced by a finite system of equivalent electrodes. So it is
possible to reduce a large number of complicated problems to the equivalent simple sys-
tems. Depending on the problem geometry, the flat or oval strips (for plan-parallel field)
and spherical bodies (for three-dimensional fields), or toroidal electrodes (for systems with
axial symmetry) can be commonly used. In contrast to the charge simulation method, when
the fictitious sources are placed inside the electrodes volume, the equivalent electrodes are
located on the body surface. The radius of the equivalent electrodes is equal to the
equivalent radius of electrode part, which is substituted. Also the potential and charge of the
equivalent electrodes and of the real electrode part are equal. So it is possible, using
boundary condition that the electrode is equipotential, to form a system of linear equations,
with charge densities of the equivalent electrodes as unknown. Solving this system, the
unknown charge densities of the equivalent electrodes can be determined and, then, the
necessary calculations are based on the standard procedures. In the case when the system
has several electrodes, or when the multilayer medium exists, it is convenient to use Green's
functions for some electrodes, or for stratified medium, and after the remaining electrodes
substitute with equivalent electrodes. In the formal mathematical presentations, the pro-
posed equivalent electrodes method is similar to the moment method form, but very
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important difference is in the physical fundaments and in the process of matrix
establishment. So it is very significant to notice that in the application of the equivalent
electrodes method an integration of any kind is not necessary. In the moment method
solutions, the numerical integration is always present, which produce some problems in the
numerical solving of non-elementar integrals having singular subintegral functions. The
method is very simple and exact and in limit process with the number of the equivalent
electrodes gives exact results. The present method is very useful in electrostatics, magne-
tostatics, in the theory of low-frequency grounding problem, in the analysis of transmission
lines and in the solving the problems of heat flow and fluid flow.

APPENDIX I

By using conformal mapping, Joukowsky transform,






 +=+=
w

wcyxz 1
2

j , ψ=+= jej Rvuw , (a1.1)

the exterior region of the flat strip having zero width can be mapped to exterior domain of
the cylindrical conductor having circular cross section with unite radius (Fig. A1.1).

Fig. A1.1

Because the electrode potential and the total electrode line charge are unchanged in
the mapping process, the complex potential can be expressed as

wqU ln
2πε

′
−=Φ . (a1.2)

If  z >> c, wcz
2

≈  and the complex potential is

e
ln

2
2ln

2 a
zqU

c
zqU

πε
′

−=
πε
′

−=Φ , (a1.2)

where
422e cca == (a1.3)

is equivalent radius of thin flat strip conductor.

Appendix II

Evaluation of equivalent radius of thin oval circular strip is based on two following
conformal mappings (Fig. A2.1):
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wvuRw =+== ψ
11

j
11 je 1 (a2.1)

and

α−

α
α−ψ

−
−==+= j

j
jj

e
eeej
az

zaRvuw , θ=+= jej ryxz . (a2.2)

Fig. A2.1

Electrostatic system is uncharged. So in infinity, for ∞→z , point I, exists line charge
having density −q'. By using image theorem, the complex potential is

( ) 2j
10*

101

101 e,ln
2

α−π=
−

−
πε
′

−=Φ w
ww
wwqU (a2.3)

For  z >> a it is

e
ln

2 a
zqU

πε
′

−=Φ , (a2.4)

where
( )2sine α= aa (a2.5)

is the equivalent radius of oval strip conductor.
If strip conductor is arbitrary oval, noncircular, then three points (two end points, 1 and

3, and one on the middle strip, 2) can be used to generate circular form, as it is shown in
Fig. A2.2.

Table TA2.1 The positions of several points of interest in the present conformal mapping

points z − plane w − plane w1 − plane
A r a= + =0 0, θ R = = +1 0, ψ R1 11 0= = +, ψ
B r a= − =0 0, θ R = =1 2, ψ π R1 11= =, ψ π
C r a= =, θ α w = 0 w1 0=
D r a= = −, θ α w → ∞ w1 → ∞
E r a= =, θ π R = =1, ψ π R1 1 2= =, ψ π
I z → ∞ R = = −1, ψ π α R1 11 2= = −, ψ π αb g
0 z = 0 R = = +1, ψ π α R1 11 2= = +, ψ π αb g

The circle center and radius are defined as

( )( ) ( )( ) ( )( )
( ) ( ) ( )[ ]213132321

12
2
3

2
331

2
2

2
223

2
1

2
1

0 2 yyxyyxyyx
yyyxyyyxyyyxx

−+−+−
−++−++−+= , (a2.6)
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( )( ) ( )( ) ( )( )
( ) ( ) ( )[ ]213132321
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2
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2
313

2
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2
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2
1

2
1

0 2 yyxyyxyyx
xxyxxxyxxxyxy

−+−+−
−++−++−+
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and

( ) ( )2
01

2
010 yyxxr −+−= . (a2.8)

Fig. A2.2

Appendix III

It considers electrostatic system of two parallel, infinite line conductors, as on Fig. A3.1.
If conductor charges per unit length are located on the conductor axis, the potential is

( ) 22
p2

22
p1 ln

2
ln

2 ydx

rq

yx

rq

+−πε
′

+
+πε

′
=ϕ . (a3.1)

Fig. A3.1
Evidently, the presented potential expression does not satisfy boundary condition that

the conductors are equipotential. In order to minimize the error in the boundary condi-
tion, the conductor potentials will be determined as mean values of approximate potential
solution on the electrode surfaces. So it is

( )∫
π

===ϕ
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2

0
111 dsin,cos

2
1 ppaypaxU
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2
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2
. (a3.2)

By expanding logarithmic function into Fourier series,
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the present integration gives

d
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In similar way it can determine the mean value of other electrode mean potential,
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Appendix IV

Let
nazn

θ= je   and ( )
N

nn
π−=θ 21 , Nn ,...,2,1=

denote rolls of algebraic equation
0=− nn az , (a4.1)

then
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Appendix V

By using the process of the arithmetic and geometric mean [18], the value of the
complete elliptic integral of the first kind can be calculated very exact and quickly. It
starts with a given number triple

,,1,1 000
2

00 backkba −=−=′== (a5.1)

and it determines number triple an , bn , cn according to the following scheme

.,,
2 11111 +++++ −==+= nnnnnn

nn
n bacbabbaa (a5.2)

If n = N is sufficient large, then aN ≈ bN and cN → 0 and the value of the elliptic inte-
gral of the first kind is

K k
a bN N

π π2 , .b g ≈
+ (a5.3)



970 D. M. VELIČKOVIĆ

REFERENCES

1. D. M. Veli~kovic}, Equivalent Electrodes Method, Scientific Review, 1996, Belgrade, Number 21 - 22,
pp. 207 - 248.

2. D. M. Veli~kovi}, Z. @. Panti}, A New Numerical Method for Calculating the Equivalent Radius of
Uniform Antennas, Sixth Colloquium on Microwave Communication, Budapest, 29th August-1st
September 1978, pp. III. 4/25.1 - III. 4/25.4.

3. D. M. Veli~kovi}, The Equivalent Electrode Method, 34. Internationales Symposium Teoretische
Elektrotechnik, 26 - 31 October 1987, Ilmenau, Band 2, pp. 125 - 128.

4. D. M. Veli~kovi}, General Numerical Program for Plan-parallel Electrostatic Fields Solving, 2th
International Conference on Electrostatics ELSTAT 1990, 17 - 22 September 1990, Wroclaw, Poland
(Materials Science, Vol. XVI, No 4 1990, pp. 89 - 94).

5. D. M. Veli~kovi}, Equivalent Electrodes Method Application for Electrostatic Problems Solving, The
Third International Symposium on Applied Electrostatics, PES'90, 23rd - 26th October 1990, Ni{, Yu,
pp. 7 - 27.

6. D. M. Veli~kovi}, Z. Z. Cvetkovi}, Systems for Generating Homogeneous Electric Field, FACTA
UNIVERSITATIS (Ni{), Series: Electronics and Energetics, Vol. 14, No. 1, April 2001, pp. 91 - 108.

7. D. M. Veli~kovi}, Equivalent Electrodes Method Application for Grounding Problems Solving, ELEK-
TROTEHNIKA ELTHB 12 32 (1989) 3 - 4, pp. 149 - 160.

8. D. M. Veli~kovi}, S. R. Aleksi}, Magnetic Field Evaluation by Equivalent Electrodes Method, Third
International Magnetic Conference IEEE INTERMAG 93', Stockholm, Sweden, 13 - 16 April 1993.

9. D. M. Veli~kovi}, S. R. Aleksi}, Magnetic Field Evaluation by Equivalent Electrodes Method,
COMPUMAG, Berlin, July 10 -13, 1995, PF 4-7.

10. D. M. Veli~kovi}, General Computer Program for Microstrip Transmission Lines Analysis, Electronic
Technology Symposium, 17 - 21 September 1990, Budapest.

11. D. M. Veli~kovi}, General Numerical Program for Line Analysis, Proc. of TELSIKS'93, Ni{/Yu, 7 - 9
October 1993, pp. 2.25 - 2.32.

12. D. M. Veli~kovi}, Z. J. Man~i}, D. G. Zulki}, Rectangular Coax with Slit and with Rectangular or Cir-
cular Centre Conductor, EMC'98 ROMA, Roma, 14 -18 September 1998, pp. 384 - 389.

13. D. M. Veli~kovi}, Z. J. Man~i}, D. G. Zulki}, Axial Slit on Two Wire Line with Rectangular Shield,
Analele Universitatii din Oradea, Fascicola ELECTROTEHNICA, 30 Mai - 1 Juni, 1998, Baile Felix,
Romania, pp. 18 - 23.

14. D. M. Veli~kovi}, Line Charge in Rectangular Shield, 8th IGTE Symposium, 21 - 23 September 1998,
Graz, Austria, pp. 327 - 332.

15. D. M. Veli~kovi}, S. S. Ili}, D. G. Zulki}, Electromagnetic Field of Coaxial Lines with Axial Slit in a
Tunnel, in a Enclosed Bridge or in a Mine Pit, Facta Universitatis (Ni{), Series: Electronics and
Energetics, Vol. 14, No. 2, August 2001, pp. 167 - 185.

16. D. M. Veli~kovi}, General Numerical Program for Plan-parallel Fluid Flow Solving, International
Conference on Hydrodynamics of Technological Processes for Materials Production, Sofia, Bulgaria
27 - 31 August 1991.

17. D. M. Veli~kovi}, The Equivalent Electrodes Method Application in Electroheat, The Third Interna-
tional Conference on Mathematical Modelling in Electroheat, Sarajevo/Yu, October 1991.

18. J. V. Surutka, D. M. Veli~kovi}, Some Improvements of the Charge Simulation Method for Computing
Electrostatic Fields, Bulletin LXXIV de l'Academie Serbe des Sciences et des Arts, Class des Sciences
technique, No. 15, 1981, pp. 27 - 44.

19. D. M. Veli~kovi}, Application of Equivalent Electrodes Method in Multilayer Media, Proc. of Full
papers of 5th International Conference on Applied Electromagnetics ПЕС 2001, 8 - 10 October 2001,
Ni{, Yugoslavia, pp. 183 - 188.

20. R. F. Harrington, Field Computation by Moment Method, Macmillan, New York, 1968.
21. M. A. R. Gunston, Microwave Transmission - Line Impedance Data, Van Nostrand Reinhold Company

LTD, New York, Cincinnati, Toronto, Melbourne, 1972.
22. D. M. Veli~kovi}, S. S. Ili}: Shielded Strip Line, Mediterranean Microwave Symposium 2003 MMS’

2003, Cairo, Egypt, 6 - 8 May 2003.
23. D. M. Veli~kovi}, S. S. Ili}: Shielded Slot Line of Two Dielectric Layers - Theoretical Analysis, 6th In-

ternational Conference on Applied Electromagnetics, ПЕС 2003, Ni{, 1-3 June 2003, pp. 297 - 300.
24. D. M. Veli~kovi}, S. S. Ili}: Shielded Slot Line of Two Dielectric Layers - Numerical Results, 6th Inter-

national conference on Applied Electromagnetics, ПЕС 2003, Ni{, 1-3 June 2003, pp. 301 - 304.



 Equivalent Electrodes Method Application in Fluid and Heat Flow  971

PRIMENA METODA EKVIVALENTNE ELEKTRODE U
MEHANICI FLUIDA I PRI PRENOŠENJU TOPLOTE

KONDUKCIJOM
Dragutin M. Veličković

Zadnjih godina na Elektronskom fakulktetu u Nišu razvijen je jedan nov metod, takozvani Me-
tod Ekvivalente Elektrode, za približno numeričko rešavanje problema bezvrtložnih polja Teorijske
fizike. Iako je prvenstveno ovaj metod razvijen za rešavanje problema elektrostatičkih polja, on je,
zahvaljujući postojećim analogijama, sa uspehom primenjen i na probleme stacionarnih magnetnih
polja, niskofrekventnog uzemljenja, prostiranja po vodovima, prenošenja toplote kondukcijom, kao
i strujanja nestišljivih fluida. U suštini metoda je ideja da se stvarne elektrode posmatranog
sistema zamene pomoću ekvivalentnih elektroda. Ove ekvivalentne elektrode se postavljaju po
površini posmatranih tela i tako biraju i dimenzionišu da ga u potpunosti reprezentuju i zamenjuje.
U zavisnosti od geometrije posmatranog sistema, kao ekvivalentne elektrode koriste se uniformni
linijski izvori neograničene dužine (kod plan-paralelnih sistema), male loptaste ekvivalenente elek-
trode (kod trodimenzionih sistema) i tanki kružni lineični obruči (kod sistema sa aksijalnom sime-
trijom). U slučajevima kada sistem poseduje veći broj tela ili postoje višeslojne sredine, koriste se
Grinove funkcije pobrojanih izvora u odnosu na prisutna tela, odnosno slojevite sredine. Metod je
veoma jednostavan za primenu i tačan. U toku njegove primene nema potrebe za numeričkom inte-
gracijom, tako da eventualne loše uslovljenosti sistema obrazovanih linearnih jednač!ina nisu do
sada uočene. U graničnom slučaju, kada je uzet neograničeno veliki broj ekvivalentnih elektroda,
metod dovodi do tačnog rešenja. Pored teorijskog izlaganja, u radu je prikazan i veći broj podesno
odabranih primera, koji ilustruju način primene i ostvarenu tačnost i konvergenciju rezultata.


