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Abstract. This study examines the turbulent flow in plane-wall diffusers. For calculation
we use the equations of turbulent boundary layer in integral form, adjusted for internal
flow, and for closing the system of equations we use turbulent viscosity model based on
the mixing length. Velocity profile in every cross-section of the diffuser is approximated
by a sixth-order polynomial, while the coefficients of the polynomial depend on three form
parameters. By this transformation system of governing equations is reduced to three
ordinary differential equations for form parameters, which is solved numerically. The
obtained results show that the performance, position of the separation point and other
flow characteristics of diffusers depend on the angle and Reynolds number.

1. INTRODUCTION

A diffuser, as an element where the stream cross-section changes from inlet to outlet,
either plane or axisymetrical, has a great importance in many practical engineering
applications. The flow structure in the diffuser transforms into the velocity profile with
stream separation (stall), which is defined where the value of shear stress on the wall is
equal to zero, then after this, the cross section stream starts to separate from the channel
wall. The problem of stall is very old but very important. In the diffuser several regime
flows can exist, which depend on the geometry and Reynolds number, and which are
defined by Kline's diagram [1], [2] and [3] for turbulent flow (obtained by Kline's work
and its Stanford group) and his appendix for laminar flow [4]. In the Kline's diagram (see
Fig. 3) for the turbulent flow in the plane, or conical diffusers, which is obtained
experimentally, four different regimes exist: (a) no appreciable stall, (b) transitory stall,
(c) full stall on one wall with detachment close to the inlet, and (d) jet flow with full stall
on all walls. In many practical cases for plane diffusers designed with good geometrical
parameters it is shown (see ref. [3]) that the optimal geometry of diffusers corresponds
the lengths xs/δo = 5 to 15, and the area ration δs/δo 2 to 4 (see Fig. 1 and Fig. 3).
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The problem which is examined in this paper is incompressible stationary turbulent
flow in a plane diffuser, which is solved by integral method of flow developed in the
references [5] and [6]. This method is based in the integral equations of the
incompressible turbulent boundary layer adopted for the problem of interior flow in
diffusers. In this pattern it is necessary to make an approximation of the velocity profile,
and in this paper we use an approximation of the velocity profile by the sixth-order
polynomial based in the eddy turbulent viscosity. With this approximation we obtained
the system of three nonlinear ordinary differential equations for form parameters, which
are solved by classical numerical method of the Runge-Kutte. Finally, we obtained the
solutions for the flow in a plane diffuser for different values of the Reynolds number and
the diffuser angle, starting with quasi-developed velocity profile in the inlet cross section
up to the downstream cross section in which turbulent flow separates from the wall. By
using the results of our calculation for the separation flow in diffuser we obtained an
addition to the Kline's diagram, which show that the position of separation point depend
the angle of diffuser and Reynolds number.

2. PROBLEM STATEMENT AND THE GOVERING EQUATIONS

Two dimensional axisymetric stationary turbulent flow in the diffuser is shown in Fig.
1. Geometry of the diffuser is defined by its half-width δ(0) = δo, half-angle θ  and by the
downstream changes of half-width δ(x). The turbulent flow in the diffuser is the one
which takes place between the inlet cross section, defined by the maximum velocity in
the axis: ueo = ue(0) and by the average velocity um(0), and which is transformed
downstream into the velocity profiles u(x,y), the axis velocity ue(x) and the average
velocity um(x), and the separation cross section xs in which the flow separation begins and
in which the shear stress on the wall τw(xs) is zero.
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Fig. 1. Flow through a diffuser

Two-dimensional incompressible turbulent flow is described by Reynolds's equations
and equation of continuity, which are after transformation (see [5] and [6] ) written in the
integral form:
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where (1) represents momentum equation and (2) represents mechanical energy equation,
subscript e represents the value in the axis of diffuser, and where total sheer stress τ is
identified as:

τ ρ ν ν ∂
∂= +( )t
u
y  , (3)

variable eu '  represents the derivative xuu ee d/d' = , and the variables: δ1, δ2 and δ3 -
displacement thickness, momentum thickness and energy thickness respectively, are
defined in the classical way:
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For closing the physical-mathematical model which describes turbulent flow we use
for eddy viscosity the mixing length model where ν ηt l u= 2d d/ , where mixing length l(η)
is defined by expression [6]:
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where κ = 0,4  is the Prandtl's constant.
With the aim of solving equations (1)-(2) we predicted that velocity profile is the

sixth-order polynomial:
642

)()()()(),( ++++ +++= yxdyxcyxbxayxu . (6)

The velocity profile has to be symmetrical with relation to the axis of the channel and
for this reason we only applied even numbers in the power ratios, and a(x), b(x), c(x) and
d(x) denote the coefficient of the polynomial. Analysis of turbulent flow shows that it is
useful to introduce: a coordinate measured positive from the wall: η = δ − y, friction
velocity ρτ= /)()(* xxu w  and dimensionless variables:

*u
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ν
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ν
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ν
δ=δ+ *u  . (7)

If we use velocity profile (6) and satisfy boundary conditions as:
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we will determine polynomial coefficients as:
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in which: Re /= 2δ νue  is the Reynolds number, and parametrical forms:
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If we use formula (9) we find a relationship between the parametrical forms:

q q q' ( ' )= ++1 3 2
δ λδ δ  . (10)

Velocity profile (6) is defined by formula (8) as a function of parametrical forms, as
u u q= +( , , )λ δ . After a huge mathematical process, which is dictated by equations (3)
and (4), and by formula (7), a system of three simple differential equations are obtained:
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The functions which depend on the longitudinal coordinate and parametrical forms:
f x q( , , , )λ δ+ , g x q( , , , )λ δ+  and h x q( , , , )λ δ+ , and which are given in the reference [5].

Initial conditions of the parametrical forms according to ref. [5] are:

λ(0) 0≠  , (12)
but which is very near zero, and:
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Finally, the system of differential equations (11) and initial conditions (12) to (14) is
solved by the application of the Runge-Kutte numerical method. Numerical calculations
are stopped in the downstream cross section in which the flow separates from the wall of
the diffuser, that is when on a distance sxx =  shear stress becomes 0)( =τ sw x .

3. NUMERICAL RESULTS AND DISCUSSION

In order to have concrete numerical results we have to define the geometry of the
diffuser and the value of the Reynolds number at the diffuser inlet. In this paper the
geometry of the diffuser (see Fig. 1) is defined as a straight walled slope of half-angle θ,
and the cross section change is defined by the linear function: δ δ θ( )x tg x= + ⋅0 .

In Fig. 2 velocity profiles are shown in a diffuser with the half-angle of 15° and the
Reynolds number: Re=6000, in the inlet cross section (x/xs = 0) and in the downstream
cross section (x/xs = 1) in which the flow separation occurs. In this diagram velocity is
normalized with the maximum velocity in the corresponding cross section, and the
transversed coordinate is normalized with the corresponding half-width of the channel.
The inlet velocity profile (for x = 0) is different from the fully developed turbulent
velocity profile taking place between parallel plates upstream from the diffuser. This
difference originates in the slight transformation of the fully developed flow immediately
in front of the diffuser. Velocity profiles in the separation cross section (x/xs = 1) for
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conditions stated in Fig. 1, as well as for other conditions, agrees well with the
experimental date stated in [7] and [8].

For a possible application of the obtained
results on the flow separation the velocity pro-
file in the cross section x/xs = 1 is important
only. By variations of the Reynolds number and
the different angle, the whole spectrum of dif-
ferent separation regimes of the flow is ob-
tained, shown in Fig. 3, and compared with
Kline's diagram, where n = xs/δo  is the charac-
teristic parameter. It is seen from this figure that
most of the calculated flow regimes belong to
the region of transitional flow in the Kline's

diagram, as well as that the position of separation point depends on the Reynolds number
and the diffuser angle in such a way that for a fixed Reynolds number the separation is
enhanced with the increase of the angle. Also, it is seen that for a fixed diffuser angle the
separation is enhanced with the increase of the Reynolds number.
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Fig. 4. Comparison of our results
and the optimal regime flow
in plane diffuser [3].

In Fig. 4 we show the position of our results within the optimal region [3], which is
defined by δs/δo = 2 up to δs/δo = 4, and n between 5 and 15. It is seen that optimal
parameters can be achieved for relatively small values of both the Reynolds number and
the diffuser angle. The presented results can be used for the choice of optimal dimensions
of plane diffusers in the case in which no flow separation occurs.
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4. CONCLUSION

For the calculation of turbulent flow in plane diffusers in this paper we use the
method of integral equations of the boundary layer theory, adopted for the problem of
interior flow. The results obtained by our calculations contain the development of
velocity profiles from the inlet cross section of the diffuser up to the separation cross-
section. The results obtained show that the position of the separation point is a function of
the Reynolds number and the diffuser angle, and their changes are more intense in the
diffusers with greater angles. For the fixed value of the Reynolds number the position of
the separation cross section is postponed for smaller diffuser angles. Our results of
calculations can by use for design or choice of the optimal geometrical and flow
characteristics of plane diffusers.
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PRORAČUN TAČKE ODVAJANJA PRI TURBULENTNOM
STRUJANJU U RAVANSKIM DIFUZORIMA

Mile Vujičić, Cvetko Crnojević

U radu se proučava turbulentno strujanje u ravanskim difuzorima. Za proračun se koriste
jednačine turbulentnog graničnog sloja prilagodjene za unutrašnja strujanja, i to njihov integralni
oblik. Za zatvaranje sistema jednačina koristi se model turbulentne viskoznosti baziran na putanji
mešanja. Profil brzina u poprečnom preseku je aproksimiran polinomom šestog stepena, pri čemu se
pokazuje da koeficijenti polinoma zavise od tri parametra oblika. Sa ovom pretpostavkom polazni
sistem jednačina se transformiše na tri obične diferencijalne jednačine koje su rešene numerički.
Dobijeni rezultati proračuna pokazuju da performanse, položaj tačke odvajanja i druge strujne
karakteristike difuzora zavise od Rejnoldsovog broja i ugla širenja difuzora. Rezultatima proračuna
koji se odnose na tačku odvajanja struje izvršena je dopuna Kline-ovog dijagram mogućih režima
strujanja u ravanskim difuzorima.


