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Abstract. The laminar, unsteady flow of viscous incompressible fluid caused by moving
of semi-infinite flat plate with variable velocity is considered in this paper. The electro-
conductivity is assumed as the linear function of velocities ratio. The present external
magnetic field is perpendicular to the plate. The fluid properties, except the electro-
conductivity, are isotropic and constant. The plate is warmed up (cool down). Dissipation
and Joule heat are neglected. For the investigation of described problem the method of
"universalisation" is used which has been formulated by L.G.Lojcijanski for boundary
layer problems. The universal equations of described problem have been obtained by
using this method. The momentum equation of problem is introduced firstly, in order to
obtain the universal equations of the described problem. The approximate universal
equations of mentioned problem are also given in the paper.

Key words: MHD incompressible fluid flow, universal equations,
general similarity method.

INTRODUCTION

One of the first prospectors who considered natural and forced incompressible viscous
fluid flow on the solid plates was Ostrach [1]. Later on Grief with associates [2], Gupta
with associates [3] and other scientist are researched fluid flow on inert semi-infinite flat
plate. With moving of semi-infinite flat plate or solid surface fluid flow is changed and
this flow has been the exploration subject of Sakiadis [4]. In our paper [5], we considered
MHD fluid flow caused by porous semi-infinite flat plate which moves with constant
velocity. In this paper, we will consider unsteady MHD flow of incompressible fluid with
variable electro-conductivity caused by moving of semi-infinite flat plate with variable
velocity. For contemplation of described problem "universalization" method of laminar
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boundary layer equations has been used, which was formulated by L.G.Loicijanskij [6].
This method has numerous indisputable benefits in comparison with other approximated
methods. The universal equations of described problem have been obtained by using this
method. The obtained system of universal equations are integrated numerically only once
by using a computer. The results of universal equations integration can be on convenient
way saved and then used for drawing conclusion about fluid flow and for the calculations
of particular problems. In this paper we will be satisfied with the creation of fluid flow
universal equations of described problem.

MATHEMATICAL MODEL

This paper is concerned with the laminar, unsteady flow of viscous, incompressible
and electro-conductive fluid caused by variable moving of semi-infinite flat plate along
x-axis. The plate moves in its own plane and in the still fluid. The velocity of plate is the
function of time t. The present external magnetic field is perpendicular to the plate, and
external electric field is neglected. All fluid properties are assumed constant, except the
fluid electro-conductivity. The fluid electro-conductivity can be assumed in the following
expression:
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where u - means longitudinal velocity of the fluid, U - means plate moving velocity,
σp-electro-conductivity at the edge of boundary layer, which is equal to the fluid electro-
conductivity at the outer potential flow.

The plate temperature is function of longitudinal coordinate x and time t. Viscous
dissipation, Joule's heat, Hole's and polarization effect are neglected. The mathematical
model of described problem is expressed by the following equations:
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in addition, the boundary and initial conditions:
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In the equations (2) and the boundary and initial conditions (3) the parameter labelling
used is common for the theory of MHD boundary layer: x,y - longitudinal and transversal
coordinate respectively; t-time; v -transversal velocity component, ν - coefficient of the
kinematics viscosity of fluid. N = σpB2/ρ where B - magnetic field induction, ρ - density
of fluid, σ0 - fluid electro-conductivity in infinity, α = K / (ρCp) - temperature conduction
coefficient, K - heat conduction coefficient, Cp - specific heat at constant pressure, T -
fluid temperature , Tw - plate temperature, T∞ - fluid temperature in infinity; u1(x,y) and
T1(x,y) - disposition of longitudinal velocity and fluid temperature in time moment t = t1
respectively; u0(t,y) and T0(t,y) disposition of longitudinal velocity and fluid temperature
for x = x0, t1-intial time moment for which the velocity and temperature distribution
u1(x,y) and T1(x,y) are given.

For further consideration, we introduced flow function with relations:
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which transform the system of equations (2) into the equations:
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and the boundary and initial conditions (3) into conditions:
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For every particular problem i.e. for given values of U, N, Tw and T∞; u1(x,y); u0(t,y)
and T0(t,y) the system of equations (5) can be solved with corresponding boundary and
initial conditions (6).

UNIVERSAL EQUATIONS

V.J.Skadov [7], L.G. Loicijanskij [6] and V.N. Saljnikov [8] have constituted the
general similarity method in the boundary layer theory in different forms. This method
brings to the corresponding so-called universal equation and because of that very often in
literature, this method is called "universalization" method. Essential of mentioned method
is in adequate choice of transformations (new variables) and then similarity parameters
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with what the system transforms on universal equations and universal boundary
conditions. Obtained universal equations and corresponding boundary conditions can be
numerically integrated only once for given geometry flow, do not depend on particular
problem, and results can be stored on convenient way, used for drawing the general
conclusion about fluid flow and used for calculation of particular flow on given flow
geometry. This method gives good results not only for simple boundary layer problems
also for very complicated. Considering what we already told in this paper, we make
attempt to evolve the general similarity method in Lojcijanski version on the described
problem.

For that purpose in sense of following general similarity method-"universalization"
method [6],[7],[8] we introduced new variables in next form:
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where **δ  - thickness of momentum loss, defined with expression:
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By using the new variables (7), we transform the system of equations (5) into the
equations:
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where, for the sake of shorter expression, the notations are introduced:
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Obtained system of equations (9) are integrated with respect to the next boundary
conditions

1,0,1 =Θ=Φ=
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which is derivated from conditions (6).
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By further following the -"universalization" method we introduced in consideration
three sets of parameters:
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and constant parameter:
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which replace longitudinal coordinate x and time t. The introduced sets of parameters reflect
the characteristics of plate velocity alteration, characteristic of variables alternation N and q
and, a part from that, in the integral form (by means of z and t/z ∂∂ ) pre-history of flow. The
assumption that parameter p=const is correct, for some determined flat plate velocity the
method is correct and for the other velocities the method is approximate. Introduced sets of
parameters enable transformations of equations system (9) unto universal form in sense that
neither equations nor boundary conditions depend of external values i.e. from values that
characterized particular problems.

In intention to induce universal equations, we introduced new independent variables
n,kn,k,k l,gf,η  in equations (9). Now using the differentiation operators
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and with accomplishment of intended operations in system of equations (9), we came to
next equation system:

++=ℑ ∑
∞

≠∨
=

0nk
0nk,

nk,nk,nk,nk,1 )]lX(η(M)gX(η([K

∑∑
∞

=

∞

≠∨
= 











∂∂

∂++











∂∂

∂+
∂∂

∂+
1k k

2

kkk

0nk
0nk, nk,

2

nk,
nk,

2

nk, fη
ΦE)fX(η(Q

lη
ΦN

gη
ΦL

++=ℑ ∑
∞

≠∨
=

0nk
0nk,

nk,nk,nk,nk,2 )]lY(η(M)gY(η([K

∑∑
∞

=

∞

≠∨
=









∂
∂++












∂
∂+

∂
∂+

1k k
kkk

0nk
0nk, nk,

nk,
nk,

nk, f
ΘE)fY(η(Q

l
ΘN

g
ΘL  (15)



1012 Z. BORIČIĆ, D. NIKODIJEVIĆ, D. MILENKOVIĆ, Ž. STAMENKOVIĆ

where the following markings have been used for shorter statement: 1ℑ , 2ℑ -left side of
first and left side of second equations of system (9) respectively,
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Boundary conditions, which are appropriate to equations (15), have the form:
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where 0Φ and 0Θ are solutions of following system of equations:
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In order to make the system of equations (15) universal, it is necessary to deprive
parameter F from it. Adequate problem in boundary layer theory has been prevailed by
using the momentum equation, so we will try to do so here. Following the Karman ideas,
the first equation of system (2) can be written in form:
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and third equation of the same system after multiplication with U in form:
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If we subtract equation (20) from equation (19) and integrate in that way obtained
equation, transversal to the flow in boundary's from 0 to ∞ , with respect to boundary
conditions (3) we derivate next equation:
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By assuming the existing of integrals:

∫
∞






 −=δ

0

* dy
U
u1 , ∫

∞






 −=δ

0

2

1 dy
U
u1 (22)

last equation became:

∞






∂
∂−=+

∂
∂+

∂
∂

y
uγNUδ)δ(U

x
)(Uδ

t 1
**2* (23)

and represent the momentum equation of the observed problem.
If we write the derivations on the left side of equation (23) in expanded form and

replace variables (7) and parameters (12) like new independent variables, we obtain the
equation that can be solved according to parameter F:
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Values, ζ, H and H1 depend only from parameters (12) and that mean also for value F
which is expressed with equation (24), so it can be stated now that the system of equations
(15) is the universal equations system of observed problem. System of equations (15) and
corresponding boundary conditions (17) has the same form for every analytic function of
values N, Tw, U. At this way the system of differential equations (2), which contain in itself
and in boundary conditions (3) features of particular problems, is transformed to the system
of universal differential equations (15) which is the same for every particular problem.
Equations system (15) with boundary conditions (17) can be integrated by using computer,
and during that process only "snipping" of equations has been considered. Obtained results
can be on convenient way saved and then used for general conclusion conveyance about
fluid flow and for calculations of particular problems.

APPROXIMATED UNIVERSAL EQUATIONS

Actual solving of equations (15) requires limitation of independent variables number.
This leads us to indispensable application of "snipping" method, which consists of
neglecting of all parameters starting with some index. That brings us to approximated
universal equations of described problem. If we retain influence of parameters f1; g1,0; l1,0
and neglect influence of the rest of parameters and their derivatives, we obtain the system
of universal equations in four-parameter approximation
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Corresponding boundary conditions for equations (26) have the following form:
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where Φ0 and Θ0 represent solution of system of equations (18).
On the same way, we can acquire other approximated equations of described problem.
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SUMMARY

This paper is concerned with unsteady MHD flow of incompressible fluid caused by
moving of semi-infinite flat plate with variable velocity. The fluid electro-conductivity is
variable. The semi-infinite flat plate moves in its own plane in and in "undisturbed" fluid.
Variable plate temperature is function of longitudinal coordinate and time. Universal equa-
tions of the observed problem are obtained by using the general similarity method. The
momentum equation and approximated universal equations are also derived in this paper.
Acknowledgments. Dragisa Nikodijevic acknowledges the support out of technological development
project TR0078, provided by the Serbian Ministry of Science, Technology and Development.
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UNIVERZALNE JEDNAČINE NESTACIONARNOG
MHD STRUJANJA NESTIŠLJIVOG FLUIDA PROMENLJIVE

ELEKTROPROVODNOSTI NA ZAGREJANOJ PLOČI
Zoran Boričić, Dragiša Nikodijević,

Dragica Milenković, Živojin Stamenković

U radu se razmatra laminarno, nestacionarno strujanje, viskoznog, nestišljivog fluida
izazvanog kretanjem ravne ploče, promenljivom brzinom. Pretpostavlja se da je elektroprovodnost
fluida linearna funkcija odnosa brzina. Prisutno je spoljašnje magnetno polje koje je upravno na
ploču. Sve karakteristike fluida, osim elektroprovodnosti su izotropne i konstantne. Ploča je
zagrejana (hlađena). Disipacija i Džulova toplota se zanemaruju. Za razmatranje opisanog
problema primenjuje se metoda "univerzalizacije" jednačina laminarnog graničnog sloja koju je
formulisao L.G. Lojcijanski. Univerzalne jednačine ovog problema su dobijene korišćenjem
opisane metode. Pri dobijanju jednačina najpre se uvodi impulsna jednačina opisanog problema.
Pridbližne univerzalne jednačine, za dato strujanje takođe su date u ovom radu..


