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Abstract. Singular systems are those in which the dynamics are governed by a
combination of algebraic and differential equations. The complex nature of singular
systems causes many difficulties in the analytical and numerical studies of such
systems, particularly when there is a need for their control. In that sense the question of
their stability deserves great attention. A particular class of these systems operates in
free as well as in forced regime. A brief survey of the results concerning their stability
in the sense of Lyapunov and finite and practical stability are presented as the basis for
their high quality dynamical investigation.
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1. INTRODUCTION

Singular systems are those in which dynamics are governed by a combination of
algebraic and differential equations. In that sense, the algebrac equations represent the
constraints to the solution of the differential part.

These systems also known as descriptor, semi-state or generalized systems, arise
naturally as linear approximations of linear and non-linear system models in many
applications.

2. PRELIMINARIES AND NOTATION

Consider linear singular systems represented, by:
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 0( ) ( ) , ( ) ( ) , ( ) ,oE t A t t C t t= = =x x y x x x!  (1)
or:

0 0( ) ( ) ( ) , ( ) ( ), ( )E t A t B t t C t t= + = =x x u y x x x! , (2)

with the matrix E possibly singular, where x(t) ∈  ℜ n is a generalized state-space vector
and u(t) ∈  ℜ m is a control variable.

Matrices A and B are of the appropriate operating in a free regime and system given
by eq. (2) is operating in a forced regime, i.e. some external force is applied on it. In
other words, system given by eq. (1) is autonomous while that given by eq. (2) is not.

It should be stressed that, in the general case, the initial conditions for an autonomus,
and a system operating in the forced regime need not be the same.

The complex nature of singular systems causes many difficultes in analytical and
numerical treatment that do not appear when systems in the normal form are considered.
In this sense questions of existence, solvability, uniqueness, and smothness are present
which must be solved in satisfactory manner.

The survey of updated results for singular systems and a broad bibliography can be
found in Campbell (1980, 1982), Lewis (1986), Debeljkovic et al. (1996.a, 1996.b, 1998)
and in the two special issues of the journal Circuits, Systems and Signal Procesing (1986,
1989).

3. STABILTY IN THE SENSE OF LYAPUNOV

Stability plays a central role in the theory of systems and control engineering. There
are different kinds of stability problems that arise in the study of dynamic systems, such
as Lyapunov stability, finite time stabilty, practical stability, technical stabilty and
Bounded input bounded output stability. The first part of this section is concerned with
the stability of the equlibrium points in the sense of Lyapunov stability of linear
autonomous and non-autonomous singular systems. In the second part of the paper the
basic results in the area of finite and practical stabilty are presented.

3.1. Linear autonomous singular systems

Stability definitions

Definition 1. Eq.(1) is exponentially stable if one can find two positive constants α, β
such that for every solution of Eq.(1), 0( ) ( ) tt t e−β≤ αx x , Pandolfi (1980).

Definition 2. The system given by Eq.(1) will be termed asymptotically stable if and
only if, for all consistent initial conditions x0, x(t) as t→ → ∞0 , Owens, Debeljkovic
(1985).

Definition 3. The system given by Eq. (1) is asymptotically stable if all roots of det
(sE - A) , i.e. all finite eigenvalues of this matrix pencil, are in the open left - half
complex plane, and system under consideration is impulsive free if there is no X0 such
that x(t) exibits discontinuous behavior in the free regime, Lewis (1986).

Definition 4. The system given by Eq. (1) is called asymptotically stable iff all finite
eigenvalues λi, i = 1, …,n1, of the matrix pencil (λE −A) have negative parts, Muller
(1993).
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Definition 5. The equilibrium point x = 0 of system given by Eq. (1) is said to be
stable if for every ε > 0, and for any t0 ∈  J, there exists a δ = δ(ε, t0) > 0, such that ||x(t,
t0 ,x0)|| < ε hold for all t ≥ t0, whenever x0 ∈ Wk and ||x0|| < δ, where J denotes time interval
such that [ )0 0, , 0J t t= + ∞ ≥ , Chen, Liu (1997).

Definition 6. The equilibrium point x = 0 of a system given by Eq. (1) is said to be
unstable if there exist a ε > 0, and t0 ∈  J, for any δ > 0, such that there exists a t* ≥ t0, for
which || x(t*, t0, x0)|| ≥ ε holds, although x0 ∈ Wk and || 0x || < δ, Chen, Liu (1997).

Definition 7. The equilibrium point x = 0 of a system given by Eq. (1) is said to be
attractive if for every t0 ∈  J, there exists an η = η(t0) > 0, such that lim

t→∞
x(t,t0,x0) = 0,

whenever x0∈ Wk and ||x0||< η, Chen, Liu (1997).
Definition 8. The equilibrium point x = 0 of a singular system given by Eq. (1) is said

to be asymptotically stable if it is stable and attractive, Chen, Liu (1997).
Lemma 1. The equilibrium point x = 0 of a linear singular system given by Eq. (1) is

asymptotically stable if and only if it is impulsive - free, and σ (E,A) ⊂  C- Chen, Liu
(1997).

Lemma 2. The equilibrium point x = 0 of a system given by Eq. (1) is asymptotically
stable if and only if it is impulsive-free, and lim

t→∞
x(t) = 0, Chen, Liu (1997).

Stability theorems

Theorem 1. Eq. (1), with A = I, I being the identity matrix, is exponentially stable if
and only if the eigenvalues of E have non positive real parts, Pandolfi (1980).

Theorem 2. Let IΩ be the matrix which represents the operator on ℜ n which is the
identity on Ω and the zero operator on Λ.

Eq. (1), with A = I, is stable if an n×n matrix P exist, which is the solution of the
matrix equation:

E
T
P+ PE = −IΩ, (3)

with the following properties:
P = TP ,

P q = 0 , q∈  Λ (4)
Tq P q > 0 , q ≠ 0, q∈Ω .,

where:
 Ω = ( )D

kW I EE= ℵ − , Λ= ( )DEEℵ , (5)

where Wk is the subspace of consistent intial conditions.
ℵ  denotes the kerrnel or null space of the matrix ( ).

Theorem 3. The system given by Eq. (1) is asymptotically stable if and only if:
a) A is invertible
b) exist a positive-definite, self-adjoint operator P on ℜ n exist, such that:

T TA PE E PA+  = − Q (6)

where Q is self-adjoint and positive definite in the sense that:
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( ) ( )T t Q tx x >0 for all x∈
k

W ∗ \{0}, (7)

Owens, Debeljkovic (1985).
Theorem 4. The system given by Eq. (1) is asymptotically stable if and only if:
a) A is invertible
b) a positive-definite, self-adjoint operator P exist, such that:

( )T tx ( T TA PE E PA+ ) ( )tx = ( ) ( )T t I t−x x , ∀  x ∈
k

W ∗ . (8)

Owens, Debeljkovic (1985).
Theorem 5. Let (E,A) be regular and (E,A,C) be observable.
Then (E,A) is impulsive free and asymptotically stable if and only if a positive definite

solution P to:
0T T T TA PE E PA E C CE+ + = , (9)

exist and if P1 and P2 are two such solutions, then 1 2 ,T TE PE E P E=  Lewis (1986).
Theorem 6. If there are symmetric matrices P, Q satisfying:

T TA PE E PA+ = −Q (10)
and if:

x T TE PE x > 0 ∀ x = 1 1S y  ≠ 0, (11)

x T Q x ≥ 0 ∀ x = 1 1S y  , (12)

then the system described by Eq. (1) is asymptotically stable if:

rank
1
T

sE A
S Q

− 
 
 

= n ∀ s∈ C , (13)

and marginally stable if the condition given by Eq. (12) does not hold, Muller (1993).

Theorem 7. The equilibrium point x = 0 of a system given by Eq. (1) is asymptotically
stable, if an n × n symmetric positive definite matrix P exist, such that along the solutions
of system, given by Eq. (1), the derivative of function V(Ex) = (Ex)TP(Ex), is a negative
definite for the variates of Ex, Chen, Liu (1997).

Theorem 8. If an n x n symmetric, positive definite matrix P exists, such that along
with the solutions of system, given by Eq. (1), the derivative of the function V(Ex) =
(Ex) TP(Ex) i.e. V! (Ex) is a positive definite for all variates of Ex, then the equilibrium
point x = 0 of the system given by Eq. (1) is unstable, Chen, Liu (1997).

Theorem 9. If an n x n symmetric, positive definite matrix P exists, such that along
with the solutions of system, given by Eq. (1), the derivative of the function V(Ex) =
(Ex) TP(Ex) i.e. V! (Ex) is negative semidefinite for all variates of Ex, then the equilibrium
point x = 0 of the system, given by Eq. (1), is stable, Chen, Liu (1997).
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Theorem 10. Let (E,A) be regular and (E,A,C) be impulse observable and finite
dynamics detectable. Then (E,A) is stable and impulse-free if and only if a solution (P,H)
to the generalized Lyapunov equations (GLE) exists.

0T T TA P H A C C+ + = , (14)

0T TH E E P= ≥ , (15)
Takaba et al. (1995).
The system, given by Eq. (1), is equivalent to:

.

1 1 1 1 1( ) ( ) ( )E t A t B t= +x x u , (16a)
.

2 2 2 2 2( ) ( ) ( )E t A t B t= +x x u , (16b)
where 1 2[ ]T T T=x x x .

Lemma 3. The system, given by Eq. (1), is asymptotically stable if and only if the
"slow" sub - system, Eq. (16a) is asymptotically stable, Zhang et al. (1998a)

Lemma 4. 1 ≠x 0  is equivalent to 1hE + ≠x 0 , Zhang et al. (1998a).
 Define Lyapunov function as:

1 1 1( ) ( )h T h T hV E E PE+ + +=x x x , (17)
where:  0,P P> ∈  Rnxn satisfying: 1( ) 0hV E + >x  if 1hE + ≠x 0 , when V(0) = 0.

From Eq. (1) and Eq. (16), bearing in mind that EA = AE, one can obtain:
1 1 1 1( ) ( ) ( )h T T h h T h h T hE A PE E PAE E WE+ + + ++ = −  (18)

where 0,W W> ∈ n n×ℜ .
Eq. (18) is said to be Lyapunov equation for a system given by Eq. (1).
Denote with r :

1deg det( )r sE A rank E= − = . (19)

Theorem 11. The system, given by Eq. (1), is asymptotically stable if and only if for
any matrix W > 0, Eq. (18) has a solution P ≥ 0 with a positive external exponent r,
Zhang et al. (1998a).

Theorem 12. The system, given by Eq. (1), is asymptotically stable if and only if for
any given W > 0 the Lyapunov Eq. (18) has the solution P > 0, Zhang et al (1998a).

3.2. Linear non-autonomous singular systems

In the sequel, the generalized Lyapunov equations given by Bender (1987) are further
studied for continuous-time singular systems. Under a rank condition, the stability of
continuous-time singular systems is related to the uniqueness of the solutions of the
Lyapunov equations, provided that the systems are controlable. Furthermore, under
certain conditions, the controllability Grammians obtained from the Lyapunov equations
are guaranteed to be positive definite. All the results are valid for both impulsive and
non-impulsive singular systems. However, for time-invariant systems with a regular
pencil (sE − A), all these definitions reduce down to two definitions of controllability at
infinity. These are analogous to the difference between controllability and reachability.
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The parameters of the Laurent expansion of the generalized resolvent matrix
1( )sE A −−  are a very useful tool for analyzing singular systems. This is because they

separate the subspace spanned by solutions in the eigenspace associated with finite
eigenvalues of the pencil (sE − A) from the subcpace spanned by solutions associated
with infinite eigenvalues. The infinite-eigenspace solutions can be termed as a
"impulsive" solutions in a continuous-time system.

The Laurent parameters can thus be used to split the system, given by Eq, (2) into
causal (nonimpulsive) and noncausal (impulsive) subsystems.

The Laurent parameters, also known as fundamental matrices, have played an
important part in the analysis of singular systems.

Bender (1987) introduced the reachability Grammians and associated them with
Lyapunov-like equations without the non-impulsive or causality restriction.

Suppose that (sE − A) is a regular pencil. The system, given by Eq. (2) is denoted by
(E, A, B). It is known that the Laurent parameters {φk, −µ ≤ k < ∞} specify the unique
series expansion of the resolvent matrix about s = ∞.

1( )sE A −−  = 1 , 0k
k

k
s s

∞
− −

=−µ

φ µ≥∑  (20)

valid in some set 0 < |s| ≤ δ, δ > 0.
The positive integer µ  is the nilpotent index.
Two square invertible matrices U and V exist such that (E, A, B ) is transformed to the

Weierstrass canonical form:
1 1E U EV− −= , 1 1A U AV− −= , (21)

1B U B−= , 1C CV −= , (22)
with:

0
0

sI J
sE A

sN I
− 

− =  − 
, 1

2

B
B

B
 

=  
 

 , 1

2

TC
C

C
 

=  
 

, (23)

where J and N are in the Jordan canonical form and N is nilpotent.
Also, the corresponding Laurent parameters in Weierstrass form are:

kφ  = V kφ U = 

1

0
, 0

0 0

0 0
, 0

0

k

k

J
k

k
N − −

  
≥  

  


  <  − 

 (24)

Remark 1. If E is nonsingular, the singular system, given by Eq. (2) can be
premultiplied by E −1 to derive an equivalent state-space system. In this case the
following simplifications occur:

0φ  = I,   U = E,   V = I,   J = E −1 A,   B1 = E −1 B,  C1 = C, (25)

and N, B2 and C2 do not exist (i.e., N is a zero-dimensional matrix).
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In this case the eigenvalues of the pencil (sE − A) are the eigenvalues of E −1 A and are
obviously finite. If E = I, eq. (2) is already in the Weierstrass canonical form and one can have:

U = I, J = A, B1 = B. (26)

We now summarize some useful propreties of the Laurent parameters:

E kφ − A 1k −φ  = kφ E − 1k −φ A = 0kδ I , (27)

0φ E 0φ  = 0φ  , 1−φ A 1−φ  = − 1−φ  (28)

kφ  = 0 0
1

1 1

( ) , 0
( ) , 0

k

k

A k
E k− −

− −

 φ φ ≥
 −φ φ <

 (29)

E kφ A = A kφ E, ∀ k (30)

kφ E jφ  = jφ E kφ  = kφ A jφ  = jφ A kφ  (31)
if: k < 0, j ≥ 0

1 1
1 1

1 1

( ) ( ) 0
( ) 0, ( ) 0

E E
E E

µ µ
− −

µ− µ−
− −

−φ = − φ = 
−φ ≠ − φ ≠ 

  (32)

That is, HF is the subspace spanned by causal solutions and HI is the subspace
spanned by noncausal or "infinite frequency" or "impulsive" solutions.

Note that if E is nonsingular, HF = ℜ
n
, HI = 0, φ0 = I, φ0E=E =Eφ0, and φ−1 =φ−1A =

Aφ−1 = 0.
The solution of a singular system can be expressed directly in terms of the Laurent

parameters.
x  = φ0E x  − φ−1Ax(t) =

= 0 0 ( )
0 0

0

( )
t

At A te e B dφ φ −τ 
+ φ τ τ − 

 
∫x u

1
( ) ( )

1 1 1
0

( ) ( ) ( ) ( )
m

m m k k

k
E t E B t

−

− − −
=

 −φ + −φ φ 
 

∑x u  (33)

y(t) = C (φ0E − φ−1A)x(t) , (34)
where, i ≥ 0 and m ≥ 0.

As indicated by the property of Eq. (33), the Laurent parameters can be used to
separate the causal solution subspace from the noncausal solution subspace.

Definition 9. If the integral exists, the causal continuous-time singular system
reachability Grammian is:

0 0
0 0

0

T TA t A tcr T T
cG e BB e dt

∞
φ φ= φ φ∫ . (35)

Bender (1987).
The noncausal continuous-time singular system reachability Grammian is:

1
cr T T
nc k k

k
G BB

−

=−µ
= − φ φ∑ . (36)

The continuous-time singular system reachability Grammian is:
crG = cr

cG  + cr
ncG . (37)
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If the integral does not exist, only cr
ncG  is defined, Bender (1987).

The columns of 0φ E cr
cG 0

T TE φ = cr
cG  span the causal reachable subspace, and the

columns of cr
ncG span the noncausal reachable subspace, which is the subspace "reachable

at ∞".
By the same argument the columns of crG  span the reachable subspace for the entire

system.
Theorem 13.
i) If cr

cG exists, it satisfies 0φ (E cr
cG TA +A cr

cG TE ) 0
Tφ = − 0φ B TB 0

Tφ . (38)

ii) cr
ncG  always exists and satisfies 1−φ (E cr

ncG TE −A cr
ncG TA ) 1

T
−φ = 1−φ B TB 1

T
−φ . (39)

iii) Suppose the range of Rc (see Apendix B) contains the range of 0φ E (i.e.,the pair

(J, 1B ) is reachable). Then if all finite eigenvalues of the pencil (sE − A) have real part

less than zero, Eq. (38) has a symmetric solution cr
cG  which satisfies: Tx cr

cG x > 0 for all
x such that:

x = TE 0
Tφ w ≠ 0. (40)

Furthermore, 0φ E cr
cG TE 0

Tφ  is unique.
Conversely, if Eq. (38) has a symmetric solution, then 0φ E cr

cG TE 0
Tφ  is unique and

all finite eigenvalues of the pencil (sE − A) have real part less than zero.
iv) If the rank of Rnc contains the range of 1−φ A (i.e., if the pair (N, 2B ) is reachable),

then Eq. (39) has a symmetric solution cr
ncG  satisfying: Tx cr

ncG x < 0, for all x such that:
x = TA 1

T
−φ w ≠ 0. (41)

Furthermore, 1−φ A cr
ncG TA 1

T
−φ  is unique, Bender (1987).

Definition 10. A singular system is asymptotically stable if and only if its slow
subsystem (I, J, B1, C1) is asymptotically stable. The slow subsystem is controllable, or
equivalently, the descriptor system is R-controllable, if and only if:

rank[B1, J B1, …, 1 1nJ −  B1] = n1, (42)

where n1 = degree(det(sE − A)) is the dimension of the slow subsystem.
The fast subsystem is controllable if and only if:

rank[B2, N B2, …, 1N µ−  B2] = n − n1. (43)

Dai (1989).
The controllability of a singular system implies both its slow and fast subsystems are

controllable.

Definition 11. For the continuous-time descriptor system (E,A,B,C), the slow
controllability Grammian is:

0 0
0 0

0

T TA t A tc T T
sG e BB e dt

∞
φ φ= φ φ∫ , (44)
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provided that the integral exists.
The fast controllability Grammian is:

1
c T T
f k k

k
G BB

−

=−µ
= φ φ∑ . (45)

The controllability Grammian is:
cG  = c

sG  + c
fG , (46)

Zhang et al. (1988b).
In Weierstrass canonical form, given by Eq. (21-22), the corresponding Grammians of

c
sG  and c

fG  are denoted by c
sG  and c

fG  respectively.
From Eq. (21-22), it can be easily shown that:

c
sG  = V c

sG TV , c
fG  = V c

fG TV . (47)
Proposition 1.
i) 0φ E c

sG TE 0
Tφ  = c

sG , (48)
ii) 1−φ A c

fG TA 1
T
−φ  = c

fG . (49)

Theorem 14.
i) c

sG  satisfies
c
sG TA 0

Tφ  + 0φ A c
sG  = − 0φ B TB 0

Tφ . (50)
ii) c

fG  uniquely satisfies:
c
fG  − 1−φ E c

fG TE 1
T
−φ  = 1−φ B TB 1

T
−φ . (51)

iii) If the system, given by Eq. (2), is asymptotically stable, then the slow subsystem
is controllable if and only if Eq. (50) has the unique solution c

sG  ≥ 0 which satisfies:

rank( c
sG ) = degree (det(sE − A)). (52)

iv) The fast subsystem is controllable if and only if:
rank( c

fG ) = n − degree(det(sE − A)). (53)
v) If the system, given by Eq. (2), is asymptotically stable, then system given by Eq.

(2), is controllable if and only if :
cG  = c

sG  + c
fG  > 0, (54)

Zhang et al (1988b).
Remark 2. If E is nonsingular, then 0φ  = I and 1−φ = 0.

In this case, the controllability Grammian G 
c
 becomes:

G 
c
 =

0

TAt T A te BB e dt
∞

∫ . (55)

It can be seen that G 
c
 satisfies:

G 
c
 A 

T
 + A G 

c
 = −B B 

T
. (56)

Therefore, normal systems and singular systems have unified Grammian form and
Lyapunov equations, Zhang et al (1988b).
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4. NON – LYAPUNOV STABILTY

Boundedness properties of system response i.e. the solution of system models, are
very important form the engineering viewpoint. Realizing this fact numerous definitions
of the so-called technical and practical stability were introduced. These definitions were
essentially based on predefined boundaries for perturbation of initial conditions and
allowable perturbation of the system response. This means that one is not only interested
in system stability in the sense of Lyapunov but also in bound of systems trajectories. A
system could be stable but still completely useless because it possesses undesirable
transient performances. Thus, it may be useful to consider the stability of such systems
with respect to certain subsets of state space which are defined a priori in the given
problem. Besides, it is of particular significance to concern the behavior of dynamical
systems only over a finite time interval.

4.1. Finite and practical stabilty

Our primary interest is to investigate boundedness properties of systems used in
suitable canonical form, i.e.:

1 1 1 2 2( ) ( ) ( )t A t A t= +x x x! , (57a)

0 = 3 1 4 2( ) ( )A t A t+x x . (57b)

The boundedness properties of solutions of (1) can be expressed in the equivalent
form as constraints on solutions of (57), if the transformation from (1) to (57) is
nonsingular.

Thus, we will present our problem for the singular systems given in the both forms.
Before formulating the problem we first introduce the set:

2( ) { ( ) : || ( ) || , 0}n T
G GS t t G Gρ = ∈ ℜ < ρ = >x x .  (58)

Systems governed by (1) or by (57) will be considered over time interval T = [0,τ],
where quantity τ may be either a positive real number or symbol +∞, so that the finite and
practical stability can be treated simultaneously. It is obvious that T ∈  ℜ n.

Time invariant sets, used as bounds of system trajectories, are assumed to be open,
connected and bounded. Let index "a" stands for the set of all allowable states of system
and index "i" for the set of all allowable initial states of the system, such that Si ⊂  Sa.

As the system considered is time invariant it is sufficient to consider its solutions x as
functions of only current time t and initial value x0 at the initial moment t0 = 0, i.e. the
adopted notation is as x(t,x0). In an abbreviated form the value of solution x at the moment
t will be written as x(t).

Stability definitions

Definition 12. System (1) is practically stable w.r.t. (T, i, a, G) if and only if x0 ∈
Wk*, satisfying 2

0|| ||G i<x , implies 2|| ( ) || ,Gt a t T< ∀ ∈x , Debeljkovic, Owens (1985).
Here G = ETPE with P = PT > 0 , is an arbitrary specified matrix and Wk* is subspace

of consistent initial conditions.
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Definition 13. A solution x(t, x0) of the system (57) is (T, i, a, G) - bounded if and
only if 2

0 0and || ||Gm i∈ <x x , implies 2
0|| ( , ) ||Gt a<x x  on T, Debeljkovic et al. (1993).

Definition 14. A solution x(t, x0) of the system (57) is (T, i, a, G) - unbounded if and
only if there exists a 0( *, )t T m∈ ×x , such that 2

0|| ||G i<x , implies 2
1 0|| ( *, ) ||Gt a≥x x ,

Debeljkovic et al. (1993).
Definition 4.4. A solution x(t, x0) of the system (57) is (T, i, a1, a2) - bounded if and

only if x0 ∈  m and 2 2
10 20 2 1|| || , || || /i ia a< <x x , implies 2

1 0 1|| ( , ) ||t a<x x  and
2

2 0 2|| ( , ) ||t a<x x  on T, Debeljkovic et al. (1993).
Definition 15. A solution x(t, x0) of the system (57) is (T, i, a1, a2) – unbounded if and

only if there exists a 0( *, )t T m∈ ×x , such that 2
10|| || i<x  and 2

20 2 1|| || /ia a<x , implies
2

1 0 1|| ( *, ) ||t a≥x x  or 2
2 0 2|| ( *, ) ||t a≥x x , Debeljkovic et al. (1993).

Stability theorems

Theorem 15. The system governed by (1) is finite time stable or practically stable
w.r.t. (T, i, a, G) if the following condition is satisfied:

maxln ( ) , ,a M t t T
i

> Λ ∀ ∈  (59)

where:
max ( ) max ( : \{ }, 1).T T T

kM M W E PEΛ = ∈ =x x x 0 x x (60)

 M = ATPE + ETPA, (61)

Debeljkovic, Owens (1985).
In the sequel we present a new result, explaining idea of introducing (60) in

dynamical analysis of linear singular systems over finite time interval.
Using:

 ( ( )) ( ) ( ), 0,T T TV t t E PE t P P= = >x x x  (62)

as Lyapunov function for the system (1) on the subspace if consistent initial conditions
Wk, it is obvious that computing its time derivative, along the trajectories of (1) yields:

 
max max

( ( )) ( )( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

T T T

T T T T

V t t A PE E PA t
A PE E PA t t t t

= +
≤ λ + ≤ λ

x x x
x x x x

!

"
. (63)

On the other side, following the basic ideas of finite time stability concepts,

max
( ( )) ( ( ) ( )) ( ) ( ) ( )

T T
TdV t d t E PE t t t

dt dt
= ≤ λx x x x x" , (64)

or:
0 0

max
0 0

( ( ) ( )) ( ) ,
( ) ( )

t tT T

T T

d t E PE t dt
t E PE t

≤ λ∫ ∫x x
x x

"  (65)

one should integrate the previous inequality, to obtain final result.
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But it is obvious that the solution of integral, on the left side of (65), in general can
not be solved.

A simple numerical example shows necessity to formulate system matrix eigenvalue
in the manner as it has been done by (60).

Let us adopt:

 1

2

0
0

e
E

e
 

=  
 

. (66)

Then the integral has the form:

 
0 2 2 2

1 2 2
2 2
1 20

( )t e e dx
x x
+

+∫ . (67)

If one puts:
2
2

2
1

( ) ( ),

( ) ( ) ( ),

x t f t

x t g t f t

=

= −
, (68)

so one can write:

 
0

0

( )
( )

t df t
g t∫ , (69)

functions f(t) and g(t) being independent, so it can be easily seen that the solution of (67),
in general, does not exist.

But it is interesting to point out, that in some particular cases, solution can be found.
Lets have this choice:

 
2 1
2

2 1
1

( ) ( ),

( ) ( ( ) ) ( ),

m

n p m

x t x t

x t ax t b x t

+

− +

=

= + −
 (70)

so, (65) yields to:
0 01

0 0

( ( )) ( 1) ( )( ( ) ) ( ),
( ( ) )

t tm
m n p

n p

d x t m x t ax t b dx t
ax t b

+

− = + +
+∫ ∫  (71)

what correspond to integral of differential binomial, having closed solution if and only if:
i) p is integer or:

ii) 1m
m
+  is integer

or:

iii) 1m p
m
+ +  is integer .

This discussions shows reasonableness of introducing the largest system eigenvalue
as it has been done in (60).

5. CONCLUSSION

To assure asymptotical stability for linear singular systems it is not enough only to
have the eigenvalues of matrix pair (E, A) in the left half complex plane, but also to
provide an impulse-free motion of the system under consideration.
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Some different approaches have been shown in order to construct Lyapunov stability
theory for a particular class of linear singular systems operating in free and forced
regimes.

Basic definitions and some theorems concerning finite and practical stabilty of linear
singular systems are also presented. It has been shown that only particular choice of
maximal system eigenvalue can leed to desired results.

APPENDIX A - NOTATIONS

With ℵ (F) and ℜ (F) we will denote the kernel (null space) and range on any operator
F, respectively, i.e.:

ℵ (F) ={ x: Fx = 0, ∀  x∈ Rn } , (A1)
ℜ (F) ={ y∈ mℜ , y =Fx, x∈  Rn } , (A2)

with:
dim ℵ (F) + dim ℜ (F) = n . (A3)

APPENDIX B - REACHABILITY GRAMMIANS

We begin this section by defining the reachable subspace in terms of the Laurent
parameters.

We follow the deveopment of Lewis (1985).
We shall define the reachable subspace in terms of the following reachability

matrices:
Rc = (φ0B ⋅⋅⋅φn−1B), (B1)
Rnc = (φ−µB ⋅⋅⋅φ−1B), (B2)

and:
R = (Rnc  Rc). (B3)

The subscript c implies that the columns of Rc span the reachable part of the causal
solution subspace, and the subscript nc implies that the columns of Rnc span the reachable
part of the noncausal solution subspace.

Definition B1. For a continuous-time singular system, the causal reachable subspace
is the space spanned by the columns of Rc, the noncausal reachable subspace is the space
spanned by the columns of Rnc, and the reachable subspace is the space spanned by the
columns of R, Lewis (1985).

Remark B1:
1) If the reachable subspace defined here for the continuus-time system, given by Eq.

(2) is equal to ℜ n, the singular system is "controllable" in the sense of Cobb (1984). That
is a (µ − 1) - times continuously differentiable input u(t) exist which will steer the
descriptor vector x(t) from any initial condition in the range of φ0E to any arbitrary
location in the descriptor space ℜ n in finite time.

This is an extension of (and if E = I is equivalent to) the usual definition of
reachability for state-space systems.

2) If and only if the causal subsystem is reachable, i.e., if the pair (J,B1) is reachable,
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do the columns of Rc span the range of φ0E.
That is, the columns of Rc span the causal solution subspace.
3) If and only if the noncausal subsystem is reachable, i.e., if the pair (N,B2) is

reachable, do the columns of Rnc span the range of φ−1A.
That is, the columns of Rnc span the noncausal solution subspace.
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TEORIJA LJAPUNOVLJEVE I NELJAPUNOVLJEVE
STABILNOSTI: LINEARNI AUTONOMNI I NEAUTONOMNI

SINGULARNI SISTEMI
Dragutin Lj. Debeljković

Singularni sistemi su oni sistemi čija dinamika zadovoljava sistem kombinovanih algebarskih i
diferencijalnih jednačina. Složena priroda singularnih sistema je uzrok mnogih teškoća u
analitičkim i numeričkim studiranjima takvih sistema, posebno kada je neophodno upravljanje. U
tom smislu pitanje njihove stabilnosti privlači posebnu pažnju. Posebna klasa tih sistema se nalazi
kako u slobodnom tako i u prinudnom režimu. Kratak pregled tih rezultata koji se tiču njihove
stabilnosti u smislu Ljapunovljeve konačne i praktične stabilnosti predstavljaju osnovu za njihovu
bolju kvalitativnu dinamički analizu.

Ključne reči: singularni sistemi, Ljapunovljeva stabilnost, konačna i praktična stabilnost


