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Abstract. For mapping from external to internal coordinates the Takagi-Sugeno
controller is used, implemented within the framework of adaptive network, which is
similar, by its architecture, to RBF neural network, so it is also called the neuro-fuzzy
system. During the learning process, the parameters of the membership functions of the
primary fuzzy sets and parameters of the consequences of the Takagi-Sugeno controller
were adapted. The results are presented for the straight-line trajectory tracking, with
the constant velocity of the gripper and with the triangular velocity profile.

1. INTRODUCTION

Deficiencies of analytical and numerical methods of solving the inverse kinematics (IK)
problem led to searching of the new approaches to mapping from external to internal coor-
dinates.

A large number of papers are devoted to application of the non-recurrent (or feed
forward) neural networks for solving the IK. In [6] is used the two-layered neural net-
work (in literature also known as Radial Basis Function – RBF neural network). The dy-
namic procedure was applied for learning the network. Neurons in the invisible layer
have Gaussian activation functions, while the output layer consists of a single neuron
whose activation threshold is being adapted. As it is shown, the main deficiency of the
RBF networks, trained by learning data sets, which enhance the part of the working
space, lies in fact that their hidden layers contain large number of neurons. The RBF neu-
ral networks cannot realize mapping from external to internal coordinates in real time for
high gripper velocities.

Fuzzy logic was first applied for solving the IK of the planar four-segment redundant
robot in paper [4]. This paper was used as a basis for developing the fuzzy logical controller
(FLC), presented in paper [5], where the FLC is applied for mapping from the external to
internal coordinates for planar two-segment robot and for robots of the RzTzTy and RzRyRy
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minimal configuration. The biggest deficiency of such an FLC structure is the long compu-
tational time, which is the consequence of the large number of steps during the trajectory
generation. In addition, in design of logical fuzzy controller, especially problematic is de-
fining of the rule base and selection of the membership functions of the primary fuzzy sets.
Numerous researchers have tried to automatize the modeling process of the fuzzy control-
ler. Because of such investigations the adaptive fuzzy controllers appeared. Adapting
mechanism decides which changes should be performed in the fuzzy controller, so it would
obtain the desired output, namely it would minimize the error. This mechanism is similar to
the training mechanism in neural networks.

Different adaptive systems were developed. The most frequently used adapting
mechanism performs the modification in the phase of controlling rules, changes of the
weighting functions of the joined fuzzy rules to controlling rules in the rule base, modifi-
cation of the primary fuzzy sets or the selection of the defuzzyfication methods. Based on
available literature, it can be concluded that the different training methods were applied
most frequently to the Takagi-Sugeno controller.

In this work is used the Takagi-Sugeno controller implemented within the framework
of the adaptive network for solving the IK problem.

In the second section of the paper is presented the basic structure of the controller,
and is briefly described the procedure used for training. In the third section are presented
results of mapping from external to internal coordinates for the three-segment robot of
the RzRyRy minimal configuration. The fourth section contains the concluding remarks.

2. TAKAGI-SUGENO FUZZY CONTROLLER AND THE LEARNING ALGORITHM

The Takagi-Sugeno controller with M inputs and one output is shown in Figure 1. The
fuzzy controller has M+1 linguistic variables: M input ones and one output variable.
Linguistic variables xi are A1i, A2i, …, Ani, M. For the system with M inputs and one
output, the set of linguistic rules is defined in the form:

R1: if x1 is A11 and x2 is A12 … and xM is A1M, then f1 = p11x1 + p12x2 + … + p1M + c1
R1: if x1 is A11 and x2 is A12 … and xM is A2M, then f2 = p21x1 + p22x2 + … + p2M + c2
…
R1: if x1 is A21 and x2 is A22 … and xM is AkM, then fk = pk1x1 + pk2x2 + … + pkM + ck
…
R1: if x1 is An1 and x2 is An2 … and xM is AnM, then fp = pp1x1 + pp2x2 + … + ppM + cp
The number of linguistic rules is p = nM.
The output from Takagi-Sugeno controller from Figure 1 is:
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21 1 22 2 2( )* ( )...* ( )k M Mu x x x= µ µ µ
...

1 1 2 2( )* ( )...* ( )p n n nM Mu x x x= µ µ µ
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Fig. 1. Takagi-Sugeno controller with M inputs and one output.

If the membership functions are taken in the Gaussian form then:
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Consequences functions of the fuzzy rules are of the form:

1

M

i ij j i
j

f p x c
=

= +∑ (5)

Substituting (2) into (1) the controller output is obtained as:
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or, substituting (5) into (6), the output of theTakagi-Sugeno controler is:
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In [2], for adapting parameters (a11, a12, …, a1M, b11, b12, …, b1M, c11, c12, …, c1M) is
used the iterative procedure, which is based on method of decreasing gradients. The para-
meters of the fi functions (p11, p12, …, p1M, c1, p21, p22, …, p2M, c2, …, pk1, pk2, …, pkM, ck,
pp1, pp2, …, ppM, cp) are being adapted by the least squares method. The total number of
parameters for adapting is: 3nM + nM(M+1). The learning method requires set of data for
training P = {p1, p2, …, pr). Each element of the set, pk = (xk, yzk) is defined by the input
vector xk = (x1k x2k … xMk) and desired response yzk.

If the FLC parameters correction is performed after presenting all the samples, then
the error sum of squares is:
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21 1 22 2 2( )* ( )...* ( )kk k k M Mku x x x= µ µ µ
...

1 1 2 2( )* ( )...* ( )pk n k n k nM Mku x x x= µ µ µ
Minimization of the function given with (8) can be realized through the following

iterative procedure for parameters adapting:
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Parameters of the fi functions are being determined by the least square method. From
equations (1) and (5) one obtains that the response of the fuzzy controller to the k-th
element is:

1 11 1 12 2 1 1 2 21 1 22 2 2 2

1 1 2 2

( ... ) ( ... ) ...
( ... )

k k k k M Mk k k k M Mk

pk p k p k pM Mk p
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+ + +

   (17)

The aim of learning is that the real response is equal to the desired one. If the adapting
is done after presenting of all samples, then:
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Equation (18) is presented in the form:

x x z=U P Y                                                           (19)

From (19), by the least squares method, the parameters vector Px is being determined:
1( )T T

x x x x z
−=P U U U Y (20)

The structure of the fuzzy system from Figure 1 is similar to the structure of the RBF
network. In [3] is given the detailed comparison of these two systems. It was concluded
that there exist the functional equivalency if:

•  The number of invisible units of the RBF network is equal to number of linguistic
rules in fuzzy system

•  For the fuzzy system of Figure 1 holds if const=
•  The Gaussian functions are selected as the membership primary fuzzy sets for the

system of Figure 1
•  For determination of the T-norm in fuzzy systems, one uses the algebraic product
•  The activation threshold of the output neuron for the RBF network is zero.
Since the structure of the fuzzy system of Figure 1 is similar to the structure of the

RBF neural network, and taking into account that there exist functional equivalency, the
adaptive fuzzy system is frequently called the neuro-fuzzy system.
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3.  APPLICATION OF THE TAKAGI-SUGENO FUZZY CONTROLLER
TO SOLVING THE PROBLEM OF ROBOTS' INVERSE KINEMATICS

In paper [5] the FLC is applied to solving the problem of inverse kinematics. In all
controllers, the fuzzy reasoning of the first type was applied, where the Mamdani
minimum rule is applied as a function in the implication phase. The biggest deficiency of
such FLC structures is long computational time. Especially problematic is definition of
the base rule and selection of the membership functions of the primary fuzzy sets.

In this paper to solving of the IK is applied the Takagi-Sugeno controller shown in Fi-
gure 1. Simulations were done for the robot shown in Figure 2 (the RzRyRy configuration).
The robot segments' lengths are: l1 = 1.3 m, l2 = l3 = 1 m. It is taken that there are
constraints in joints (θ1 = θ2 = θ3 = [−π/2, π/2]). The input and the output variables of the
FLC for solving the IK are shown in Figure 3.

Simulations were performed with the program package MATLAB, by using the fuzzy
toolbox.

x

y

z

x1

θ3

l1

l2

L3θ2

θ1

Fig. 2. The RRR robot of minimal configuration

FLC 1 1θ
FLC 2 2θ1x

FLC 3 3θ1x

Fig. 3. Illustration of the input and the output variables of the Takagi-Sugeno FLCs
for solving the IK of the RzRyRy robot.

In the first example, the gripper was moving along the straight-line trajectory, from
the point A(1 –0.4 2.7) to point B(1.36 0.34 2.2), with the triangular velocity profile. The
time taken for performing the motion is tmax = 2s. In this example by the data set for
training of the FLCs is enhanced only one straight-line trajectory.

The learning speeds ηa, ηb and ηc were taken according to [4] in the form:

2a b c

zq zq zq

k

a b c

η = η = η =
 ∂ε ∂ε ∂ε+ +  ∂ ∂ ∂ 
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where k is the step. The step size is variable, and so does the convergence rate. According
to [2], if k is small, the convergence is slow, and several iteraqtions would be necessary,
to achieve satisfactory accuracy. If k is big, the convergence would, at the beginning of
the learning process, be fast, but the algorithm will oscillate.

The step k changes according to the following rules:
•  If the error is decreasing in the four consecutive epochs, k increases for 10 %.
•  If the error in one epoch decreases, then in the next one k decreases for 10 %.
In the first example for the FLC 1 is k = 0.001, and for FLC 2 and FLC 3 is k = 0.01.

The fuzzy partitioning of the input variables of the FLC is realized by selection of 2
primary fuzzy sets. Selected are the Gaussian membership functions, since the best
results are achieved with them.

The total number of the fuzzy rules is 22. In the learning process the membership
functions parameters of the primary fuzzy sets (12) were adapted as well as parameters of
the Takagi-Sugeno controller (12). In Figure 4 are presented the membership functions of
the primary fuzzy sets of variables x and y before learning, and in Figure 5 are presented
the membership functions after learning.

1.251.21.151.11.05 1.351.31

0.5

1

x

A11 A21
µ(x)

0.5

1

0.350.30.250.20.150.10.05 0.4

A12 A22
µ(y)

y
Fig. 4. Membership functions of variables x and y before learning.
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1
A11 A21µ(x)

0.5

1
A12 A22
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Fig. 5. Membership functions of variables x and y after learning the FLC 1.

In Figure 6 is presented the variation of error, given by expression (8), as a function
of the number of epochs.
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X10-5
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Fig. 6. Error variation during the learning process of the FLC 1.

Parameters of the fi functions, i = 1,4, are given in Table 1.
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In FLC 2 to each input variable were assigned two membership functions. The
controller has total of 4 rules. The total number of parameters, which are being adapted is
24, out of which 12 are the premise parameters and 12 are the consequences parameters.
In Figure 7 are shown the membership functions of the primary fuzzy sets of variables xi
and z before learning, and in Figure 8 are shown the membership functions after learning.

The variation of error with the number of epochs is shown in Figure 9.
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Fig. 7. Membership functions of variables xi and z before learning.

1.351.31.251.21.151.1 1.4 2.552.3 2.52.452.42.352.25 2.72.6 2.65

1

0.5

0

1

0.5

0
2.2

x1

A11 A21
µ(x )1 A12µ(z) A22

z

Fig. 8. Membership functions of variables xi and z after learning the FLC 2.
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Fig. 9. Error variation during the learning process of the FLC 2.

Parameters of the fi functions, i = 1,4, for FLC 2 are given in Table 1. FLC 3 has 4
rules (two membership functions were assigned to each input). The membership
functions of the primary fuzzy sets of variables xi and z, prior to the adaptation process,
are shown in Figure 7, while the figure 10 shows them after the learning process. In
Figure 11 is illustrated the variation of error, given with expression (8) as a function of
the number of epochs.
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Fig. 10. Membership functions of variables xi and z after learning the FLC 3.
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Fig. 11. Error variation during the learning process of the FLC 3.

Parameters of the fi functions, i = 1,4, for FLC 3 are given in Table 1. In Figure 12 is
given the variation of the interior coordinates during executing the working task, and in
Figure 13 is given the variation of the total error of tracking the straight-line trajectory.

Table 1. Parameters of consequences of the Takagi-Sugeno controllers

FLC 1 FLC 2 FLC 3
p11 -0.04188  0.4295  0.6089
p21  0.9598 -0.2858  0.2626
c1  0.04491  0.3602 -0.1068
p21 -0.2086  1.349 -1.596
p22  0.9193  0.5364 -1.766
c2  0.2336 -2.765  7.49
p31 -0.0335  0.7996 -0.2134
p32  0.6508 -0.3319  0.7663
c3  0.04044  0.03785 -0.1752
p41  0.1331 -0.6414  0.4164
p42  0.4679  0.6582 -0.4741
c4 -0.0975 -0.3231  0.3245
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Fig. 12. Variation of the internal coordinates along the trajectory

From Figure 13 can be seen that the maximum total error of the straight-line trajec-
tory tracking, in the first example is less than 5.5 ⋅ 10-2 mm. The simulation results show
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that the application of the neuro-fuzzy controllers, with the membership functions, shown
in Figures 5, 8 and 10, and with parameters of the consequences functions given in Table
1, give the satisfactory results. The FLCs from this example have smaller number of lin-
guistic rules than the number of the invisible units of the RBF networks, generated for
solving the same problem, shown in [6].

In the second example the gripper
was moving along the straight-line
trajectory, form the point A(1.366 0
2.666) to point B(1.6 0.3 2.3), with
the speed equal to v = 0.01 m/s, and
the training data set enhanced the part
of the working area x = [1; 1.7], y =
[0; 0.5] and z = [2; 2,8]. The training
set predicted that the trajectories can
be realized both over the positive or
negative values of the internal
coordinate θ3. The FLC 1 determines
the internal coordinate θ1, the FLC
2 θ2 for positive values of θ3, and
FLC 3 generates the coordinate θ2 for
negative values of θ3, and FLC 4 θ3.

Selection of the FLC, which would determine the coordinate θ2, is realized based on the
robot's initial position.

In FLC 1 to each input variable are assigned three membership functions. The
controller has total of 9 rules. The total number of parameters, which are being adapted is
45, out of which 18 are the premise parameters, and 27 are the consequences parameters.

Fuzzy partitioning of the input variables FLC 2, FLC 3 and FLC 4 is realized by
selection of 5 primary fuzzy sets for each variable. The membership functions are
selected as Gaussian. The total number of the fuzzy rules of each controller is 52. In the
learning process, the parameters of the membership functions of the primary fuzzy sets
were adapted (30) as well as the parameters of the consequences of the Takagi-Sugeno
controller (75). In Figures 14 and 15 are shown the membership functions of the primary
fuzzy sets of variables x and y, for FLC 1, and variables x and z1 for FLC 2, FLC 3 and
FLC 4, prior to learning. In Figures 16 to 19 are presented the membership functions after
learning.
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Fig. 14. Membership functions of variables x and y before learning.
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Fig. 13. The total tracking error
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Fig. 15. Membership functions of variables x and zi before learning.
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Figure 16. Membership functions of variables x and y after learning the FLC 1.

In Figures 20 to 23 are shown error variations as a function of number of epochs for
all four networks.
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Fig. 17. Membership functions of variables x and zi after learning the FLC 2.
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Fig. 18. Membership functions of variables x and zi after learning the FLC 3.
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Fig. 19. Membership functions of variables x and zi after learning the FLC 4.
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Fig. 20. Error variation during the learning process of the FLC 1.
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Fig. 21. Error variation during the learning process of the FLC 2.

10050

3

2

1
0

X10-3

Epoch

E3

150 200

1.5

2.5

Fig. 22. Error variation during the learning process of the FLC 3.
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Fig. 23. Error variation during the learning process of the FLC 4.

Parameters of functions fi, for FLC 1, FLC 2, FLC 3 and FLC 4 are given in Table 2.

In Figure 24 is presented variation of the internal coordinates during the task execution,
and in Figure 25 is given the total error variation of the straight-line trajectory tracking.
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Fig. 24. Variation of the internal coordinates along the trajectory

Table 2. Consequences parameters

FLC 1 FLC 2 FLC 3 FLC 4
p11  0.05958  1.096  0.8264 -0.1666
p21  0.8742 -0.04593  1.564 -0.5935
c1 -0.07642 -0.9365  0.6234  2.979
p21 -0.2636  1.335 -0.2381 -1.668
p22  0.7485  0.07134  0.8175 -0.9591
c2  0.3164 -1.456 -0.1638  5.381
p31 -0.4423  0.9635 -0.04555 -0.8691
p32  0.7228  0.1823 -0.4413 -1.144
c3  0.552 -1.401  2.498  5.088
p41  0.03968  0.4822 -0.05995  0.2794
p42  0.656  0.2814 -0.8446 -1.276
c4 -0.06219 -1.222  3.489 4.39
" " " " "

p231 -  2.569 -0.5526 -4.865
p232 - -0.2808  0.1969  1.752
c23 - -2.536  1.025  3.674
p241 -  3.875 -3.093 -7.614
p242 -  5.577 -4.732 -11.09
c24 -  2.182 -1.78 -4.322
p251 -  0.1062 -0.09013 -0.1473
p252 -  0.1394 -0.1048 -0.1618
c25 -  0.05523 -0.04015 -0.06809

Maximum total error of the trajectory tracking in the second example is less than 1.1 mm.
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Fig. 25. The total tracking error
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4. CONCLUSION

Results of both simulations, presented in this paper, show that the application of the
neuro-fuzzy system to solving IK gives satisfactory results. Advantage of application of the
Takagi-Sugeno controllers, implemented within the adaptive network, related to solving IK
by application od the FLCs proposed in [4], lies in the fact that the step between inter-points
on the straight-line trajectory, does not affect the accuracy of tracking.

The tracking error is smaller for the case of solving the IK by RBF neural networks [1].
However, the main deficiency of networks trained by data sets for learning, which enhance
the part of the working space, is the fact that their hidden layers contain large number of
neurons. The FLCs from the second example have smaller number of linguistic rules than
the number of the invisible units of the RBF networks generated for solving the same
problem. For solving the IK during the straight-line motion along the path from point
A(1.366 0 2.666) to point B(1.6 0.3 2.3) with the velocity v = 0.01 m/s, the number of
neurons of the hidden layer of the first RBF network is 20, while the number of rules FLC 1
is 9. The RBF 2 and RBF 3 have 186 and 174 neurons, respectively, and FLC 2 and FLC 3
have 25 rules, each. Simulated FLCs have larger number of parameters, which are being
adapted. Weights of connections between invisible units and outputs, in RBF networks are
constant values, while the consequences functions for Takagi-Sugeno controllers are linear
functions of inputs into the controller.

In realization of fast trajectories, advantage for solving IK should be given to Takagi-
Sugeno controllers with respect to the RBF neural networks [6]. Due to large number of
neurons, RBF neural networks cannot realize mapping from the external to internal
coordinates in real time for high gripper velocities.

If it is necessary to realize trajectory with an error less than 1 mm, then the data set for
training should enhance only trajectories, which the gripper tracks during the task execution.
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PRIMENA TAKAGI-SUGENO FUZZY KONTROLERA ZA
RE[[[[AVANJE PROBLEMA INVERZNE KINEMATIKE ROBOTA

Vesna Rankovi}}}}, Ilija Nikoli}}}}

Za preslikavanje iz spoljašnjih u unutrašnje koordinate je korišćen Takagi-Sugeno kontroler,
implementiran u adaptivnu mre`u, koji je po arhitekturi sličan RBF neuronskoj mre`i, pa se
takodje naziva neuro fuzzy sistemom. Tokom procesa u~enja su adaptirani parametri funkcija
pripadnosti primarnih fuzzy skupova i parametri posledica Takagi-Sugeno kontrolera. Prikazani
rezultati se odnose na pra}enje pravolinijske trajektorije sa konstantnom brzinom hvataljke i
trougaonim profilom brzine.


