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Abstract. The basic task of this paper is analysing and determining the shape of the
function which defines the change of contact stresses on tooth flanks along the path of
contact for a tooth pair. The determination of contact stress maximum point and the
calculation of its value is possible if the course of change of contact stress is provided.
This enables the precise calculation of a gear pair pitting resistance.
The numerical method – Finite Element Method (FEM) is used for modeling the contact
of tooth flanks. This paper gives the detailed description of model development
procedure. The results provided for the stress state of tooth flanks are also presented
and discussed.
The comparison of analyticly and numericly obtained curves of change in stress state
on meshed tooth flanks, confirmed the accuracy of the developed model. This model
opens new possibilities for succesful application in calculations and research involved
in improving the geometry of gears pairs.
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INTRODUCTION

Starting point in studying the contact strains on tooth flanks is to define the contact
surfaces as the parts of equivalent imagined cylinders. The radii of these cylinders are
identical to the radii of flanks' curvatures in contact point (ρx), [4]. During the contact
period in unloaded state, the active surfaces of meshed teeth's flanks are in contact with
each other through the instantaneous contact lines, which coincide with the common
generatrix of involute surfaces. The forces of mutual action exist in teeth's mesh. They act
in the direction of the common normal for contact surfaces, so they are known as normal
load (Fbn).
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The action of normal load Fbn provokes elastic deformations on the contact surfaces
of meshed teeth. Because of that, there is not flank contact through the contact line, but
through the elastically deformed flank surfaces. In the case of involute spur gear, the
curvatures' radii of the meshed teeth are continuously changing during the meshing
period, so the determination of contact stresses on meshed flanks is a task analogical with
Hertz's task for two cylinders in contact.

THE THEORETICAL ANALYSIS

The maximum local strain that appears on tooth flanks during the mesh period is
relevant for the calculation of gear's load capacity, according to tooth flanks' strength
criterion. In order to determine the maximum strain value, one must, first of all,
determine the nominal value of tooth flanks' loading and the corresponding load factors.
Load factors take into consideration real working conditions and translate the nominal
load value into the maximum load value. The maximum load is defined as maximum
normal load Fbn on tooth flanks, which is result of maximum tangential load, in
accordance with:
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where: KA – is the application factor;
KV – is the internal dynamic factor;
Kα - is the factor of load distribution among simultaneously meshing tooth pairs;
Kβ - is the factor of load distribution over the facewidth.

In the case of involutes spur gear, the curvatures' radii of the meshed teeth are
continuously changing during the meshing period of a tooth pair, in accordance with
following expression:
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When the expressions that correspond for tooth flanks' contact:
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are inserted in Hertz's solution for two cylinders in contact, [5]:
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then it takes a form applicable for the calculation of the maximum Hertzian contact
stresses in the points of mesh without slipping for single tooth pair meshing period:
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where: ρ is the equivalent curvature's radius in a contact point.

With application of the expression for the radii of flanks' curvatures and the
expression for the equivalent curvature's radius in the contact point, the expression (5)
takes a form applicable for the active stress calculation while the contact is in the pitch
point C (σH0):
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It is possible to monitor the change of active stress on tooth flanks through the change
of ratio of active stress in any contact point σHx and active stress for contact in the pitch
point σH0. If the equations for the calculation of the active stresses on meshing tooth
flanks, which are developed from the Hertz's solution for contact stresses while two
cylinders are in contact, are applied, then this ratio takes the following form:
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where: ρx and ρC – are the equivalent curvature's radii in any contact point and the pitch

point, in accordance with: 
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tαβxVAxtmax )( FKKKKF x ⋅⋅⋅⋅=  – is the maximum tangential load for contact in any
point on the path of contact;

tαVACtmax )( FKKKKF CC ⋅⋅⋅⋅= β – is the maximum tangential load for contact in the
pitch point.

If n tooth pairs are simultaneously meshed and Fi is the load transferred by ith tooth
pair, then the factor of load distribution among simultaneously meshing tooth pairs for ith

tooth pair (Kαi) describes the level of interest in mesh for ith tooth pair. It is defined with
the following quotient:
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In accordance with the assumption that tangential force per unit tooth width is
constant during the meshing period (Kβ=const.), the ratio (7) takes a form suitable for
monitoring the changes of contact stress on tooth flanks during the contact period for a
tooth pair:
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where:Kαx and KαC – are factors of load distribution among simultaneously meshing tooth
pairs for contact in any point and in the pitch point; xCx /Z ρρ=ρ – is radius factor for
curvatures of  meshed teeth's profiles for contact in any point on the line of contact.
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During the meshing period for a tooth pair of a gear pair, the factor of load
distribution among simultaneously meshing tooth pairs Kα is defined as the function of
the loading value, the tooth stiffness and the difference between meshing teeth's base
pitches. In meshing periods for two simultaneously meshing tooth pairs, factor Kα is
changing in accordance with the complex continuous functions. However, the knowledge
of these functions is not important. For the calculation of tooth flanks strength, the
important information is only maximum loads in the moments of load exchange among
tooth pairs in mesh. Consequently, these functions can be assumed as linear functions.

In this paper, for the theoretically and numerically analyses, one particular gear pair
for large transport machines (dradges) are taken.  Its characteristics are given in tab.1.
The results of theoretically analysis of the changes of active stress on meshed tooth
flanks, obtained through the computer program developed in [1], are given in figure 1.
The curve in figure 1 is obtained for ideally manufactured (∆pb=0) gear pair and in
accordance with the described assumptions.

Table. 1.

Quantity Symbol Value
z1 20Number of teeth z2 96
x1 0Addendum modification

coefficient x2 0,328
Facewidth b 350 mm
Module m=mn 24
Pressure angle α=αn 20°
Helix angle β 0°
Rotational speed of wheel n2 4,1596 min-1

T1 526,41667 KN⋅mPinion torque and wheel torque T2 2526,8 KN⋅m
Useful level η 1
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Fig. 1. Active stress on tooth flanks for the studied gear pair, while ∆pb=0
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THE FINITE ELEMENT METHOD AND PLANE CONTACT PROBLEMS

In accordance with the described procedure for calculation of stresses on tooth flanks,
it can be concluded that the solving of the defined task by the analytical methods is very
complex and possible only with many assumptions. So, for this problem, as well as for
almost all problems in Theory of elasticity, the numerical methods must be used. Instead
of a system of differential (simple, partial and integral) equations, which are defined for
solving some problem in Theory of elasticity, numerical methods form corresponding
system of simple algebraic equations. By using computers, that system can be solved
quickly and successfully. So, for studying the problem of contact stresses on tooth flanks,
the Finite Element Method (FEM) is chosen. The Finite Element Method formulates the
differential equations of balance of an elastic body. By taking into consideration the
boundary conditions, the number of unknown quantities in these equations becomes
smaller.

The Finite Element Method is based on the principles of the mechanics of continuum.
The mechanical values, which are used in mechanics of continuum, are continuous
functions of points' coordinates, so they are differentiable in accordance to coordinates.
Material point of continuum presents an infinitely small particle of continuously disposed
material, and its position is defined by geometrical point of space.

When variational principles, i.e. energy principles, are applied, variational equations
take the form of integral equations. The variational principle of the maximum potential
energy is the most frequently used principle in the Finite Element Method and it is
described in [2], [3], [7].

Primary task in studying a deformable body by the FEM, is to choose a discrete
model, which gives the most proper approximations for stress state, strain state and
boundary conditions. The discreted model of continuum is obtained by its division on
finite elements. Finite elements are mutually joined with common nodes. For modeling
the whole construction, one can simultaneously use either the finite elements of only one
type or the finite elements of a few different types. The basic differences among the finite
elements of different types are differences in their shapes and interpolation functions. The
special finite element types, which are used in solving engineering problems, are: the
isoparametric finite elements (which use the same interpolation functions for the
approximation of element geometry and for the approximation of basic unknown
quantities in the field of a finite element) and the subparametric finite elements (the
number of nodes for the approximation of element geometry is bigger than the number of
nodes for the approximation of other functions).

The choice of an optimum discreted model for exact and economical calculation is
directly dependent on the engineering experience and the knowledge about the
characteristics of stress and deformation states for the studied construction. Basically, the
discreted model selection is based on two major tasks: the selection of finite element type
and the selection of necessary mesh density.

The method of deformation is used for modeling the contact problem. It is the most
frequently used method in the FEM, and its basic task is to determine the functions of
displacement. The displacements of any point of a finite element can be determined as
the functions of displacement values for mesh nodes. It adopts that displacements,
deformations and stresses are the continuous functions of coordinates of a finite element's
points.
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The finite element's equation, if the influence of temperature strains is ignored, gives
the connection between the node displacements and node forces:

}]{[}{ SKF e= (11)

where: {F} − is a vector of external node forces for a finite element;
{S} − is a vector of node desplacement for a finite element and
[Ke] − is a stiffness matrix for a finite element.

The elements of these vectors and matrix depend on physical material characteristics,
characteristics of chosen finite element type and choosed interpolating functions.

The construction equation is obtained by combining the equations for all finite
elements that make the mesh of a body or a construction:
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In these vectors, n is the total node number, which is equal to the sum of the total
node number in finite element mesh and the number of construction support. Every term
of the vectors (13) is a vector with the number of elements equal to the number of
degrees of freedom for finite element's nodes. Therefore, both of the vectors{ F}  and { S}
have p×n elements (p – number of the degrees of freedom, n – number of nodes), and the
stiffness matrix [K] has nxn submatrices rsK .

Some node displacements are known in advance. They are defined by construction
support and present the boundary conditions. When they are included in the construction
equation, some equations become eliminated. Thereby, the total number of the degrees of
freedom becomes smaller. The Finite Element Method takes into consideration the
external forces (which come into action in some mesh nodes and present the loading of a
construction) by including the force components, in the directions of coordinate axis, in
the construction equation. If a construction is loaded with concentrated forces, there is a
mesh node in each point struck by concentrated force's action. If a construction is loaded
with continuously distributed load, this load is replaced with equivalent node forces. In
that case, the knowledge of unit load along the line or along the loading surface is
required.

The FEM treats a plane contact problem as a part of the general problem of bodies'
movement in space and their interaction. The problem of this type ca be described by two
bodies that get in contact because of the action of external forces. One of these bodies is
defined as a contactor body, and the other as a target body. The procedure of choosing a
contact body is simple when the Finite Element Method examines a stiff body and a
deformable body in contact. But in the case of two deformable bodies in contact, the
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FEM procedure is complex and requires excellent knowledge of the character of contact
which is to be analysed. When the bodies are in contact, contact forces appear. These
forces prevent mutual penetration of bodies and provoke deformations in contact areas.
For the calculation of contact problems (nonlinear numerical problems) the Finite
Element Method most frequently uses the Method of Lagrange multipliers.
The simplest FEM procedure for modeling contact conditions, is the one that uses finite
elements in the form of nonlinear sticks with the assigned characteristic of pressure
capacity and without stiffness in the case of tension ("gap" elements). Only the finite
elements, for which exists the possibility that they will be in contact, are defined as the
contact elements. These elements consist of nodes and lines that are located on the
borders of bodies. In order to reduce the calculating time, only the part of the border that
will possibly be in contact with the contactor body is defined as the contact surface of the
target body. A contact element is defined as a connection between a node of a contactor
body (contactor node) and a target segment of a target body.
During the calculation, the FEM procedure finds the nodes of the target surfaces and the
corresponding contactor nodes that together make "the instantaneous contact elements".
For each instantaneous contact element, the FEM procedure forms the stiffness matrix,
the vector of displacement and the vector of internal forces in accordance with the
analysis of the variation of contact forces potential. These matrices and vectors present
the influence of an instantaneous contact finite element on the system, which consists of
matrices for all finite elements of contact bodies (structural finite elements and contact
finite elements).

THE FEM MODEL DEVELOPED FOR TOOTH FLANKS IN CONTACT

Because the uniformly distributed loading along the tooth face width is assumed in
this paper, the contact of meshed tooth flanks presents a plane contact problem.
Therefore, for modeling a tooth contact, which will be used for static analysis, the FEM
can use the double-dimension (2D) isoparametric elements (figure 2). These elements are
the special case of the 3D isoparametric finite elements.

Fig. 2. 2D finite elements a) linear element; b) parabolic element

The FEM tooth models use the parabolic 2D degenerate isoparametric finite elements
with 6 nodes and the case of plane state of deformation, which means that material is

a) b)
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identically deforming in all planes parallel with x,y plane. The degenerate element, shown
in figure 3, is obtained by overlapping of two corner nodes (1 and 4), so that the
correction of the interpolation functions b1 appears. Then, the function is equal to the sum
of the interpolation functions for nodes 1 and 4:

)1(
2
1

411 rbbb* +=+= (14)

The same procedure is used for the degeneration of the parabolic 2D elements.
Triangular 2D isoparametric element with 6 nodes is obtained by the degeneration of 2D
element with 8 nodes.

Fig. 3. The degeneration of 2D element

The tooth contact models are developed for the gear pair with characteristics given in
table 1. Each of these models consists of three groups of elements: the group of elements
that define the tooth of the pinion, the group of elements that define the tooth of the
wheel and the group of contact elements. This paper's goal is to investigate the change of
contact stress on meshed teeth, along the path of contact, so the most important thing is
the determination of contact stress states for the contacts in characteristics points on the
tooth profile (A, B, C, D and E). A computer program developed in [1] provides the radii
that correspond to these points. For contact in each characteristic point, the special model
in the FEM was made, so that the global coordinate system remained unchanged. That is
especially suitable for monitoring the results.

Boundary conditions are defined as the limits of all translational and rotational
displacements for those contour nodes in tooth models that present the connections with
the gear body. A few concentrated forces along the external involute surfaces of meshed
teeth simulate the loading, so that the total momentum that is loading the tooth mesh is
equal to the momentum on the gear shaft. This choice for load simulation is the result of
the investigation of different load simulations on the model of a tooth pair. The selected
load simulation yields the distribution of stress and deformation state in the tooth contact,
most similar to the distribution obtained from the experimental data acquired by the
experimental photoelastic method, [3].

Tab.2 gives the view of node numbers and element numbers for the developed models
and figure 4 presents discreted FEM models for all characteristic contact points (first
contact point – A, point of passing from period with two tooth pairs in contact to single
meshed tooth pair period – B, pitch point – C, point of passing from single meshed tooth
pair period to period with two pairs in contact – D, last contact point – E). It is easy to
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notice previously mentioned groups of finite elements and the displacement limits for
some contour nodes in mesh, that define the boundary conditions, as well as the
concentrated forces that simulate the external loading.

Tab.2

Contact point Node number for
finite element mesh

Element number for
finite element model

A 2006 941
B 1982 929
C 1344 621
D 1978 931
E 2030 953

a)              b)         c)

c)          d)
Fig. 4. Discreted models – finite element meshs for tooth pair contact:

a) in pointA; b) in point B; c) in point C; d) in point D; e) in point E

THE RESULTS OF THE DEVELOPED PROCEDURE

When the FEM calculation [6] is used on the tooth pairs contact models presented in
figure 4, it gave the results given in figure 5. The results are presented through the Von
Mises' equivalent stress fields. Reading of the maximum sresses in tooth contact, for
different moments of the tooth pair meshing period, is very simple, so we can use these
results for different type of analyses and comparisons.

mesh 1
loading
mesh 2

mesh 1
loading
mesh 2

mesh 1
loading
mesh 2

mesh 1
loading
mesh 2

mesh 1
loading
mesh 2
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a) b)

                 

b) c)

e)

Fig. 6. Von Mises' equivalent stress fields for the tooth pair contact:
a) in pointA; b) in point B for the single meshed tooth pair period; c) in point C;
d) in point D for the single meshed tooth pair period; e) in point E

The model developed and described in this paper corresponds to an ideal gear, so
these numerical results can be compared with the theoretical results shown in figure 1.
Figure 6 presents a comparative diagram for the change of relative contact stress along
the line of contact for a tooth pair in mesh. This diagram is a result of the theoretical
analysis and the FEM calculation models given in figure 4. Because there are no results
that correspond to every contact point on the line of contact, straight lines occur in the
diagram obtained by the FEM calculation. Other results can be obtained by developing
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new models for the tooth pair in mesh, but this procedure would take much calculation
time, and furthermore the results that would be obtained would not play important role in
studying load distribution among simultaneously meshing tooth pairs from tooth flanks'
strength aspect. The analysis of the comparative diagram leads to a conclusion that high
level of coincidence exists between the results obtained by the application of the FEM
and the ones obtained by the application of theoretical analysis. Thereby, these two
methods certify one another.
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Fig. 6. The change of relative stress along the line of contact

CONCLUDING REMARKS

The results for equivalent stress fields in contact areas, which are presented in this
paper and obtained by using the Finite Element Method, show that this numerical method
is especially suitable for different analyses of contact stresses on meshed tooth flanks.
Also, presented comparison between the theoretical results and the results for developed
FEM models, confirms that all elements in the FEM models (finite element type, mesh
density, boundary conditions and external loading simulation) are optimally determined
for described contact problem.

The comparison between the shown equivalent contact stress fields for the tooth pair
in contact and the existing experimental results, gives the conclusion that the Hertz's
model of mutually pressed equivalent cylinders (that is used as the base for developing of
the described FEM models) can be succesfully used as the basis in contemporary
methods for the calculation of meshed tooth flanks' strength.

The procedure described in this paper calculates the maximum active stress and stress
fields on tooth flanks during the meshing period, more precisely than any analitical
method. So, these FEM models, especially with future improvements, can be used for
calculation of all influence factors for the load distribution among meshing tooth pairs.

Theoretical analysis

Finite element method
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ANALIZA KONTAKTNIH NAPONA NA MREŽI ZUBA
DUŽ KONTAKTA ZA PAR SPREGNUTIH ZUBA

 Vera Nikolić- Stanojević,  Ivana (Atanasovska) Cvejić

Osnovni zadatak u ovom radu je analiza i odredjivanje oblika funkcije koja definiše promenu
kontaktnih napona na ivici-boku zuba duž puta kontakta za par zuba. Odredjivanje tačke
maksimalnog napona kontakta i njihov proračun je moguć ako je pravac kontakta zuba predvidljiv.
Korišćena je numerička metoda – metoda konačnih elemenata za modeliranje kontakta zuba. Ovaj
rad daje detaljan opis razvoja procedure. Uporedjeni su analitički i numerički rezultati.


