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Abstract. The method of the wave packet dynamic description for Tollmien-Schlichting
waves in boundary layer flow of incompressible fluid is suggested. The method is based
on combined using of the one-mode spectral wave components equation and the wave
packet envelope equation. This approach is available when splitting of nonlinear
equations is used for linear and nonlinear parts at each time step. The linear part can
be solved with the use of the wave packet spectral component equation and then we
transform the field from the wave number space to the physical space. In the physical
space we solve the system of ordinary differential equations with the subsequent inverse
Fourier transformation in the wave number space. As a procedure of discrete Fourier
transformation a standard FFT is used.

1. INTRODUCTION

A boundary layer (BL) in incompressible fluid on a plate is considered. The dynamic
of finite spectral size disturbances in BL is of great interest lately. The matter is that the
phenomena in the laminar part of BL can have analogies in the turbulent part of BL. In
addition to that the models of development of disturbance can be of great interest to
transition prediction.

Experiment shows [1] that in real cases the transition of the laminar motion of gas to
the turbulent motion is connected with an appearance of WP (Tollmien-Schlichting
waves) of a finite spectral size in the laminar part of BL which develops in downstream
direction in a linear and then in a weakly nonlinear manner. The appearance of the strong
nonlinearity really corresponds to the transition point. The paper [2] is devoted to the
linear dynamics of disturbances in BL. The nonlinear dynamics at an early stage is
reflected in [3-6]. The results of the papers [2, 5] can be used for comparison of the
results when the effectiveness of the models is assessed.

Disturbances of the fluid motion have some components which correspond with the
wave types excited in BL: the Tollmien-Schlichting and the Squire waves of descrete and
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continuous spectrum. The influence of the Tollmien-Schlichting waves of continuous
spectrum.on the disturbance dynamics is considered in papers [7, 8]. Further the waves of
continuous spectrum will not be taken into consideration for simplicity.

The solution of Navier-Stokes equations is not convenient for a wave packet (WP)
description because of the small value of disturbance amplitude in comparison with the
base flow. So it is interesting to highlight the dynamics of WP. It is possible if we take
into account that only one Tollmien-Schlichting mode is excited as a rule.

Even in a short-cut form the nonlinear equations in three-wave resonance
approximation are difficult to solve numerically because of integrodifferential equation
for "0-packet" (the new element of the three-wave resonance dynamics which is a set of
harmonics at wave number space origin) that arises due to the finite size of WP. But it is
very easy to solve a linear problem WP dynamics in the wave number space. In physical
space we can calculate amplitude distribution with the help of Fourier transform. So the
method of solution of general problem arises as the splitting of the whole operator in the
linear and the nonlinear part. The linear part must be solved in wave number space, the
nonlinear part – in physical space. We can realize the connection between this stages with
the help of fast Fourier transform (FFT).

Fig. 1.

The solution of the spectral problem for the Tollmien-Schllichting waves of discrete
spectrum shows [9] that the set of unstable wave numbers in the wave number space is a
compact region near wave number space origin. The following variants of WP with
amplitude downstream increase are possible (see Fig.1, k=(a, b), the instability region is
tagged by lighter gray level): I, the resonant triplet with base harmonics in unstable
region plus 0-harmonics (the singular part of WP); II, the singular region covers the
unstable region (we can describe the amplification of the wave by the integral operator)
and the resonant triplet is placed out of the unstable region; III, the singular region covers
the unstable region and discrete modes correspond to the multiple three-wave resonance;
IV, the singular region, the resonance triplet and the unstable region are overlapped.

Fig. 2.

Further simpler situations are considered (Fig.2) for the illustration of the method: I,
WP covers the unstable region, the linear problem; II, WP has two different components:
the singular part and a separate harmonics in the unstable region, the nonlinear problem;
III, WP covers the singular region and the unstable region, the linear problem.
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2. EQUATIONS FOR HARMONICS AND EQUATIONS FOR THE ENVELOPE OF WP

In papers [3, 6] the equation which describes space-time dynamics of spectral
components fkof disturbance localized in space is deduced.
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Here ( ) ( ) ( )R Iiω = ω + ωk k k  is a non-dimensional eigenvalue of the Orr-Sommerfeld
spectral problem (frequency of the oscillation of the Tollmien-Schlichting waves) which
has a region of instability in the wave number space, k = (α,β) is a wave vector, 0 ( )X t  is
a point in the flow which moves together with the flow and from which we look at a
disturbance (the point of origin of moving system of reference), the values Q and H are
defined in [3, 6], ε is a small parameter. It is interesting to construct an approximation to

( )kω  in the vicinity of the wave number space origin because the instability region is
placed near the origin (k ≈ 0.1÷0.3). In [3,6,9] the formula is obtained:
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The parameters of it are defined in the Table:

R a b ε2d
 500 0.24610402 0.96970043 −0.00256494
1000 0.21921957 0.94623006 −0.00177655
1500 0.20552628 0.91792750 −0.00145604
2000 0.19858133 0.88027801 −0.00122656
3000 0.19144657 0.85439075 −0.00100397

Some initial configurations of spectral components against a background instability
region are suggested in Fig.1. The spectral dimensions of the distinct initial WP can be
small (variant I). The dynamics of such a WP in physical space is defined by its small
neighborhood in wave number space. Otherwise, the amplification/attenuation of a
disturbance in physical space is defined by the integral operator, and it acts on all the
region of WP location (variant IV). There exist intermediate cases (variants II and III).

In connection with these variants the problem of number modeling arises. A system of
partial differential equations for small spectral size WP can be deduced with additional
integrodifferential equation for WP which is placed in the vicinity of wave number space
origin (0 - packet). It complicates the solution of the problem, because the linear integral
operator is singular in physical space. But in wave number space this task is not singular.
That is why the idea of splitting the whole operator into two parts arises: linear and
nonlinear.
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3. NARROW WP

In papers [3, 6] the dynamic equations of WP envelope in the laminar part of BL on the
plate are deduced. They are composed of integrodifferential equation for 0-packet which is
subjected to the interaction with three-wave resonant harmonics and selfinteraction. On the
other hand, 0-packet influence three- wave resonant harmonics which is described by the
nonlinear Schredingerian-type equation. These equations are as follows:
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It turned out that and behave like power functions α0.72 and α0.45 at α → 0. The
renormalisation of the initial equation ( , 0.72k kf k fµ= µ ≅ −! !$ ), results in finite and real,
and gives regularization to model equations from [3, 6]. The left part the equation
operator with accuracy to within O(ε2) can be presented in the following way:
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4. SOME SPECIAL CASES

In the case I (fig. 2) the instability region can be approximated with the help of
polinomials. In this case the dynamic of Gaussian WP at the initial moment is described
by the quadrature:
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The same problem can be solved in linear approximation with the help of discrete
Fourier transformation. The comparison of this result with the result of [2, 5] shows the
quality correspondence between them. A similar solution can be found for case III.

The numerical solution easily reproduces the case when the WP support contains the
origin of wave number space and the instability region (case II). Selfinteraction is taken
into consideration at the same time. The splitting scheme can be viewed as:
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" . The result shows that the initial

Gaussian WP transforms into WP located in the instability region, and then begins the
stage of dispersion of the WP in the physical space. This result can explain the
phenomena, described in [10, 11, 4], in which the transformation of the initial long wave
WP into short wave WP is observed. The solution of the nonlinear problem of the 0-
packet selfinteraction is submitted in fig. 3. Different fragments correspond to the
dimensionless time showed in fig.3.
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Fig. 3.

These results demonstrate the possibilities of the numerical solution of the weakly
nonlinear WP dynamics which can be used for the cases with more complicated
configuration of the WP localization.
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DISKRETNA FOURIER-OVA TRANSFORMACIJA
U PROBLEMIMA DINAMIKE SKUPA (SVEŽNJA) TALASA

V.A. Zharov

Metoda dinamike talasnog paketa opisana za Tolmien –Schlichting-ove talese u struji
graničnog sloja u nestišljivom fluidu je predložena. Metoda se bazira na kombinovanom korišćenju
jednačina za jedno-modne spektralne talasne komponente i jednačine obvojnice svežnja talasa. Taj
pristup je pogodan za razdvajanje nelinearnih jednačina i koristi se za linearne i nelinearne delove
u svakom stepenu vremena.

U proceduri je korišćena diskretna Fourier-va trasformacija u obliku brze Fourier-ve
transformacije.


