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Abstract. This paper presents the complete process of obtaining motion of a
mechanical system with variable mass subject to non-holonomic constraints which are
non-linear or of the first or higher order. Firstly, the generalized Lagrange's equations
of the second kind are extended to a non-holonomic system with variable mass by
introducing generalized reactive forces. Then, the field method is applied to these
equations of motion to find their solution. Finally, an illustrative example showing the
use of this algorithm is given.

1. INTRODUCTION

The field method, primary developed as a method for integrating the equations of
motion of holonomic non-conservative systems [1, 2], pertains to the Hamilton-Jacobi
theory, limited in applications to conservative holonomic systems. Lately, it was shown
that the field method is also suitable for integrating the equations of motion of non-
holonomic systems [3, 4], while the Hamilton-Jacobi theory has very strict restrictions for
their study [5, 6]. The application of the field method to non-holonomic problems
comprises the generalization to non-holonomic systems whose configurations are
determined by generalized coordinates and motions are modeled by Lagrange's equations
with multipliers, being subjected to the non-holonomic constraint equations: linear, of the
first order [4] or higher order of Chetaev's type [3]. Since the process of obtaining
multipliers can be considerable difficult it is more suitable to model motion of non-
holonomic systems with generalized Lagrange's equations of the second kind. What is
more, generalized Lagrange's equations of the second kind enable us to take into
consideration systems subject to non-linear constraints and those of a higher order.
Therefore, in this paper the field method is applied and extended to the study of motion
of systems with variable mass subject to such kind of constraints and modeled by
generalized Lagrange's equations of the second kind.
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2. THE GENERALIZED LAGRANGE'S EQUATIONS OF THE SECOND KIND

Let the position of a mechanical system is defined by n generalized coordinates qj
(j=1,…, n), while its motion is subject to m non-holonomic constraints:
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where m,...,1=ν ; s is the number of degrees of freedom mns −= ; si ,...,1= ;
( ) kkk t∂∂= ()() ; t is time; k ≥ 1.

The constraints (1) are of Chaplygin's type [7], since qi are independent coordinates
and qs+v are dependent ones.

On the basis of the results of the paper [8], the equations of motion of this system can
be written in the form:
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where L is a Lagrangian of the system and λν are unknown Lagrange's multipliers.
Extending them to the system of N point with variable mass, one obtains:

.)2()1(

,)2()1(

)(

)(

)1(

)1(

)()(

)(

)1(

)1(

ν+ν
ν+

+
ν+

+

ν
ν+

+

+Λ=
∂
∂+−

∂
∂+

+
∂

ϕ∂Λ−=
∂
∂+−

∂
∂+

sk
s

k

k
s

k

ik
i

k
i

k

k
i

k

R
q
Lk

q
Lk

R
qq

Lk
q
Lk

(3)
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 is the absolute velocity of an added or separated particle [9]. Note that the
assumption of the reactive force in this form requires treating mass as a constant during
the differentiation of the Lagrange's function.

After eliminating the multipliers the previous system can be transformed into:
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where ( )* denotes the terms obtained after excluding )(k
sq ν+  and )1( +

ν+
k

sq  from ( ).

3. THE GENERALIZATION OF THE FIELD METHOD

The system (4) consists of m differential equations of the second order, which
together with m constraints (1) enable us to find motion qj (t). This system is of the
general form:
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In order to write it down in the form suitable for applying the field method, i.e. in the
form of the first order differential equations, the new variables are introduced:
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and the system becomes:
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So, for the non-holonomic system of Chaplygin's type which is modeled by
generalized Lagrange's equations of the second kind, the number of state variables is

nus ⋅= . The value of u for the non-holonomic constraints of the first and second order
corresponds to the order of the left side of the equation (4), which is equal to two. In the
case of non-holonomic constraints of an order 2≥u , u is equal to the order of
constraints.

System (7) can be considered as an "extended" holonomic problem, whose initial
conditions satisfy the constraints (1). Further, according to the basic supposition of the
field method, one of the state variables can be expressed as a function of time and the rest
of variables:
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By differentiating (8) with respect to time and using (7), the basic equation is
obtained:
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The field method does not look for the asked solution directly, but finds it through a
complete solution of this quasi-linear partial equation of the first order. The solution of
the basic equation can be represented in the form:
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where f1 and fA are unknown functions of time, which will be determined by substituting
(9) into (10) and collecting and equating to zero free terms and terms containing xA. It
leads to solution for the field which depends on the arbitrary constants C1, CA :

).,,,( 1 AA CCxtΦ=Φ (11)

In accordance with the initial conditions ,)0(,)0( 0101 AA xxxx ==  one of the constants,
say C1, can be expressed in terms of the initial conditions and the rest of constants.
Consequently, the conditioned form solution is obtained:
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The fact that the conditioned form solution should not depend on the value of the
additional constants CA produces:
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assuming that nuBxC BA ⋅=≠∂∂Φ∂ ,...,2   ,0))/(det( 2 .
So, the solution for motion of the original non-holonomic problem follows from (12),

)1( −⋅ nu  algebraic equations (13) and the constraints equations for the initial values of
state variables and it contains )( mnu −⋅  constants.

4. EXAMPLE

A point whose mass varies exponentially ),exp(0 tMM α−= where 0M and α are
positive constants, moves on a plane, while its motion is subject to rheonomic non-
holonomic linear constraint:
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Since the Lagrangian of this system is ),(
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where, according to (14), q1 is independent coordinate and q2 is dependent one. Supposing that
the absolute abandoned velocity of the particle is zero, which means that rV !"

"
−= , calculating

necessary differentials, and using (14) and its differential, it is obtained:
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Introducing the substitutions 24132211 ,,, qxqxxqxq !! ==== , it follows:
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The basic equation (9) for the field ),,,( 4321 xxxtx Φ=≡Φ  is as follows:
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In accordance with (10) its solution has the form:

.)()()()( 4433221 xtfxtfxtftf +++=Φ (19)

After substituting it into (18) and collecting the free term and the terms containing x2,
x3, x4, the following system is derived:
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Its integration gives:
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According to the initial conditions 0)0( ii xx = , 4,...,1=i  one finds:
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which enable us to express the constant C1 as a function of the rest of constants and the
initial conditions.

Finally, the applications of (13) yield:
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After solving these equations, the field (19) gives the equation of motion:
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while the constraint (14) imposes the restriction:

.040 =x (25)
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GENERALIZACIJA LAGRANGE-OVIH JEDNAČINA DRUGE
VRSTE I METODA POLJA ZA NJIHOVU INTEGRACIJU

Ivana Kovačić

Ovaj rad prezentuje kompletan proces dobijanja rešenja kretanja mehaničkog sistema sa
promenljivom masom i neholonomnim vezama koje su nelinearne, te prvog ili višeg reda. U radu su
najpre Lagranževe jednačine druge vrste proširene na neholonomne sisteme sa promenljivom
masom uvođenjem generalisanih reaktivnih sila. Zatim je na ove jednačine primenjena metoda
polja u cilju nalaženja njihovog rešenja. Konačno, dat je primer koji ilustruje prezentovan
algoritam rešavanja.


