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Abstract. In the useful and rich field of stability theory for nonlinear systems, there have
been many refinements, extensions and generalizations [3, 4]. Basically, stability concerns
with comparing phase-space positions of solutions of perturbed and unperturbed
equations, with classical Lyapunov stability being too stringent a requirement and orbital
stability being too loose a demand. We define a new concept of stability that can unify
theses two extreme cases (and possibly many other appropriate notions between these
two) in terms of suitable topologies, following the idea of J. L. Massera [6]. Also, a further
unification is achieved by using two measures [5]. In this unified frame work, we give
sufficient conditions for these concepts to hold, via Lyapunov functions.
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1 INTRODUCTION
Consider the differential systems
d'(t) = F(t,z),  w(to) = zo, (1.1)

v(t)=fty),  ylr) =1y, (1.2)
where F,f € C[R; x R",R"]. Assume, for convenience, that the solutions z(t,to, zo),
y(t, 70, y0) of (1.1), (1.2) respectively exist and are unique for each (to, zo) and (7o, 0), t >
To = tp. In classical Lyapunov Stability (LS) the phase-space positions of the perturbed
and unperturbed: solutions are compared at each t. i.e. |z(t,t0, o) — y(t, to, yo)| < €, for
each t > to, whenever |yo — zo| < &(e). (We can consider (1.2) a perturbation of (1.1)).
This requirement of closeness between the two solutions at every instant is quite restrictive
from a physical point of view. The Orbital Stability (OS), on the other hand, compares the
solutions over the entire time interval [to, 00), i.e.

( inf Im(S, tO’mO) - y(tv tOvyO)[) ,< €, t 2 to.
s€ftp,00) -
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In (OS), the two motions are compared at any two unrelated moments and we require only
that the two trajectories be close to each other, in some sense.
The following motions in R? illustrate the difference between these two notions. Let
0 < € < 1 and consider the motions
(a) z(t) = cost, y(t) = sint,

(b) z(t) = (1 +€) cost, y(t) = (1 + €)sint,
(c) z(t) = cos(1 + €)t, y(t) =sin(1 + €)t,
(d) z(t) = cos2t, y(t) = sin2¢.

It is easy to see that motion (b) is close to motion (a). However, many physicists consider
motion (c) close to motion (a), though in the sense of Lyapunov, the distance between these
two motions is 2. Motions (a), (d) are very different but they are close orbitally. These
considerations suggest that a notion that can unify (LS) and (OS) may lead to concepts
between these extreme cases which could have some physical significance.

The perturbation of a system can be realized when

(i) the dynamics changes i.e, F, f are different,
(ii) when initial position changes i.e, o and yo are different, or

(iii) when starting times are different i.e. the solutions z(t,to, o), and y(t, 70,y0) are
compared with 79 —tp =n > 0.

In case (iii) (LS) can be modified as |y(t, 70, yo) — z(t — n, to, z0)| < ¢, for all ¢ > 7,
provided |yo — zo| < &(¢) and (OS) can be described by
( inf |y(t, 70, y0) — z(s — 7, to, mo)|> <e
8€[10,00)
In literature, we consider f = F' + R, with the perturbation term R satisfying suitable

conditions in order to preserve the stability of the unperturbed motion.

2 A NEW CONCEPT OF STABILITY

Following up the idea of J.L. Massera [6] that the distance between the trajectories be

L

measured, maintaining different time scales or “clock” with which time is measured along
each motion, let us now define the new concepts of stability in terms of given topology of
the function space.

Let E be the given space of all functions from R, to R+ each function o(t) representing
a clock. We call o(t) = t, the perfect clock. Let 7 be any topology in E. Let xz(t, to, zo) be

any given solution of (1.1) and y(¢, 7o, yo) be any solution of (1.2).

Definition 2.1 The solution z(t,ty, zo) is said to be
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(1) T - stable, if given € > 0, to 70 € Ry and a T - neighborhood N of the perfect clock,
there exists a § = §(to, 70,€) > 0 such that for each yo with |yo — xo| < 6, there is a
clock 0 € N with o(m) = to, satisfying

ly(ty 7-07:‘/0) - $(a(t)7t0y ZO)I <€ t 2 to;

(2) T - uniformly stable, if § in (1) is independent of to, To;

(8) T - asymptotically stable if (1) holds and given € > 0, to, 79 € Ry, there exists a
do = do(to,T0) > 0, a T - neighborhood N of the perfect clock, a T = T(to, To,€) > 0
and a clock 0 € N such that for each yo with jyo — xo| < o, o(70) = to, we have

|y(ta7-07y0) - x(a(t),toal’oﬂ <€ Vit> T0 + T;
(4) T - uniformly asymptotically stable if (2) holds and &, T in (3) are independent of
to, To.

We note that a partial ordering of topologies of E induces a corresponding partial ordering
of stability concepts. On the space E, we can consider the following topologies:

(71) the discrete topology (where every set in E is open);

(72) the chaotic topology (where only open sets are the empty set and entire clock space.
E);

(73) the topology defined by the base

Usoe = {0’, oo € E: sup la(t) - O'Q(t)l < 5}

t€[ro,00)

with o, a given clock, 0,09 € C[R4, R4 ];
(74) the topology defined by the base

Uge,e = {0,00 € C'[Ry,Ry] : |0(70) — 0o(to)] < eand sup |o’(t) — ob(t)| < €};

t€|710,00,

(75) the topology of three open sets, the empty set, the entire clock space E and the set of

all continuous increasing functions from R to R,.

It is easy to see that the topologies 73, 74, 75 lie between 7, and 75. The following remarks

are in order:

(1) if x(t, to, zo) is the equilibrium position (trivial solution of (1.1)), then (OS) implies
(LS).
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(2) 71 - stability corresponds to (LS) if o(¢) = ¢ is the neighborhood consisting of only the
perfect clock.

(3) 2 - stability corresponds to (OS) since
d(y(t, 70,90), M(to,z0)) = _inf (|y(t,70,%0) — 2(s, %0, Zo)|)
8€[10,00)

(with M (o, zo) being the entire motion x([to,o0), to,z0)), can be denoted by s;, for
each t > ty and designating the clock o(t) as s;. This ¢ € E in 75 - topology and we
obtain orbital stability of the motion z(, to, zo) in terms of 7, - topology.

It can be shown [6] that 74 - stability implies 71 - stability if |F'(t, z(t, to, 20))| < M, t > to.
For further details and examples, see [1, 2].

We know by the enormous volume of research on “stability” (various refinements and
extensions) that is available in the literature, in order to unify most of the existing notions,
in the current context, we need

(i} a comparison theorem for the new context,

(if) the usage of two measures, hg, h (where hg is used to measure the change in initial

values and A is used to measure the change in the solution), and

(iii) sufficient conditions in terms of Lyapunov function for 73, 74, 75 - stabilities.

3 COMPARISON RESULTS

We need the following known results [3].
Theorem 3.1 Let g € C[R3,R], g(t,u,v) be nondecreasing in v for each (t,u) and
r(t) = r(t, 70, up) be the mazimal solution of

u = g(t,u,u), u(r) =up>0 (3.1)
on [ro,00). Then the mazimal solution R(t) = R(t,To,u0) of
o =g(t,u,r(t)), u(r)=uo>0 (3.2)
exist on [19,00) and r(t) = R(t) on [, 00).
Theorem 3.2 Assume g is as in Theorem 3.1. Let m € C[R4,R4] satisfy
Dom(t) < g(t,m(t),v), t=>o. (3.3)
Then, for all v < r(t), we have

m(t) <r(t), t=o. (3.4)
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To prove a comparison result in terms of Lyapunov function, let
Q= {0’ € ct [R+5R+] : 0’(7‘0) = 1o and w(t, g, 0',) < T(t)vt 2 7'0}

where w € C[R% x R,R4], and r(t) is the maximal solution of (3.1). For some o € €, let
V(t,0,z) € C[RZ x R",R;] and define DtV (t,0,y — z) as follows:
D*V(to,y—z) =

li’{n sup % [V(E+ h,o(t+h),y — z + h(f(t,y) — F(o(t),2)0’(t)) = V(t,0(t),y — z)]

Theorem 3.3 Assume that for some o € , there ewists a V(t,0,z) € C[R% x R",Ry]
which is locally Lipschitzian in x and satisfies

DYV (t,o,y —z) < g(t,V(t, 0,y — z), w(t, 0,0")),
where g € C[RY, R] with g(t,u,v) nondecreasing in v for each (t,u). Then
V(t7 a(t)’ y(tv 70, :l/o) - .’L‘(O‘(t), to, .’Eo)) < T(ti T0, uO)a vt > 70,

provided ug = V (to, o(to), yo — xo), where y(t, 70, yo), (¢, o, o) are solutions of (1.2), (1.1)
respectively and o € §).

Proof: Let z(t, to, xo), y(t, 7o, yo) be the solutions of (1.1), (1.2) through (o, zo) and (7o, o)
existing on [tg, 00), [r9,00) respectively. With

m(t) = V(t,a(t),y(t, 70, y0) — z(a(t), to, Zo))
for some o € Q, it is easy to get the differential inequality

Dtm(t) < g(t,m(t),w(t,0,0")), t >0
< g(t’m(t)ar(t)), t > 1o,

where 7(t) = r(t, 7o, up) is the maximal solution of (3.1). In view of Theorems 3.1 and 3.2,
we obtain the estimate m(t) < r(t), t > 7, proving the comparison theorem.

4 SUFFICIENT CONDITIONS

In this section we give the sufficient conditions in terms of Lyapunov functions. Let
M(to, ®o) = M = z([to, 00), to, 2o) and suppose it is closed.
Theorem 4.1 Let V € C[R; x S(M, p),Ry], V(t,z) locally Lipschitzian in ¢ and

bd(z, M)) < V(t,2) < ad(e, M),
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a, b being standard X class functions [1, 2], and
DTV {t,x) < g(t, V(t,x)) on R* x S(M, p),
with g(t,0) =0, g € C[R2,R]. Then the stability properties of the null solution of
u = g(t,u), wu(m)=wuo >0,

imply the corresponding T2 - stability (of the given solution x(t,to, o)) of (1.1).
For details, see [1, 2.
Theorem 4.2 Let the assumptions of Theorem 8.8 hold. Suppose that

(1) b(lz]) < V(t,0,2) < alt, 0, |a])

(i) d(jt — o) < w(t,0,0")

with b, d € X, a(t,0,-) € K. Then the stability properties of the trivial solution of (3.1)
imply the corresponding T3 - stability properties of (1.1) respectively.

For details, see [1, 2].
Theorem 4.3 Let assumptions of Theorem 4.2 hold. Assume that'
(*) b(|z]) < V(t,0,2) < ao(lz —y|) + ax(|t — o),

ag,a1,b € XK, is satisfied in place of (i). Then the uniform stability properties of the trivial
solution of (8.1) imply the corresponding T3 - uniform stability properties of (1.1) respec-
tively.

For details, see [1, 2].

Theorem 4.4 Let assumptions of Theorem 8.3 hold and in addition to (i*) of Theorem
4.3, let d(|1 —d'(t)|) L w(t, 0,0, d € X. Then the stability properties of the trivial solution
of (8.1) imply the corresponding 74 - stability properties of (1.1) respectively.

For details, see [1, 2).

Suitable choices for the comparison function g in Theorem 4.2 are
(1) g(t,u,v) = —au+Av, A—a = > 0. In this case, r(t) = ug e t=to),

(2) g(t,u,v) = A(t)v, A € LRy, Ry]. In this case, r(t) = ug exp(f:o A(s)ds) < ug eV,
Ji Ms)ds < N. ‘
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5 STABILITY CRITERIA IN TERMS OF TWO MEASURES

We need to use the following classes of functions in order to describe the current context.

Let
ho, h e T'={z € C[R;+ x R",R4], irmlfz(t, z) =0, for each t},
L = {6 € C[R+,R4] : 6(u) decreasing in u and ulm;o &(u) =0},
X = {a € C[R4+,R4] : a(u) non decreasing in u, a(0) = 0}.

Let E be the clock space of all functions from R4 to Ry and o € E, with o(t) = ¢
being the perfect clock. Let 7 be any topology in E. We need hg, h € T such that hg is
uniformly finer than h, i.e., there exists a p > 0 and ¢ € X such that ho(t,z) < p implies
h(t,z) < p(ho(t, z)). We can now define 7 - stability in terms of two measures.
Definition 5.1 The systems (1.1) and (1.2) are (ho, h; 7) - stable if given € > 0,

T0,to € Ry, a 7 - neighborhood N of the perfect clock, there exists a 6 = 6(to,7o,€) such
that for each yo with ho(to, yo — xo) < 8, there is a clock o € N with (7o) = to satisfying

h(t, y(t, 70, y0) — x(a(t), to, 20)) < €, for allt > 7o.

Definition 5.2 The systems (1.1) and (1.2) are (ho, h; T) - uniformly stable if § in the

above definition is independent of to, 7. 1

Other definitions can be formulated similarly. In order to see the greater unification
achieved by using two measures (see [5]), we make the following choices for hg, & :

(1) ho(t,y) = h(t,y) = ly—=z(t, to, Zo)|. This gives the T - stability of the solution z (%, to, zo);

(2) h{t,y) = ly — x(t,to, z0)|s, 1 < s < m, and ho(t,y) = |y — z(t, to, xo)|. This gives the 7
- partial stability of the solution z(%, o, zo);

(3) ho(t,y) = h(t,y) = d(y, M), M C R™; This gives the 7 - stability of the invariant set
M.

(4) ho(t,y) = h(t,y) = d(y,C), gives the orbital stability of the closed orbit C (periodic
solution);

(5) h(t,y) = d(y,B), ho(t,y) = d(y,A), where A C B C R", B being conditionally
invariant with respect to A, gives the stability of the conditionally invariant set B;

(6) ho(t,y) = h(t,y) = |y|+£(t), £ € L gives the stability of the asymptotically selfinvariant
set {0}.

(7) ho(t,y) = h(t,y) = |y — z(¢, to, 20)| + £(t), £ € L gives the T - eventual stability of the
solution z(%, to, zo). :
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We shall now give a typical result that provides sufficient conditions for (ho,h; 7) -
stability in 74 - topology.

Theorem 5.1 Assume that for some o € Q (see Theorem 3.8), there exists a Lyapunov
function V(t,0,z) such that

(i) V(t,0,x) is locally Lipschitzian in z, V € C[RL x R*, R4];

(i) V(t,0,z) is h - positive definite and ho - decrescent i.e. there exists b € X, such
that for some p > 0, b(h(t,z)) < V(t,0,z) whenever h(t,z) < p, and there exists a
a(t, s, ) € X such that for some p > 0,

V(t,o(t),x) < a(t,o(t), ho(t, z)) whenever ho(t, z) < p;
(i) DtV (t,0(t),y —z) < g(t, V(¢t,0(t),y — ), w(t, o(t), o' (t))), where g is as in Theorem
3.3;
(w) d(|t — o (D)) S w(t,o(t),0'(t)), d€X;

Then the stability properties of the trivial solution of u' = g(t,u) imply the corresponding
(ho, h; 74) - stability properties of the systems (1.1), (1.2)

Proof: We shall prove (ho, h; 74) stability. Let z(t,to,zo) be the given solution of (1.1).
Since V' is h - positive definite, there exists a A > 0 and a b € X satisfying '

b(h(t,x)) < V(t,0,2), (t,x) € S(h,N), (5.1)

where S(h,\) = [(t,z) € Ry X R" : h(t,z) < ).
Let 0 < € < X and tp,79 € Ry be given. Suppose that the trivial solution of (3.1) is
stable. Then, given b(e) > 0, 70 € Ry, there exists a 61 = 1(7o, €) such that

up < &1 implies u(t, 7o, ug) < b(e), t > 7o, (5.2)

where u(t, 70, ug) is any solution of (3.1). Choose ug = V (79, (70), Yo — o). Since V is hg
- decrescent and ho is uniformly finer than h, there exists a Ao > 0 and a(t, s,-) € X, such
that

ho(70, Yo — %o) < Ao and V(10,a(70), 30 — 2o) < a(70, a(70), ho(7o, Yo — Z0)). (5.3)
It then follows that

b(h(To, 50 — o)) < V{(10,0(70),%0 — 20) '

IA

a(7o, o(70), ho(70, Yo — 20))- (5.4)

Choose § = 4(to, 7o, €) such that § € (0, Ag] and 5 = 5(e) > 0, satisfying
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a(7o,a(0),8) < 81, n = d*(b(e)). (5.5)

Let ho(7o, Yo — o) < 6. Then (5.4) shows that h(7o, yo — To) < €, since §; < b(e). Also, using
assumption (iv) we get

IA

d(|t — a(2)]) W(t,a(t),0'(t)) < r(t, 70, uo)

r(¢,70,061) < b(e). (5.6)

IA

It follows that |t—o(t)| < n and therefore o € N. We claim that whenever ho(7o, yo—0) < &
and o € N, one obtains that

h(tay(tv 70, yO) - :l’(a’(t),to, xO)) <€ t 2 70.
If not, there exists a solution y(¢, 70,y0) and ¢; > 7¢ such that

h(tl) y(tl’ 70, yO) - :L'(O'(tl), to, 1"0)) =€ (57)
and
h(t7y(ty 70y yO) - a:(a(t), to, xﬂ)) <e¢ T St<t.

We then get from (5.1), (5.2) and (5.7),

b((:‘) b(h(th y(t17707 yO) - ZL‘(G(tl), to, xO)))
S V(th O'(t]_), y(tla 70, yO) - .’l}(O’(tl), t07 xO)))

< T(tlvTO’u’O) < T(tlaT()y 61) < b(e)’

a contradiction which proves (hg, h;74) - stability.
Based on the proof, it is not difficult to construct the proofs of other (ho, h; 74) - stability
properties [4, 5]. We do not repeat the rest of the proof.
If we wish to prove (ho, h; 5) - stability properties, we only need to change the condition
(¢v) in Theorem 5.1 to
d(|1 - o' (t)]) < w(t, o(t), o’ ()

and follow apppropriate modifications in the proofs.
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NOVI UNIFICIRANI KONCEPT STABILNOSTI
S. Leela

U korisnoj i bogatoj oblasti teorije stabilnosti nonlinearnih sistema, dogodila su se mnoga
preciséavanja, proSirenja i generalizacije [3, 4]. U osnovi stabilnost se odnosi na uporedjivanje
polozaja faznog prostora reSenja poremecenih i neporemeclenih jednacina sa klasicnom
Ljapinovom stabilnoscéu koja postavlja isuvise strog zahtev i orbitalne stabilnosti, koja postavlja
isuvise slab zahtev. Novi koncept stabilnosti se definise tako da moze da objedinjuje ova dva
ekstremna slucaja (i verovatno mnoge druge odgovarajuce pomove i pojave izmedju ovih dvaju) na
osnovu odgovarajuce topologije prateci ideju J. L. Masera [6] Dalja unifikacija se takodje
ostvaruje koristec¢i dve mere [5]. U ovom unificiranom okviru, ukazujemo na potrebne uslove za
odrzivost ovih koncepata preko Ljapinovih funkcija.

Kljuéne re€i: stabilnost casovnika, Ljapinova stabilnost, orbitalna stabilnost.



