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Letter to Editor

THE VARIATIONAL PRINCIPLE FOR MONGE-AMPERE
EQUATION BY THE SEMI-INVERSE METHOD    

UDC 517.9(045)

Hong-Mei Liu

College of Science, Donghua University, P.O. Box 471, 1882 Yan'an Xilu Road,
Shanghai 200051, China

Abstract. By the semi-inverse method proposed Ji-Huan He, a variational principle is
established for Monge-Ampere equation.
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This paper studies the nonlinear Monge-Ampere equation in the form[1]:
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where A,B,C, and D are constants.
Our aim is to search for, by the semi-inverse method [2,3], a variational principle

whose stationary condition satisfies the above equation. To this end, we first consider the
following linear partial differential equation:
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The Lagrangian of Eq. (2) can be found with ease:
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To proceed, we regard the following Lagrangian

2
2

2

2

2

2

2 )()(
yx

ubu
y
u

x
uauuL

∂∂
∂+

∂
∂

∂
∂= ,                    (4)

                                                          
  Received November 20, 2003



168 HONG-MEI LIU

where a and b are constants.

The Euler equation for (4) is obviously
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By simple manipulation, Eq.(5) reduces to
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If we set a = 1/3 and b = −1/3, then Eq.(6) becomes
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We, therefore, obtain the following variational principle

∫∫= LdxdyuJ )( ,                             (8)

where the Lagrangian , L, reads
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It is easy to prove that the stationary condition of the obtained functional, Eq.(8),
satisfies Eq.(1).

We illustrate hereby the effectiveness of the semi-inverse method, which is a
powerful tool to the construction of variational formulations directly from the field
equations.
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