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Abstract. A variational principle is obtained for Yang-Mills equation by Ji-Huan He's
semi-inverse method, which is proved to be a powerful mathematical tool to the search
for a variational formulation directly from the field equations.
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In this paper we will study the coupled Yang-Mills equations in the forms [1]:

02222 =ρ−′′β yzey ,                               (1)

02222 =α−′′β zyez ,                               (2)

where α, β, e, and ρ are constants.
     In order to search for a variational formulation for the above coupled equations, we

apply Ji-Huan He's semi-inverse method[3,4]. To this end, we construct the following
trial-functional with an unknown function F:
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 +ρ+′β= dxFyzeyzyJ 222222
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where F is an unknown function of z and/or its derivatives.
There exist many alternative approaches to constructing trial-functionals, illustrating

examples can be found in details in Refs. [5,6,7]. The advantage of the above trial-
functional lies on the fact that the stationary condition with respect to y results in Eq. (1).

Calculating the first order variation of the above functional, Eq. (3), with respect to z
yields the following Euler equation:
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We search for such an F so that Eq.(4) turns out to be one of the field equations,
Eq. (2), so we set
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from which we can immediately identify F in the form:
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Finally we obtain the following variational principle:

∫ 
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[Proof] Assuming that the values of y and z are prescribed on the boundary, i.e.,
δy = δz = 0, and calculating variation of the above obtained functional, Eq.(7), we have
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In view of the arbitrary of δy and δz, we obtain the following Euler equations:

02222 =ρ−′′β yzey ,                       (8)

0222
2

22
=ρ−′′

α
βρ zyez .                     (9)

It is obvious that the system of Eqs. (8) and (9) is equivalent to the original system of
Eqs. (1) and (2).

From the obtained functional, Eq. (7), we can obtain the following Hamiltonian:
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which is an invariant.
  To conclude, we find the semi-inverse method proposed by He is a powerful

mathematical tool to the construction of variational formulations for physical problems.
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