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"Politehnica" University of Timişoara, Romania 

Abstract. The response of a one-degree of freedom system with cubic nonlinearities to a 
principal resonance is investigated. The modified homotopy perturbation method (MHPM) 
is used to determine the equations that describe the second-order approximate periodic 
solutions of the system. The stability of these solutions is determined using Floquet theory. 

1. INTRODUCTION 

A large number of studies have been dedicated to the Duffing oscillator with 
hardening non-linearity [e.g.1-10]. The interest in this system lies in the variety of 
physical phenomena that it models, such as the rolling motion of a ship, and the fact that 
it is isomorphic with other systems of importance in physics and engineering (e.g. 
Josephson junction oscillator and Foucault pendulum). Particularly interesting is the 
response of the Duffing oscillator to a harmonic excitation in the presence of viscous 
damping, which has been found to exhibit, among other features, hysteretic and chaotic 
behaviors. Thus, we consider this latter system governed by a non-dimensional 
differential equation of the form 

  tcos2 32 Ωε=εα+εµ+ω+ kuuuu  (1) 

where ε is a small parameter, ω, µ, α, k and Ω are positive constant parameters. Primary 
resonance (i.e. Ω≈ω) are considered in the next section. To determine the dependence of 
u(t) on the parameters ω(Ω),µ,α,k and ε we develop an approximate second-order solution 
using MHPM. The stability of this solution is then determined using Floquet theory. 

2. PROBLEM FORMULATION 

We have been considering systems governed by equations having the form 

 ),, (2 uutFuu Ω=ω+  (2) 
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where, in general F is a nonlinear analytical function, with the period T in the first 
variable. For the equation (2), we construct a one-parameter family of equations 
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where p∈[0,1] is an embedding parameter, and U(t,p) is an analytical function of both t 
and p. At p=0, we have obviously U(t,0)=u0(t) and u0(t) is an initial approximation of Eq. 
(2) which not necessarily satisfies the boundary conditions. At p=1, Eq. (3) is exactly the 
same as Eq. (2), respectively, so that U(t,1)=u(t) and u(t) is exactly the solution that we 
want to know. As the embedding parameter p varies from zero to one, U(t,p) varies 
continuously from u0(t) and Λ(p) varies from Λ(0) to Λ(1)=ω2. 

Suppose that U(t,p) and Λ(p) have derivatives with respect to the embedding variable 
p evaluated at p=0: 
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By Taylor's formula, we have: 
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Setting p = 1, we obtain: 
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provided that the radii of convergence of series (5) and (6) are not less than 1. Note that 
(7) gives a relation between the initial approximation u0(t) and solution u(t); meanwhile, 
(8) provides a link between the initial approximation Λ(0) and the square of the 
frequency ω. The key of the problem becomes how to solve derivatives )(][

0 tu j

 and ][
0
jΛ  

( j ≥ 1). For this purpose, we must first of all give equations governing u0(t). For the case 
of principal resonance (Ω≈ω), setting p=0 into (3), we obtain equation 
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Differentiating Eq. (3) with respect to p and setting p=0, we have: 
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where u0(t) is given by Eq. (9) and avoiding the secular term, we obtained ]1[
0Λ  and the 

relationship between the constants of integration from Eq. (9). In the same way, we can 
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obtain all of the j-th order deformation equations governing )(][
0 tu j  (j≥2) which are 

similar in form to Eq(10) except the inhomogeneous terms. For example for j = 2, we 
obtain the second-order equation: 
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with )(]1[
0 tu  given by Eq. (10) and ]2[

0Λ  can be determined avoiding the secular term in 
Eq. (10). 

Another case to be conceived is that if there is a real parameter ε (small) such as 
),,(),,( uutfuutF Ωε=Ω . Eq. (2) becomes: 

 ),,()()( 2 uutftutu Ωε=ω+  (13) 
With the notations: 
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Eqs. (7), (8), (9), (10) and (11) are respectively 
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3. PERIODIC SOLUTIONS OF EQ. (1) 

To determine second-order uniform periodic solutions of Eq. (1) we use MHPM and 
therefore Eqs (13), (17), (18) and (19). In this case, the function ),,( uutf Ω  becomes: 

 tkuuuutf Ω+µ−α−=Ω cos2),,( 3  (21) 

Eq. (17) can be written as: 

 0)()( 0
2

0 =Ω+ tutu  (22) 
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The solutions of Eq. (22) become: 

 tBtAtu Ω+Ω= sincos)(0  (23) 

where A and B are real unknown constants. 
Substituting Eqs. (21) and (23) into Eq. (18) yields: 
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The conditions for the elimination of secular terms in Eq. (24) are: 
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Now, into (25) and (26) we put: 

 ℜ∈ϕϕ=ϕ= ,    ,cos   ,sin rrBrA  (27) 
and we obtain: 
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Substituting Eqs. (28) in Eq. (23) we obtain the first-order solution: 
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The solution of Eq. (24) can be expressed as 
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where C and D are real unknown constants. 

Substituting Eqs. (23) and (30) into Eq. (19) yields: 
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where N.S.T. stands for terms that do not produce secular terms. 
Avoiding the presence of secular terms needs: 
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This set of equations can be solved and we obtain: 
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Substituting Eqs. (28) and (34) in Eq. (30) we obtain 
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Substituting Eqs. (29) and (35) into Eq. (15), we find that the second-order approxi-
mation to the solution of Eq. (1) for the primary resonant case (Ω≈ω) is 
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where ℜ∈≠ ϕϕ   ,cos 0 . 
From Eqs. (28), (34) and (16) we obtain: 
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Note that in Eq. (37), tg ϕ remains finite for Ω≈ω. 
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4. ORBITAL STABILITY 

To ascertain the stability of the periodic orbits given by Eq. (36), we examine the time 
evolution of the orbit after the application of an infinitesimal arbitrary disturbance ξ(t) in 
the form 

 )()()( ttutx ξ+=  (38) 

The stability of u(t) then depends on whether ξ(t) grows or decays with t. Substituting 
Eqs. (38) and (36) into Eq. (1) and keeping linear terms in ξ(t), we obtain 

 
ξϕ+Ω−

Ωµ
ϕα

ε−ξεµ−=ξω+ξ )]22cos(1[
8

cos32 22

22
2 tk  (39) 

which is a linear ordinary-differential equation with periodic coefficients. As 
)()( tuTtu =+  where T = 2π/ω, and as )()2/( tuTtu −=+ , u2(t) (and therefore 

cos(2Ωt + 2ϕ)) is periodic with the period T/2. Therefore, it follows from Floquet theory 
[2] that Eq. (39) has solutions of the form 
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where λ is an eigenvalue (also called a Floquet multiplier) of the monodromy matrix M 
whose elements are associated with Eq. (39) through the relations 
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where mij are constants. The functions ξ1(t) and ξ2(t) are two linearly independent 
solutions of Eq. (39). To generate ξ1 and ξ2, we use the initial conditions: 

 0)0(;1)0( 11 =ξ=ξ  (43) 

 1)0(;0)0( 22 =ξ=ξ  (44) 

The solution u(t) is a stable orbit provided that ξ(t) does not grow with t. This requires 
that 

 1<λ  (45) 

that is, the eigenvalues of M must remain inside the unit circle in the complex plane. The 
monodromy matrix M can be obtained using MHPM in the Eq. (39) for the initial 
conditions (43) and (44). It follows from Eqs. (41)-(44) that  
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Therefore the characteristic equation becomes: 

 022 =∆+λ−λ s  (47) 
where 
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The values of λ determine the stability of the approximate solution u(t) according to 
equation (45). 

Case 1 (Nonperiodic solutions of Eq. (39)). 

 We consider 1 ,0)(
0 ≥=Λ jj . Eq. (17) becomes: 
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By using the initial conditions (43), we consider 0)0( ,1)0( 00 =ξ=ξ . Thus: 
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Eq. (18) becomes: 
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which has the solution (for 0)0()0( )1(
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0 =ξ=ξ ): 

 )sin33(sin
128

2sincos3

)3cos(cos
128

2coscos3sin
32

)2cos2(cos3

)3cos(cos
128

2coscos3sin
32

)2cos2(cos3

)sincos)(
32

2sincos3()(

42

22

42

22

32

22

42

22

32

22

42

22
)1(

0

ttk

ttkttk

ttkttk

tttkt

Ω−Ω
Ωµ

ϕϕα
+

+Ω−Ω
Ωµ

ϕϕα
+Ω

Ωµ
ϕ−ϕα

+

+Ω−Ω
Ωµ

ϕϕα
+Ω

Ωµ
ϕ−ϕα

−

−Ω−ΩΩ
Ω
µ

−
Ωµ

ϕϕα
=ξ

 (52) 

The solution ξ1 of Eq. (39) using the initial conditions (43) is given by  
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001 ε+εξ+ξ=ξ t  (53) 
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By substituting Eq. (50) and (52) into Eq. (53), we obtain: 
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The solution ξ2 of Eq. (39) using the initial conditions (44) is given by: 
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Substituting Eqs. (54), (55), (57) and (58) into Eqs. (48), we obtain: 
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We remark that the terms in ε2 from Eqs. (54), (55), (57) and (58) cannot change the 
value of Eq. (59). The Eq. (47) has the solutions 
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and therefore 
 121 <∆=λ=λ  (63) 

In this case, u(t) is stable. 
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Case 2 (Periodic solutions of Eq. (39)) 

For the dissipative one degree-of-freedom system described by equation (1), there are 
two ways in which λ can leave the unit circle, which create independent patterns of 
instability in a T-periodic orbit. An eigenvalue can leave the unit circle through the real 
axis at −1, which initiates a saddle-node (tangent) bifurcation. A second way to leave the 
unit circle is through the real axis +1, which starts a pitchfork bifurcation [3,5,6]. If one 
of the eigenvalue leaves the unit circle through −1 we have  
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at the bifurcation point. Therefore, it follows from Eqs. (38) and (64) that 
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Thus, x(t) is a periodic attractor with period T and the system is expected to display a 
saddle node instability and the solution is expected to jump either to another attractor or 
to an unbounded motion. 

By using MHPM, we can determine T-periodic solution ξ(t). Eq. (17) can be written as 
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where C1 and C2 are real unknown constants. 
Eq. (18) becomes 
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Substituting Eq. (67) into Eq. (68) yields: 
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Avoiding the presence of secular terms in Eq. (69) needs: 
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The non-trivial solution of Eqs. (70) and (71), there is if 
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Solutions of Eq. (72) are 
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In the case 2, the periodic solution u(t) is unstable if there are conditions: 

 

)4
256

cos9
8

cos3(

)4
256

cos9
8

cos3(

22
44

442

22

22
2

222
44

442

22

22
2

Ωµ−
Ωµ

ϕα
+

Ωµ
ϕα

−ε+Ω≤

≤ω≤Ωµ−
Ωµ

ϕα
−

Ωµ
ϕα

−ε+Ω

kk

kk

 (74) 

where 
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If the conditions (74) are not satisfied, the periodic solution u(t) is stable. If one of the 
conditions (75) is not satisfied, we obtain C1=C2=0 and therefore the disturbance ξ(t) 
does not exist. 

Now, if one of the eigenvalue of M leaves the unit circle through +1, we have  
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Then it follows from Eq. (38), (36) and (76) that 
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and therefore a pitchfork bifurcation starts. 



  Forced Duffing Oscillator with Slight Viscous Damping and Hardening Non-Linearity   255 

5. CONCLUSIONS 

In this paper, we have studied analytically periodic solutions of the forced Duffing 
oscillator with slight viscous damping and hardening non-linearity. The modified homotopy 
perturbation method have been proved to be effective and have some distinct advantages 
over usual approximation methods (harmonic balance method, Krylov-Bogoliubov-
Mitropolsky method, weighted linearization method, Lindstedt-Poincare method, Adomian 
decomposition method, artificial parameter method, the method of multiple scales and so 
on). The stability of the periodic solutions is studied using Floquet theory. 
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PRINUDNI DUFING-OV OSCILATOR SA VISKOZNIM 
PRIGUŠIVANJEM I TVRDOM NELINEARNOŠĆU 

V. Marinca, N. Herişanu 

Izučavan je odgovor sistema sa jednim stepenom slobode i kubnom nelinearnošću u uslovima 
glavne rezonancije. Korišćena je modifikovana homotopska metoda poremećaja radi odredjivanja 
jednačine kojom se opisuju aproksimacije drugog reda periodičkog rešenja sistema. Teorija 
Floquel je korišćena za ispitivanje stabilnosti rešenja. 

Ključne reči: Duffing-ov oscilator, jedan stepen slobode kretanja, nelinearni, Floquet teorija, 
aproksimacije drugog reda. 


