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Abstract. Sandwich constructions have two thin, elastic outer layers and a middle layer - 
core made of material with relatively small stiffness comparing to stiffness of the the outer 
layers. Calculation of these constructions is based on the  supposition that all three layers 
deform simultaneously, and as the result a unique neutral line is formed between the outer 
layers. With this approach to the calculation it is possible to describe, with high accuracy, 
the stress and the strain state of a construction as well as the local influence in each layer. 
Based on the hypothesis of broken cross section line [1], this article shows the process of 
determining critical pressure force of a sandwich beam composed of two thin, elastic 
outer layers of the same thickness and a middle layer with negligible bending stiffness 
compared to bending stiffness of thr outer layers, Figure 1. A system of differential 
equilibrium equations is derived by application of the static and energetic methods as well 
as the contour conditions that must be fulfilled by the solution of the system.  

Key words:  Sandwich Beam, Critical Pressure Force, Differential Stability Equations; 
Contour Conditions  

1. INTRODUCTION 

Solving the stability problem of the pressed beam is based on the solution of the 
equilibrium differential equations describing its bending. We obtain the adequate number 
of the homogenous algebraic equations by discussing boundary conditions. Using the 
condition that the system has an untrivial solution we obtain the equilibrium equation of 
the deformed form and its solutions are the values of the critical pressure forces during 
the buckling. 

The bending theory of thin homogenous beams is established upon the Bernoulli’s 
hypothesis of a perpendicular cross section, which during the deformation rotates as a 
stiff set and stays perpendicular to the beam central bending axis. This is a cinematic 
hypothesis; it represents the variations of the point displacements along the beam 
thickness and it is independent of the material properties. The normal stress is linearly 
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graded along the height of cross section with the zero value on the central axis. This 
means that the edge fibers are totally used, and going to central axis fibers participation in 
bending action is becoming trivial. This resulted in appearance of sandwich constructions 
with two outer layers made of solid materials set at some distance and connected with 
ribbed middle layer made of the same material or with the middle-space filled with less 
solid material which provide corporate construction action. Calculation of the 
constructions with the solid middle layer is the same as the calculation of thin 
homogenous beams, and the calculation of the constructions with the middle layer made 
of less solid material is in accordance with the broken line hypothesis [1], [2], Fig. 1. 

Sandwich beam with two outer layers 
of small thickness δ and the middle layer 
of 2h height made of material with trivial 
stiffness comparing to the stiffness of 
outer layers material, was analyzed in this 
article. Outer layers deform according to 
the Bernoulli’s hypothesis, and the cross 
section of the middle layer rotates as stiff 
set and it doesn’t need to be perpendicular 
to bended central beam axis. 

2. COMPONENT DISPLACEMENTS AND DEFORMATIONS 

If a beam cross section deforms into a broken line as shown in Fig. 1, the component 
displacements of the cross section random point will be: 
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here 
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Components of deformation, different from zero, were calculated by the known for-
mulas of the elasticity theory 
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Fig. 1. Sandwich beam 
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3. FORCES AND FLEXURAL MOMENTS 

In outer beam layers normal stress 
σx = Eεx and shear stress τxz = Gγxz will 
appear, and in the middle layer only the 
shear stress τxz . In this formulas E - is the 
elasticity modulus, and G - is the shearing 
modulus of the beam material. By 
integration of stresses and its moments for 
beam cross section central axis, along the 
height of the appropriate layer, we obtain 
forces and moments in each beam layer, 
Fig 2. Total forces and moments of the 
sandwich package we calculate by 
summing of the adequate forces and mo-
ments for each layer. That forces and mo-
ments can be expressed, using formulas (1) 
to (4), by components of displacements in 
the next form: 
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here δ= EbB  - is axial, and 12/3δ= bED  - is flexural rigidity of the beam outer layers. 

4. DIFFERENTIAL STABILITY EQUATIONS AND CONTOUR CONDITIONS 

Differential stability equations are obtained from the static equilibrium condition for 
forces which appear in sections of beam elements, Fig. 2. Those equations, expressed by 
the components of displacements uα , uβ and w, are reduced to the following form: 
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Fig. 2. Positive forces and moments  
in sandwich beam cross section  
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here G3 - is the shear modulus for the middle layer material. The equation (9) is 
independent of the equations (10) and (11) and it has a trivial solution with respect to  uα, 
so the problem of the beam stability adds up to solving the system of two differential 
equations (10) and (11) for unknown functions uβ(x) and w(x). 

System of equations (10) and (11) can be reduced to one equation, if we introduce 
new displacement function χ(x) that it is: 
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Then the equation (10) will be identically satisfied, and the equation (11) is reduced to 
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In this way resolving of the stability problems adds up to determining the solution 
χ(x) of the differential equation (13). 

In terms of solving a sandwich beam stability problem completely it is necessary to 
determine the contour conditions which displacement function χ(x), forces and moments 
should satisfy. Those conditions, as well as the differential stability equations, can be 
derived according to the energetic method, using the possible displacement principal. As 
it is known, according to this principal, the virtual work of all external and internal forces 
of an elastic system in equilibrium equals zero. So for the beam of the  length l we can 
write: 
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δAi - is the work of internal elastic forces during the transfer from one considered 
equilibrium of bended form to the other, very similar to the previous form. For a 
sandwich beam loaded with the force Nx , equation (14), in virtual displacements δw, δuα, 
δuβ and δ(dw/dx), is: 
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The equation (15) will be satisfied if the expressions being integrated which are 
multiplied by the virtual displacements δuα, δuβ, δw are equal to zero, which corresponds 
to the system of differential equations (9), (10) and (11). Last two components define the  
needed conditions on the beam ends x = 0 and x = l, which must be satisfied by demanded 
function χ(x), or forces and moments in those sections. As we can see, we need to know 
three contour conditions in case of the sandwich beam, different from the homogeneous 
beam in which case we can give two contour conditions. Contour conditions can be 
expressed with displacement components or appropriate transversal forces and moments.  

For freely leaned end of the beam variations of the vertical displacement equals zero 
(δw=0), and the terms δuβ and δ(dw/dx) have random values, and according to the 
equation (15), the contour conditions for this relation will be: 
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For the constraint end of the beam, the following geometric conditions state: 
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so the variations of this term at that end equals zero, and the equation (15) is satisfied. 
On the free end of the beam the variations δuβ and δ(dw/dx) have random values, so 

according to the equation (15) on this end, it must be: 
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5. NUMERICAL RESULTS AND CONCLUSIONS 

Calculation of the differential stability equations of the beam is shown on the basic - 
Euler’s cases of buckling of the beam having the length l, loaded with the pressure force 
Nx = −N, Fig. 3. If we introduce dimensionless coordinate 
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here ϕ - is the axial pressure force coefficient, k- is the shear coefficient 
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and r - is the dimensionless geometric coefficient 
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Characteristic equation for the differential equation 
(16), for ξ=ξχ se)( , is 

               0])1([ 2 =−−ϕ+ sskskrs .             (23) 

Equation (23) has one solution equal to zero and 
two real solutions with different sign. If we assume the 
solutions of the characteristic equation in the following 
form 
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The value of the characteristic equation solution λ depends on the conditions of the 
beam leaning. For the beam freely leaned on its ends, according to (16), (12) and (19), the 
boundary conditions that the displacement function χ(ξ) has to satisfy are: 
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If we try to find a common solution of differential equation (20) in the form 
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Since the untrivial solution of the system of homogeneous algebraic equations is 
possible only when the system determinant, formed of the coefficients multiplying the  
unknowns, is equals to zero, that the condition results in the stability equation, the 
solutions of which correspond to the critical loads. The condition under which the system 
(28) has untrivial solutions reduces to the equation: 

 
 

Fig. 3. Critical pressure force 
for fore basic cases of a 
beam ends leaning 
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0)2)((sh )sin( 422444 =ν+νλ+λνπλππνλ , 

It is satisfied for λ = 0,1,2,3,..., and the minimal value of the critical load is obtained 
for λ = 1. The axial force coefficient (25), calculated for the obtained value of the 
solution λ , is then: 
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For the beam whose ends are constrained by the contour conditions, according to (17), 
(12) and (19) it will be 
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These contour conditions are reduced to the system of algebraic equations in un-
known constants Ci, i = 1..6  
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The condition under which the system (31) has untrivial solutions results from the 
equation 

 0
2

sin =⎟
⎠
⎞

⎜
⎝
⎛ λπ , (32) 

and the smallest value different from zero, for which the equation (32) is satisfied, is 
λ = 2. So the axial force coefficient is: 
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In the third stability case, when one end of the beam is constrained and the other is 
free, contour conditions (17) and (18) are reduced to the following form: 
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Algebraic equations obtained from the condition (34) are: 
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The condition under which the equations (35) have untrivial solutions in constants Ci, 
i = 1..6, is reduced to the equation cos(λπ) = 0, and the smallest value of the solution for 
which it is satisfied is λ = 1/2. According to (25), the smallest value of the axial force 
coefficient in this case of the beam stability is: 
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For the beam which is constrained on one end and freely leaned on the other contour, 
the conditions (16) and (17), expressed in displacement component χ(ξ), are: 
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According to (27), these conditions are reduced to the system of algebraic equations 
in unknown constants Ci, i = 1..6 : 
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The system of algebraic equations (38) will have untrivial solutions if the determinant 
of that system is equal to zero. That condition is reduced to the equation: 
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The value of parameter λ can be determined 
graphically, or through an iterative process, by 
changing the value of the parameter until the value of 
the functions on the left and right  hand side of the 
equation (39) become equal to the preset error. 
Unlike in the previous cases, in the case of the beam 
constrained on one end and freely leaned on the 
other, the value of the parameter λ depends on the 
shear coefficient k and trivially depends on the geometric coefficient r, Fig. 4. The 
minimal value of the parameter is defined with the formula λmin = 1.43 − 0.105k. 

Introducing the concept of the reduced beam length lr = l / λ, like in the case of 
homogenous beams, the parameter λ represents the slenderness ratio of the beam, so the 
critical pressure force can be calculated using the following formula 
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here 
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Change of axial pressure force coefficient ϕ = ϕ(k). 

   
 Fig. 5. Ends of the beam freely leaned Fig. 6. Ends of the beam constrained 

      
 

Fig. 7. One end of beam is constrained, Fig. 8. One end of beam is 
constrained, other is free  and other is freely leaned  

 
Fig. 4. Parameter λ = λ(k)  change 



342 Z. VASIĆ, V. RAIČEVIĆ, S. JOVIĆ 

Figures 5, 6, 7 and 8 show the change of the axial pressure force coefficient ϕ as a 
function of the shear coefficient k and the geometric coefficient r.  The value of the shear 
coefficient is from the interval from zero to one, and the value of the geometrical 
coefficient r, according to the formula (22), is defined for the ratio between the thickness 
of the outer layers δ and the thickness of the middle layer h in the interval 
( 1201 ≤δ≤ h ). 

We can see that the influence of the geometrical coefficient r on the  critical pressure 
force value is trivial, so it can be neglected in the process of solving the sandwich beam 
stability problems. In this way the solving of sandwich beam stability problem is reduced 
to solving the following differential equation 
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which rank is for two lower than the rank of the differential equation (20), and lower 
is the number of the contour conditions that must be satisfied. According to the formula 
(40), the critical pressure forces are defined by the formula 
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The shear coefficient k has a practical application for k < 1. The value of the critical 
pressure force coefficient ϕ, when the shear coefficient is equal to zero corresponds to the 
values of the same coefficient for the homogenous beam with the flexural rigidity 
D + B (h + δ/2)2. 
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ANALIZA STABILNOSTI TROSLOJNE GREDE PRIMENOM 
TEORIJE SAVIJANJA TROSLOJNIH KONSTRUKCIJA 

Zlatibor Vasić, Vladimir Raičević, Srdjan Jović 

Troslojne konstrukcije imaju dva tanka spoljašna sloja od elastičnog materijala i srednji sloj - 
jezgro relativno male krutosti u odnosu na krutost spoljašnih slojeva. Proračun ovakvih 
konstrukcija zasniva se na pretpostavci da se sva tri sloja istovremeno deformišu i imaju zajedničku 
neutralnu liniju koja se nalazi između spoljašnih slojeva. Ovakvim pristupom proračuna moguće je 
opisati, sa velikim stepenom tačnosti, kako naponsko i deformabilno stanje konstrukcije tako i 
lokalne uticaje kod svakog njenog sloja. Polazeći od hipoteze o izlomljenoj liniji poprečnog 
preseka [1], u radu je pokazan postupak odredjivanja kritične sile pritiska pri izvijanju troslojne 
grede sastavljene od dva spoljašna tanka elastična sloja iste debljine i srednjeg sloja zanemarljive 
savojne krutosti u odnosu na savojne krutostii spoljašnih slojeva, slika 1. Statičkom i energijskom 
metodom izveden je sistem diferencijalnih jednačina ravnoteže, kao i konturni uslovi koje rešenje 
tog sistema mora da zadovolji. 

Ključne reči: Troslojna greda, kritična sila pritiska, diferencijalne jednačine stabilnosti, konturni uslovi 


