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TWO-FREQUENCY NONLINEAR VIBRATIONS OF 
ANTISYMMETRIC LAMINATED ANGLE-PLY PLATE  
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University of Niš, Faculty of Mechanical Engineering, 
Beogradska 14, 18000 Niš, Serbia, Serbia and Montenegro 

Abstract. In this paper two-frequency vibrations of laminated angle-ply rectangular 
plate which is freely supported on its own edges are analyzed. The classical Kirhhoff 
theory is used and the vibration equations of Karman type are analyzed using the Airy 
function. Asymptotic solution in the first approximation is given. Numerical example 
includes analysis of the two-frequency plate vibrations under non-stationary conditions 
and under the activity of time-dependent external impulse. Amplitude-frequency and 
phase-frequency characteristics of plate under non-stationary conditions for different 
laminate characteristics are presented graphically.  

Key words: two-frequency nonlinear vibrations, laminated  plate, amplitude, phase, 
frequency, Method Крылов-Боголюбов-Митропольскиŭ. 

1. INTRODUCTION 

The problem of laminated composite vibrations has been the object of consideration 
during the past five decades. The equations of laminated plate vibrations are essentially 
identical to those for a single-layer orthotropic plate. Jones [6] gave the fundamental ba-
sis for tension-deformation state of laminated plates and differential equations of linear 
plates vibrations. Khdeir and Reddy [7] consider the free vibrations of laminated com-
posite plates, for different boundary conditions, comparing the Kirhhoff theory with the 
applied one. Tylikovski [10] considers stability of nonlinear symmetrical laminated 
cross-ply plates. The equation of vibration of a cross-ply laminated plate is derived by 
introduction of Airy function. Ghazarian and Locke [1] with the invoking of Galerkin 
method determine equations of laminated plate vibrations, which are simple for analysis.  

Very applicable asymptotic method of Крылов-Боголюбов-Митропольского [8] for 
solving of nonlinear vibrations continuum problems is applied in papers of K. Hedrih [2], 
[3], [4], [5], Pavlović [2], [9] and Kozić and Sl. Mitić [2]. Janevski [11], [12] analyzes a 
single frequency vibration laminated plate and considers influence of mechanical and 
other characteristics on the amplitude and phase of the asymptotic solution. 
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In the present paper two-frequency vibrations of a laminated plate under the time de-
pendent external force effect are considered. Also, the influence of mechanical and other 
characteristics on the amplitude and phase of the asymptotic solution is given in the first 
approximation.  

2. PROBLEM FORMULATION 

Components of the deformation tensor and components of the curvature of the plate 
middle surface are defined as follows: 

 

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

∂
∂

∂
∂

+
∂
∂

+
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

γ
ε
ε

=ε

y
w

x
w

x
v

y
u

y
w

2
1

y
v

x
w

2
1

x
u

}{
2

2

xy

y

x

, 

⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

∂
∂

∂
∂

−

∂
∂

−

∂
∂

−

=
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

κ
κ
κ

=κ

y
w

x
w2

y
w

x
w

}{ 2

2

2

2

xy

y

x

, (1) 

where u(x,y,t), v(x,y,t) are the in-plane displacements and w(x,y,t) is the displacement 
normal to the middle surface of plate. 

Membrane forces, moments of bending and torsion moment in the cross section along 
the axes can be presented as: 
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The relationship between the forces and the moments in the middle surface of the 
plate is expressed by the equation 
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Matrix of stiffness [C] for antisymmetric angle-ply laminates has the form:  
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and the matrices of extensional stiffness [A], coupling stiffness [B] and bending stiffness 
[D] are defined as:  
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Elements the matrix of stiffness are defined as 
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where Qij are the reduced in-plane stiffness of an individual lamina, and h is the thickness 
of the plate. 

Differential equations describing the plate vibrations are obtained from the condition 
that forces and moments in the coordinate direction are balanced dynamically 
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where ρ is the density of the plate material and � is the damping coefficient. 

From equation (3) the moment of bending as well as the moment of torsion 
components can be expressed in terms of the transverse displacement of the middle 
surface plate: 
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Introducing the function of tension )t,y,x(ψ=ψ  so that  
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the first and the second equation of the system Eq. (6) are satisfied. The condition of the 
deformation compatibility can be expressed as 
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and according to Eq. (1) it can be rewritten in the form: 
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From equation (3) it follows that 
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where 1]C[ − is the inverse of the matrix of stiffness [C]:  
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From Eqs. (8), (11) and (12) the components of the tensor of deformation can be 
expressed in terms of the function of tension 
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Substituting Eqs. (7) and (8) into the third equation of the system Eq. (6) and 
including Eq. (13), after its differentiation, into the left-hand side of Eq. (10) results in: 
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where q(x,y,t) is external disturbing force. The following denotations is used: 
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Eqs. (14) and (15) are differential equations of the plate vibrations. Solving the Eqs. 
(14) and (15), under known boundary and initial conditions, one can determine transverse 
displacements of the middle surface w(x,y,t) of a laminated plate, as well as the function 
of tension ψ(x,y,t). Also according to the equations (7), (8) and (13) all necessary 
components of the tensor of deformation, forces and moments are determined.  
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3. TWO-FREQUENCY VIBRATIONS OF ANTISYMMETRIC LAMINATED ANGLE-PLY PLATES 

Let us consider plate vibration described by the system of differential equations (14)- 
(15). Suppose that disturbing force q(x,y,t) is acting on the system. The force is 2π -
periodical of θ1(t) and θ2(t) with the constant amplitude *

1P  and *
2P  in the form  
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θ  (i = 1,2) is momentary frequency and ε is a small positive parameter. 

For the laminated plate, freely supported along edges, boundary conditions are  
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Let the initial conditions be 
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=  are arbitrary normal functions and p1j and q1j are 

real numbers. According to the boundary and initial conditions (Eqs. (19), (20)), in the 
two-frequency regime of the plate vibrations, the transverse displacement w(x,y,t) as the 
solution of the system Eqs. (14)-(15) is supposed in the form 
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where )t(f1 is the unknown function of time, which will be determined from the equation 
of vibration. 

Taking Eq. (16) into consideration, function L(w,w) is evaluated in the form: 
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and included in the Eq. (15). Solving of partial differential equation one determines the 
function of tension in the form 
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where λ=a/b is the ratio of the plate sides. 

Multiply Eq. (14) by w11(x,y)dxdy and w12(x,y)dxdy, after substitution of disturbing 
force equation (18) and expressions Eqs. (21)-(22) in its right and left-hand side 
respectively, to integrate over the plate surface ( )a,0(x ∈ , )b,0(y ∈ ). Substituting 
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after the integration, we will obtain differential equations in unknown functions ξ1(t) and 
ξ2(t)  
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The Eq. (24) represents differential equations of the forced vibrations of the plate in 
the two-frequency regime with the frequency given by the Eq. (25).  

For the system of forced vibrations of the plate described by Eq. (24) we can suppose 
[5] asymptotic solution with the boundary (Eq. (19)) and initial conditions (Eq. (20)) in 
the form of the infinite series [8]: 
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periodical functions whose arguments are: θ1 and ϕ1 with the period 2π. Amplitude and 
phase of the solution (Eq. (28)) can be found from the differential equations  
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where A1, B1, A2, B2, ...are unknown functions in "slowly-changed time" amplitude and 
phase. These functions can be determined from the supposed solution (Eq. (28)) in the 
equation (24) equalizing the coefficients of the same harmonics. Staying on the first 
approximation, the solution of equation (24) will have the form  
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where differential equations in the first approximation will be 
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4. NUMERICAL ANALYSIS OF THE FORCED VIBRATIONS OF LAMINATED PLATES  
UNDER NON-STATIONARY CONDITIONS 

The equations (31) are the first approximation differential equations of the 
asymptotical solution of differential equation (24). Numerical solving of these equations 
by means of the Runge-Kutta method (the fourth order), gives amplitude frequency 
characteristics of the two-frequency regime of laminated plate vibrations under non-
stationary conditions. The dependence of these curves on changing of same laminate 
characteristics is given in the next examples. 
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 300/-300/300/-300, E1/E 2=10, 
(1) 0.4h/0.1h/0.1h/0.4h , 
(2) 0.3h/0.2h/0.2h/0.3h  
(3)  0.2h/0.3h/0.3h/0.2h,   
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Fig. 1. Amplitude-frequency characteristics for different thicknes of lamina 
(ν1 – linear increasing of time, ν2 – constant) 

 300/-300/300/-300, E1/E 2=10, 
(1) 0.4h/0.1h/0.1h/0.4h,   
(2)  0.3h/0.2h/0.2h/0.3h,   
(3)  0.2h/0.3h/0.3h/0.2h,   
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Fig. 2. Amplitude-frequency characteristics for different thicknes of lamina 
(ν1 – linear decreasing of time, ν2 – constant) 
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 300/-300/300/-300, E1/E 2=10, 
(1) 0.4h/0.1h/0.1h/0.4h,   
(2)  0.3h/0.2h/0.2h/0.3h,   
(3)  0.2h/0.3h/0.3h/0.2h,   
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Fig. 3. Amplitude-frequency characteristics for different thicknes of lamina 
(ν1 – constant , ν2 – linear increasing of time) 

 300/-300/300/-300, E1/E2=10, 
(1) 0.4h/0.1h/0.1h/0.4h,   
(2)  0.3h/0.2h/0.2h/0.3h,   
(3)  0.2h/0.3h/0.3h/0.2h,   
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Fig. 4. Amplitude-frequency characteristics for different thicknes of lamina 
(ν1 – constant , ν2 – linear decreasing of time) 
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 ϕ=300, E1/E2=10,  
(1) ϕ/-ϕ/,  

(2) ϕ/-ϕ/ϕ/-ϕ,   
(3) ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ,   

 

100 150 200 250 300

0.5

1

1.5

2

2.5

a1 2

3

ν1=100+15t

1

ν1
100 150 200 250 300

0.2

0.4

0.6

a2

2

3

ν1=100+15t

1

ν1  
 a) b) 

Fig. 5. Amplitude-frequency characteristics for different number of lamina 
(ν1 – linear increasing of time, ν2 – constant) 

 ϕ=300, E1/E2=10,  
(1) ϕ/-ϕ/,   

(2) ϕ/-ϕ/ϕ/-ϕ,   
(3) ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ,   
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Fig. 6. Amplitude-frequency characteristics for different number of lamina 
(ν1 – linear decreasing of time, ν2 – constant) 
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 ϕ=300, E1/E2=10,  
(1) ϕ/-ϕ/,   

(2) ϕ/-ϕ/ϕ/-ϕ,   
(3) ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ,   
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Fig. 7. Amplitude-frequency characteristics for different number of lamina 
(ν1 – constant , ν2 – linear increasing of time) 

 ϕ=300, E1/E2=10,  
(1) ϕ/-ϕ/,   

(2) ϕ/-ϕ/ϕ/-ϕ,   
(3) ϕ/-ϕ/ϕ/-ϕ/ϕ/-ϕ,   
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Fig. 8. Amplitude-frequency characteristics for different number of lamina 
(ν1 – constant , ν2 – linear decreasing of time) 
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Amplitude-frequency characteristics of a four-layered laminate (300/-300/300/-300, 
E1/E2 = 10) for different thicknesses of lamina are shown in Figs. 1-4. Amplitude-
frequency characteristics at linear increasing and decreasing of external force frequency 
ν1 are shown in Fig. 1-2. Amplitude-frequency characteristics at linear increasing and 
decreasing of external force frequency ν2 are shown in Fig. 3-4. 

Amplitude-frequency characteristics of a laminate (φ = 300, E1/E2 = 10) for different 
number of lamina are shown in Figs. 5-8. Amplitude-frequency characteristics at linear 
increasing and decreasing of external force frequency ν1 are shown in Fig. 5-6. 
Amplitude-frequency characteristics at linear increasing and decreasing of external force 
frequency ν2 are shown in Fig. 7-8. 

5. CONCLUSIONS 

On the basis of the analysis of the amplitude-frequency characteristics for the  two-
frequency regime of laminated plate vibrations under non-stationary conditions we can 
conclude: 

- while increasing the thickness of the inside lamina (and decreasing thickness of the 
outside lamina), the amplitudes are decreasing, 

- while increasing the number of lamina, the amplitudes are decreasing, 
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DVOFREKVENTNE NELINEARNE OSCILACIJE 
ANTISIMETRIČNE UGAONE LAMELASTE PLOČE  

Goran Janevski 

U radu su analizirane dvofrekventne oscilacije ugaone lamelaste ploče slobodno oslonjene na 
svojim krajevima. Korišćena je klasična Kirhhoff teorija i diferencijalne jednačine Karman-ovog 
tipa su analizirane koričćenjem Airy-jeve funkcije. Dato je asimptotsko rešenje u prvoj 
aproksimaciji. Numerički primer obuhvata dvofrekventne oscilacije ploče u nestacionarnom režimu 
oscilovanja pod dejstvom spoljašnje vremenski zavisne sile. Amplitudno-frekventne i fazno-
frekventne karakteristike oscilovanja ploče u nestacionarnim uslovima za različite karakterisitke 
lamelata su date grafički.    

 
Ključne reči: Dvofrekventne nelinearne oscilacije,  ugaona lamelasta ploča, amplituda, faza, 

asimptotska metoda Krilov-Bogoljubov-Mitropoljskij. 


