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TWO-FREQUENCY NONLINEAR VIBRATIONS OF
ANTISYMMETRIC LAMINATED ANGLE-PLY PLATE
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Abstract. In this paper two-frequency vibrations of laminated angle-ply rectangular
plate which is freely supported on its own edges are analyzed. The classical Kirhhoff
theory is used and the vibration equations of Karman type are analyzed using the Airy
function. Asymptotic solution in the first approximation is given. Numerical example
includes analysis of the two-frequency plate vibrations under non-stationary conditions
and under the activity of time-dependent external impulse. Amplitude-frequency and
phase-frequency characteristics of plate under non-stationary conditions for different
laminate characteristics are presented graphically.

Key words: two-frequency nonlinear vibrations, laminated plate, amplitude, phase,
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1. INTRODUCTION

The problem of laminated composite vibrations has been the object of consideration
during the past five decades. The equations of laminated plate vibrations are essentially
identical to those for a single-layer orthotropic plate. Jones [6] gave the fundamental ba-
sis for tension-deformation state of laminated plates and differential equations of linear
plates vibrations. Khdeir and Reddy [7] consider the free vibrations of laminated com-
posite plates, for different boundary conditions, comparing the Kirhhoff theory with the
applied one. Tylikovski [10] considers stability of nonlinear symmetrical laminated
cross-ply plates. The equation of vibration of a cross-ply laminated plate is derived by
introduction of Airy function. Ghazarian and Locke [1] with the invoking of Galerkin
method determine equations of laminated plate vibrations, which are simple for analysis.

Very applicable asymptotic method of Kpsimos-boromo6oB-Murpomnonsckoro [8] for
solving of nonlinear vibrations continuum problems is applied in papers of K. Hedrih [2],
[31, [4], [5], Pavlovi¢ [2], [9] and Kozi¢ and SI. Miti¢ [2]. Janevski [11], [12] analyzes a
single frequency vibration laminated plate and considers influence of mechanical and
other characteristics on the amplitude and phase of the asymptotic solution.
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In the present paper two-frequency vibrations of a laminated plate under the time de-
pendent external force effect are considered. Also, the influence of mechanical and other
characteristics on the amplitude and phase of the asymptotic solution is given in the first
approximation.

2. PROBLEM FORMULATION

Components of the deformation tensor and components of the curvature of the plate
middle surface are defined as follows:
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where u(x,y,t), v(x,y,t) are the in-plane displacements and w(x,y,t) is the displacement
normal to the middle surface of plate.

Membrane forces, moments of bending and torsion moment in the cross section along
the axes can be presented as:
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The relationship between the forces and the moments in the middle surface of the
plate is expressed by the equation
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Matrix of stiffness [C] for antisymmetric angle-ply laminates has the form:

(A, A, O 0 0 By
A, Ay 0 0 0 By

Cl= 0 4
[C]= o |’ “)

|Big By O 0 0 D |

and the matrices of extensional stiffness [A], coupling stiffness [B] and bending stiffness
[D] are defined as:
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All A12 0 0 0 B16 Dll D12 0
[Al=|A;;, Ay, 0 |[,[Bl=| 0 0 By|,[D]=|D;, Dy 0 |. ()

Elements the matrix of stiffness are defined as

h/2
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where Qj are the reduced in-plane stiffness of an individual lamina, and h is the thickness
of the plate.

Differential equations describing the plate vibrations are obtained from the condition
that forces and moments in the coordinate direction are balanced dynamically
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where p is the density of the plate material and d is the damping coefficient.

From equation (3) the moment of bending as well as the moment of torsion
components can be expressed in terms of the transverse displacement of the middle
surface plate:

o*w o*w
My =Bjsryy — Duy -Dy, o
o*w o*w
My =BysYyy _Dlzy_Dzzya (7
o*w

MXy = B168X + B268y - 2D66 %
Introducing the function of tension y = y(x,y,t) so that
2 2 2
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the first and the second equation of the system Eq. (6) are satisfied. The condition of the
deformation compatibility can be expressed as
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and according to Eq. (1) it can be rewritten in the form:
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From equation (3) it follows that
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where [C] ! is the inverse of the matrix of stiffness [C]:
Al A, 0 0 0 B
A, A, 0 0 0 By
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From Egs. (8), (11) and (12) the components of the tensor of deformation can be
expressed in terms of the function of tension

* 82\[] * 82\[] *
& = A11V+A12§+B16Mxy ,
* 82\[] * 82\[] *
€y = A12_8y2 +Ay _ax2 +ByM,y s (13)
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Substituting Egs. (7) and (8) into the third equation of the system Eq. (6) and
including Eq. (13), after its differentiation, into the left-hand side of Eq. (10) results in:
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where q(x,y,t) is external disturbing force. The following denotations is used:
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Egs. (14) and (15) are differential equations of the plate vibrations. Solving the Egs.
(14) and (15), under known boundary and initial conditions, one can determine transverse
displacements of the middle surface w(x,y,t) of a laminated plate, as well as the function
of tension wy(x,y,t). Also according to the equations (7), (8) and (13) all necessary
components of the tensor of deformation, forces and moments are determined.
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3. TWO-FREQUENCY VIBRATIONS OF ANTISYMMETRIC LAMINATED ANGLE-PLY PLATES

Let us consider plate vibration described by the system of differential equations (14)-
(15). Suppose that disturbing force q(x,y,t) is acting on the system. The force is 2w -

periodical of 0,(t) and 6,(t) with the constant amplitude Pl* and P; in the form
q(x,y,t)=¢&(P, sin 0, - w,,(x,y) + P, sin0, - w,(x,y)), (18)
de, . . . .
where e =v;(t) (1=1,2) is momentary frequency and ¢ is a small positive parameter.

For the laminated plate, freely supported along edges, boundary conditions are

x=0

->w=0; M, =0, N, =0, ny =0;
X=a
(19)
y=0
—>w=0; My =0, Ny =0, ny =0;
y=b
Let the initial conditions be
2
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= (20)
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where wi(x,y) = sin(l—nx)sin(%y) are arbitrary normal functions and p;; and q; are
a

real numbers. According to the boundary and initial conditions (Egs. (19), (20)), in the
two-frequency regime of the plate vibrations, the transverse displacement w(x,y,t) as the
solution of the system Eqs. (14)-(15) is supposed in the form

2wy

w(x, y,t) = £, (t)sin(0)sin(22) + £, () sin(2) sin(ZY) Q1)
a b a b

where f|(t)is the unknown function of time, which will be determined from the equation
of vibration.

Taking Eq. (16) into consideration, function L(w,w) is evaluated in the form:
2 2 2\
Liw,w) =2 W IW o OW |
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and included in the Eq. (15). Solving of partial differential equation one determines the
function of tension in the form
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Y(x,y,t)=— " fy (‘f)fz(t)COS(—)Jr (f1 (t)+4£3 (t))COS(—)+
‘d2
;fz(t)cos(ﬂ)+;f (Vf (t)cos(—)+;f2(t)cos(—)+
3202 ay | b 3607 ay, b 12807 ay b
2
2 A ; £ (O (0 cos(2T) cos() - (22)
416a11+47» A A Ay, a b
1 22 3ny
—— f, ()f, (t)cos(—)cos +
416a,,+36)2-a,, +811* -a, 1% ( Peos(35)
2 2
Mkzl i k24) f, (t)cos(—)cos( Yy 4 7“(21‘21 8 kzz fz(t)cos(B)cos(zﬂ
hy; +2°hy, +A%h,, b " h; +4x°h;, +1617h,, a b

where A=a/b is the ratio of the plate sides.

Multiply Eq. (14) by wy(x,y)dxdy and wi,(x,y)dxdy, after substitution of disturbing
force equation (18) and expressions Eqs. (21)-(22) in its right and left-hand side
respectively, to integrate over the plate surface (x € (0,a) ,y € (0,b) ). Substituting

f1 ® fz ®

&)= » &)= (23)

after the integration, we will obtain differential equations in unknown functions &;(t) and

&b
&+ (912E,~1 =-2B&+ O‘1@13 + [31&:1@% +¢P;sin0,

(24)
&t w%@z =-2B&,+ 0‘2&% +Bz§12§2 +¢€P, sin0,.
where:
4
(’312 =Ln_4 g1 +k2g12 +k4g22 22 (ky +1°k 2@ +2 €) (25a)
ph a hy, +2%h;, + 2*h,,
4
03% L g1 +4)7 gy +16- 7»4g22 432 (k; +4- ” ) +A° €2) (25b)
pha® hy, +4-2%h;, +16-1*h,,
1 h ot (a2 1 4 2
oo e B (26)
16 pab“| h;; X°hy, 16 pa’b?( hy;  ’h,,

h = % 1
Pr=P. o a’b? [4-1111 4-x2-h22]
(27)

h =t (81 22 1 22
T T2 2 4 + 2 4 -



352 G. JANEVSKI

The Eq. (24) represents differential equations of the forced vibrations of the plate in
the two-frequency regime with the frequency given by the Eq. (25).

For the system of forced vibrations of the plate described by Eq. (24) we can suppose
[5] asymptotic solution with the boundary (Eq. (19)) and initial conditions (Eq. (20)) in
the form of the infinite series [8]:

2
&= ZAES)as Cos Yy +Sug'l)(faelaezaalaaza\l/l,\l/z)+
= (28)

2
2 (2
+ZS uj- >(r,61,62,a1,a2,w1,\v2)+... ,

s=1
where =gt is "slowly-changed time" and u{’(r.0,.a.¢), u{’(1.0,.2,.¢)).... are

periodical functions whose arguments are: 0, and @; with the period 2n. Amplitude and
phase of the solution (Eq. (28)) can be found from the differential equations

da

d_tS: Al (T,a1,22,01,92) + 67 A (1,21,85,01,05) + e
d (29)
:ﬁs = (DS _%Vs +8B§S)(T’al’a2’(p1’(p2)+82B(25)(T,al,az,(pl,(p2)+ ...... ,

where A, By, A,, B,, ...are unknown functions in "slowly-changed time" amplitude and
phase. These functions can be determined from the supposed solution (Eq. (28)) in the
equation (24) equalizing the coefficients of the same harmonics. Staying on the first
approximation, the solution of equation (24) will have the form

& =a;cos(vit+@;),&, =a,cos(vrt+0,), (30)

where differential equations in the first approximation will be
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4. NUMERICAL ANALYSIS OF THE FORCED VIBRATIONS OF LAMINATED PLATES
UNDER NON-STATIONARY CONDITIONS

The equations (31) are the first approximation differential equations of the
asymptotical solution of differential equation (24). Numerical solving of these equations
by means of the Runge-Kutta method (the fourth order), gives amplitude frequency
characteristics of the two-frequency regime of laminated plate vibrations under non-
stationary conditions. The dependence of these curves on changing of same laminate
characteristics is given in the next examples.
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Fig. 1. Amplitude-frequency characteristics for different thicknes of lamina
(vy — linear increasing of time, v, — constant)

63°U63°%3°U63° /H 2 ,@43/
+4, 3TkBUKBUKBITK/
45, 3BkBBRBIBkBIK/
+6, 3BkBBKBIkBBK/

m 4 3B |-
v,@833048w v,@833048w
%

dS

317

3k

3B

3B

433 483 533 583 v 633

Fig. 2. Amplitude-frequency characteristics for different thicknes of lamina
(v; — linear decreasing of time, v, — constant)
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Fig. 3. Amplitude-frequency characteristics for different thicknes of lamina
(v; — constant , v, — linear increasing of time)
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Fig. 4. Amplitude-frequency characteristics for different thicknes of lamina
(v; — constant , v, — linear decreasing of time)
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Fig. 5. Amplitude-frequency characteristics for different number of lamina
(v; — linear increasing of time, v, — constant)
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. 6. Amplitude-frequency characteristics for different number of lamina
(v; — linear decreasing of time, v, — constant)

Fig



356 G. JANEVSKI

0@63° /H,H @43/
4, o2/
5, OppAp/
+6, QTppTpApAp/

48 | V.@633. 48w 4B - Vs@633. 48w

Fig. 7. Amplitude-frequency characteristics for different number of lamina
(v; — constant , v, — linear increasing of time)
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Fig. 8. Amplitude-frequency characteristics for different number of lamina
(v; — constant , v, — linear decreasing of time)
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Amplitude-frequency characteristics of a four-layered laminate (30%-30%30%-30°,
E\/E,=10) for different thicknesses of lamina are shown in Figs. 1-4. Amplitude-
frequency characteristics at linear increasing and decreasing of external force frequency
v, are shown in Fig. 1-2. Amplitude-frequency characteristics at linear increasing and
decreasing of external force frequency v, are shown in Fig. 3-4.

Amplitude-frequency characteristics of a laminate (¢ = 30°, E;/E,= 10) for different
number of lamina are shown in Figs. 5-8. Amplitude-frequency characteristics at linear
increasing and decreasing of external force frequency v, are shown in Fig. 5-6.
Amplitude-frequency characteristics at linear increasing and decreasing of external force
frequency v, are shown in Fig. 7-8.

5. CONCLUSIONS

On the basis of the analysis of the amplitude-frequency characteristics for the two-
frequency regime of laminated plate vibrations under non-stationary conditions we can
conclude:

- while increasing the thickness of the inside lamina (and decreasing thickness of the

outside lamina), the amplitudes are decreasing,

- while increasing the number of lamina, the amplitudes are decreasing,
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DVOFREKVENTNE NELINEARNE OSCILACIJE
ANTISIMETRICNE UGAONE LAMELASTE PLOCE

Goran Janevski

U radu su analizirane dvofrekventne oscilacije ugaone lamelaste ploce slobodno oslonjene na
svojim krajevima. Koriséena je klasicna Kirhhoff teorija i diferencijalne jednacine Karman-ovog
tipa su analizirane koriccenjem Airy-jeve funkcije. Dato je asimptotsko reSemje u prvoj
aproksimaciji. Numericki primer obuhvata dvofrekventne oscilacije ploce u nestacionarnom rezimu
oscilovanja pod dejstvom spoljasnje vremenski zavisne sile. Amplitudno-frekventne i fazno-
frekventne karakteristike oscilovanja ploce u nestacionarnim uslovima za razlicite karakterisitke
lamelata su date graficki.

Kljuéne reci: Dvofrekventne nelinearne oscilacije, ugaona lamelasta ploca, amplituda, faza,
asimptotska metoda Krilov-Bogoljubov-Mitropoljskij.



