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Abstract. One considers a Lagrangian nonholonomic mechanical system X =
(M,L(x,y),05(x,dx), F;(x,X)), with y =X, whose evolution equations are (1.3). One
associates to system ¥ a canonical semispray S on the phase space TM, which has the
integral curves given by the evolution equations of . The Lagrange geometry of system X is
the geometry of semispray S” which is a dynamical system, on TM, intrinsically associated to
X. The obtained results are new and original.
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1. INTRODUCTION

In this paper we propose to study a new Lagrangian model for nonholonomic
mechanical systems X = (M, L (x,y), F; (x,y), Os (x,y)) in the most general case when
L (x,y) is a regular Lagrangian, F; (x,y) are the external forces defined on the phases space
M, and Q;=0, (c=m+ 1,...,n=dim M) are the kinematic nonholonomic constrains
defined on the configuration space M. ¥ will be named Lagrangian nonholonomic
mechanical system.

The classical nonholonomic mechanical systems are the particular cases of X, ob-
tained for L(x,y)=2T(x,y)=g,(x)y'y’, ¥ =" the kinetic energy of a Riemannian metric

ds* = gij(x)dxidxf and the external forces F; depend on the material points (x')e M.
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In the case when L (x,y) = F*(x,y), where F(x,y) is the fundamental function of a
Finsler space, X is a new class of nonholonomic mechanical systems — which have not
been studied yet. It is called Finslerian nonholonomic mechanical system.

Some particular properties of £ were investigated by us in the paper [10].

So, we study tangent bundle of configurations space M, Lagrangian scleronomic non-
holonomic mechanical systems X, canonical semispray and canonical nonlinear connec-
tion of system X, N’- canonical metrical connection, 4- and v- electromagnetic tensors,
gravitational field, examples: classical nonholonomic mechanical systems and Finslerian
mechanical systems. Consequently, the obtained results are new and original.

Recalling that the geometrization of holonomic mechanical systems was done by
Levi-Civita, [1], [3], [14], [17], while, in 1926, Gh. Vranceanu, by introducing the notion
of Riemannian nonholonomic space, realized a first geometric model for the non-
holonomic, scleronomic mechanical system. He considers as evolution the equations of
system, the Lagrange equations:

d or. oT 2
— ()= A
(=) pw >

G ag (%) + F(x) (L.

c"oi
o=m+l

where Q_(x,dx) =a_,(x)dx' =0 (c=m+1,...,n) give the kinematic constraints.

At the International Congress of Mathematicians from Bologna, 1928, Elie Cartan
showed that the equations (1.1) are not sufficient. He gives the geometrization of these
systems by fixing the normal distribution to the distribution O, = 0.

But, one proves that these new elements are not enough.

Mendel Haimovici [3] completed E. Cartan, supposing that the system of Pfaff equa-
tions Qs = 0 has the first derivate system identically null.

In his Ph.D. Thesis (1956), [5], R. Miron solved the general case in which for the sys-
tem O, =0, a number r < m of derivate subsystems exist. E. Cartan considered this case
unrecheable, because of the calculating difficulties [2].

The holonomic mechanical Finsler systems was studied recently by R. Miron and C.
Frigioiu [9]. They are given by X = (M,F(x,y),F{x,y)), where F’ "= (M,F(x,y)) is a Finsler
space and F(x,y), with y = X, are the external forces depending on material point (x') and
his velocity (i').

The general case was investigated by the second author in [13], [14].

We notice that the previous geometrical study can be extended to nonholonomic case.

So that, in this paper, we study Lagrangian nonholonomic scleronomic mechanical
systems

X=(M,L(x,y), F(x,),0,(x, ), (y =X), (1.2)
where L = (M,L(x,»)) is a Lagrange space, [7], F;(x,x) are external forces and the Pfaff
equations Qu(x,dx) = as(x)dx' = 0, (6 = m + 1,...,n) are the kinematic constrains of the system.

The equations of evolution of system ¥ are Lagrange equations (1.1)

n

d({oL) oL o .

o e Z A (x)aci(x)+E(x:y)’ i dx'

dt ay ox o=m+l y = 73
t

O, (x,dx) =a, (x)dx' =0,

(1.3)
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where A°(x) are Lagrange multipliers.

Finslerian nonholonomic mechanical systems are obtained for L (x,y) = F*(x,y), where
F (x,y) is the fundamental function of a Finsler space. Finslerian or Lagrangian non-
holonomic mechanical systems will be named Lagrangian nonholonomic mechanical
systems.

Evidently, we study only scleronom systems associating a canonical semispray S to
them, whose integral curves are given by the evolution equations (1.3) of .

The vector field S is a dynamical system on the phase space 7M. Then, the problems
concerning the equilibrium of X and the stability of its solutions can be approached on the
phase space TM, in a classical manner, [7], [14].

The geometry of the pair (S”,0, = 0) represents the Lagrange geometry of £ on the
phase space TM. We highlighted the fundamental geometric objects of this geometry as
N'-metrical canonical connection, its structure equations, etc.

2. THE TANGENT BUNDLE OF THE CONFIGURATIONS SPACE

Let M be a real differentiable manifold of dimension n. A point x € M has local
coordinates (x),(i = 1,...,n). The tangent bundle (TM,r,M) is the differentiable manifold
TM of dimension 2n, real and orientable. The points u = (x,y) € TM have the local coordi-
nates (x',)) and 7 (1) = x. M is called the configuration space and TM the phase space.

A change of coordinates on TM is given by

¥ =x%x",...,x"),det [Sij #0,

x]

. (2.1)
T
ox’ 7
. [0 0O .
The natural base of the tangent space T, (TM) is | —,— || ,(i=L...,n).
o'y )|,
The vertical distribution V:ueTM — V(u)c T, (TM) is locally generated by the
vector fields il,...,i .
ay ayﬂ .

There exists a vector field C = )’ % on TM, called the Liouville vector field, belonging
V

to vertical distribution V. C does not have singular points on the differentiable manifold
TM =TM \ {0} . Also, on TM there exists an integrable tangent structure J, given by:

7= @ad, (2.2)

ayi

J[i}:i;J i_ =0,J°=0. (2.2
axl ayl ayl

J has the property
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A vector field S € x(TM) with the property
JS=C (2.3)

is called a semispray. If M is a paracompact manifold then on 7M there exists semisprays.
Locally, a semispray S is expressed in the form:

S :yii—ZGi(x,y)i. 2.4)
ox' o'
The function G i(x,y) are called the coefficients of S. A change of coordinates (2.1)
change G ' as follows:

& o
=26’ —ﬁyf . 2.5)

2G'

The integral curves of the vector field S are given by
dx’' . ;
— =y ,—+2G'(x,y)=0. 2.6
it (x,») (2.6)
A nonlinear connection on TM is a regular distribution N :u € TM — N(u) e T, (TM)
supplementary to the vertical distribution V, that is:

IL(IM)=Nw)®V(u), YvueTM . 2.7)

A local base adapted to (2.7) is i,ﬂ
ox' oy

(i=1,...,n), where

) 0 ; 0
—=—-=N/(x,y)—. 2.8
o o (x,») o (2.8)
Its dual base is (dxi,Syi)| where
&' =dy' + N_’/'.dxj (2.8")

The functions (N}) are called the coefficients of the nonlinear connection N. It is
known that the integrability of N distribution is characterized by the vanishing of the d-
tensor field

L= oN, 3N, k (2.9)
S P
Autoparallel curves of the nonlinear connection N are given by the equations
dx’ - &
= =y = =0 2.10
a7 210

i

If S is a semispray with the coefficients Gi, then the functions N ’/ :% determine

the coefficients of a nonlinear connection.
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3. LAGRANGIAN NONHOLONOMIC, SCLERONOMIC MECHANICAL SYSTEMS

We will apply the theory from the preceding paragraph and the variational problem in
case of the scleronomic Lagrangian systems X.

The evolution equations of these systems will be given in the classical form (1.3), but
more generally, because the exterior forces F; (x,y) are considered as the components of a
d-covectors fields on the phases space TM, [14].

Let X (1.2) be a Lagrangian nonholonomic, scleronomic mechanical systems with the
evolution equations (1.3), (1.3'). £ determines, in a canonic way, a semispray S~ on the
phase space TM, which we will study in this section.

We denote with g;; (x,y) the fundamental tensor of the Lagrange space L'= (M,L(x,»))
1

and with g’(x,y) its contravariant. As it is known [7], g :EW
Yy oy

, rank"gl.j": n on

TM \ {0} and g has constant signature.
External forces F; (x,y) determine a d-covariant vector field and

OF. OF
== 3.1
L ayl ayj
is an antisymmetric d-tensor field, named elicoidal tensor of system Z.
The functions that determine the constrains of the system
O.(x,y)=a,(x))y', (c=m+1,..,n)
are scalars with respect to the changes of the coordinates on 7M.
So, a_;(x) are n—m covector fields on M and
Y A0, (x, ) (3.2)
c=m+1
is also a scalar function on 7M. The functions A°(x) are the Lagrange multipliers.
Let L be the Lagrangian
L) =L+ 25 A (00, (x, ). (3.3)
o=m+l
We have:
1° g, (x, 9) = g, (x,»)
o o dx dx .
2° L'| x,— |=L| x,— | on the distribution Q_(x,dx)=0.
dt dt
3° The integral of action of the Lagrangian L is
jol L (e, )dt = [ [L(x, )+ 17 (1), (x, )M (3.4)
4° The Euler — Lagrange equations of L":
6_f _i@i =0. y = d_xl
o' dtoy dt
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are given by

oL d oL _o(\° d 0,4 . odx

G 4L 00 G) 40 g =0,y =

ox' dtoy Ox dt oy dt
or by

A O a5 00|

ox' dtoy ox' ox' dt o'

oQ,

But —===a_(x).
o oi (%)

We obtain

L AP O s D Lseg ) =0
ox' dt\ oy ox' ox' dt

or, equivalently:

c - 6 . ) ) . i
O _dfoL) o O, i o o |10 g, = (35
ox'  dt\ oy ox' 7 ox’ ox'  ox’ dt

The Lagrangians L, (3.3) and L are equivalent if corresponding solutions of Lagrange
equations:

oL _doL_ oL _doL _,

ox' dioy  ox di oy
are equal and g, = g;

Theorem 3.1. The Lagrangians L(x,y) and L (x,y)=L(x,y)+L\’a,y" are equiva-
lent if and only if one of the following equations are satisfied.

o o 6 . )
L P U] i BCL 'R (3.6)

ox' 7 ox’ ox' o’
d(A°Q,(x,dx)) =0 (3.7

Proof. The first method: The Lagrangians L(x,y) and L (x,y) have the property
1 oL 1oL .
8i TS A AT hAaiaT  Si

20y'007 20y'0y

(3.8)

From (3.5) it results that the Euler - -Lagrange equations for L and L hold if and only if

o °c oa_. oOa.. )
67». aw.—i.atm.+7\‘6 A y'=0.
ox' ox’ ox'  ox’

Deriving with respect to )/, we obtain equations (3.6).
The second method: The Lagrangians L(x,y) and L (x,y) = L(x,y)+A°Q,(x,y) are
equivalent if and only if 1-form A°Q4(x,dx) is closed (theorem of Carathéodory) [14].
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So
d(A°Q,(x,dx)) = d(?»"acjdx") =0 3.9

We have, exterior differentiating:
1| or° o\° Oa, Oa ; ;
d\°Q (x,dx))=—| —a, ———a,; +\° | —=——= | |dx" Adx’
(A0, (x,dx) 2[ ox' 7 ox’ [ ox' ox’ H

which are the equations (3.6).
Using Theorem 3.1, we can introduce:
Postulate. The equations of evolution of the Lagrangian nonholonomic,scleronomic
mechanical system ¥ = (M, L (x,), F; (x,y), Os (x,y)) are:
d oL oL . dx!
—————=F(x, )+ X’ (0)a,(x), y' =—, 3.10
oy or (6, 1)+ A7 (X)ag (x), ¥ 7 (3.10)
where the multipliers A°(x) satisfy the equation

d[L° (x)0, (x,dx)] =0 (3.11)

4. THE CANONICAL SEMISPRAY AND NONLINEAR CONNECTION OF SYSTEM X

The canonical semispray S~ of the system

X=(M,L(x,y), Fi(x,y),05(x,)) (4.1)
is a vector field S” on the phase space
S =y i—ZG*i (x, y)i_, 4.2)
ox' oy’

whose integral curves are given by the evolution equations of the system X, (3.10), (3.11).
But the equations (3.10) can be written in the following form

‘Zfl +2G' (x,%j - %[F’ (%.2)+ 2% ()l (x.0) .0 = %, (4.3)
where
26'(5,1) =5’ (o aj.z; P ] (4.4)
F'(x,9)=g"(x,y)F;(x, ) (4.5)
ag(x,y) = g" (x, y)ag(x) . (4.6)
Let the system of functions be
2G" (x,) =2G' (x,y) —%[Fi(x» Y)+ A7 (x)ag (x, )] . 4.7)

Then
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Theorem 4.1. The system of functions G"(x,y) from (4.7) are the coefficients of a
semispray determined only by the Lagrangian nonholonomic mechanical system .
Proof. Since

~i ox . o

*) 2G =—2G' ——y’

©) ox’ ox’ 7
and F',A°a. are d-contravariants vectorial fields, it results that G*[(x,y), from (4.7) is

transformed by (2.1) in the same manner as Gi(x, ¥).

The semispray S” (4.2) with the coefficients G™ from (4.7) and the multipliers 2’
verifying (3.11) is called the canonical semispray of the system X.

The vector fields S” defines a dynamic system on 7M. It has the following important
property:

Theorem 4.2. The integral curves of the canonic semispray S are given by the evolu-
tion equations of the system X (4.3)*, (3.11).

Proof. The integral curves of S are given by

di:yiadiz _2G*i P
dt dt

A’ verifying (3.11) and G” from (4.7).

These equations are equivalent to (4.3), (3.11), q.e.d..

We define the Lagrange geometry of system ¥ as being the Lagrange geometry on the
phase space TM of the canonic semispray S

The nonlinear connection N of S” is called canonical nonlinear connection of system X.

Theorem 4.3. The canonical nonlinear connection N~ of system %, has the coefficients:

w 0G" . 1(0F' oa
N =N o e K (4.8)
E ayj E 4 ayl ay/
Theorem 4.4. The Berwald connection of system X has the coefficients
N 1( &°F' od’
B, =B, | - 4.9)
4l oyloy oy’ oy
W ON, oN; .
Corollary 4.1. The weak torsion t; =—-———= of N vanishes.

The nonlinear connection N on TM gives a direct decomposition of tangent space
T.(TM):
T.(TM)=N u)®V(u), YueTM (4.10)

Therefore, it admits a local adapted basis 6—,£ , where
ox' oy

*

i j
S _0 N0 8 O ;000,10 4.11)
o' ox' oy’ &' 4l o o' oy
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with i:i_N;/i

& o' oy
Dual basis (dx',8 y') has 1-forms & y':
1

8y =dy' +N;'dxf =& —— 6F. +k°% dx’ (4.13)
4\ oy’ oy’

and where 8y’ =dy' + Nidx’ .
Corollary 4.2. The integrability conditions of nonlinear connection N "are given by
g 0N AN

KT T g
et

5. N" - CANONICAL METRICAL CONNECTION

Let" "and"|" h and v covariant derivates defined by a N - linear connection, [7].

The first author, in [6], [7], proves: .

Theorem 5.1. There exists only one N - linear connection CT(N")=(L},C}), having
the properties.

. =0, g;],=0
By &l (5.1)
Ty =L, -L;=08,=C,—-C; =0,

J

*

h 08 g g 2% e, o
wnere gij]k T ol gl — 8islji>8ij lx —y 8 =8k -
Theorem 5.2. The connection CI'(N *) has the coefficients given by the generalized
Christoffel symbols:
I =lgih 5 gy " S*ghk _ S gy
*2 af ) &
(5.2)
Cco = 1 4 0g)y + 8 _ 08 jx
Jk 2 ayk ayj ayh

This N - linear connection CT (N *) will be called the N " - canonical metrical connec-
tion of Lagrangian nonholonomic mechanical system X.

CT'(N *) is related to N-metrical connection of Lagrange space L = (M,L(x,)),
CT(N)=(L,,C},) where

PR .
2 dx ox/  ox
C = L (agh/ + 8 08 j j

Jk E ayk ayj ayh

(5.2
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by the relations from the following theorem:

Theorem 5.3. We have:

L'y =Ly +Uy,.C"y = Cy (5:3)
where
u;k = gih[Kl[cChjl + K;'Chkl _Ki[lcjkl] (5.3
j j
ki =L 50 0 (5.4)
4 6yl 6yl
3
and C,, is Cartan tensor of L, C;, = la—Lk .
T 4o'oyloy
Proof. With notation (5.4) we obtain
8—.:i.+1<,.’i, (5.5)
ox' ox' oy
Then,
5 gy 9dgy +K! gy,

Sxf ot g '
Substituing in (5.2) we have:
agjk

1 og hj ]
ayl

Yo qi iyl
L jk_ij+5g (K, Oyl

g
+K; - K,
y

or
L*ijk = Lijk +gih [Klichjl +Kjl'Chkl _K;Z,Cjkz]-

The fact that C”, = C!, results from (5.2) and (5.2)).

Now, we can use the /- and v-covariant derivatives [7] with respect to connection
CT'(N ). Also, we observe that in the particular case of nonholonomic mechanical sys-
tems, which have the properties

gij(xay) = g,y(x),Fi(X,y) =F/(x).
We have A°a_,(x) with %(k“aw) = 0. Consequently, we obtain the tensors K/ =0
y

and U, =0 . The connections CT(N") and CT'(N) have the coefficients L, =L, ,
and C", =C}, =0.
In the general case, the Ricci identities, with respect to N " canonical metrical

connection CI'(N")=(L",,C%), for a d-vector field X “(x,y) on TM, are given by

jk>
i i _ ylp* i ¥l i *]
X -xi.=x'R', -XxX1",-X"| R",
|h ‘/( ‘k |h |[
X, -Xx"|.=x'P" -Xx'c" -X| P’ (5.6)
I k *‘ - 1 hk I hk I hk .
h klh 1

i i lgi i !
X' |h|k -X' |k|h:X Sl’hk -X |1 S
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. * . . . *
where d-tensors of curvature and torsion of N - canonical metrical connection CI'(N ) are:

* k] *

*i oL Jk oL Jh *ioopi *| * ¥l
Rjkh ZV_V"‘L jkL jh_L th utC le kh
i aL*ijk i i p*l
Pj kh = ayh _th\k +le})k ! (5.7
; 6C’:k 6Ci.,, ; ;
S :aJ}_;,_a)}_)l{+Cj'kCllz _Cj'hczk
and
T, =0,8,=0,C;=C,,
. ONT FNT W (5.8
R’jk: . _k,P’.:aN -L;

dx* Sx” * ot *

In these formulas we use the formulas (5.3), (5.4), (5.5). The formulas (5.7) and (5.8)
and (5.3), (5.4) and (5.5) can also be obtained directly using

le — le’
Ly =L, +U,, (5.9)
Cli = Cis.

We have the following result:
Theorem 5.4. The structure equations of the N - canonical metrical connection of
nonholonomic mechanical system X are given by
. O
d(dx")y—dx' no, =-Q
* i * I *j (1)*l
d@y)-0y re/ =-Q , (5.10)
d(mjl)_mjl A (D;‘i — _Q;‘i’
% " )
where Q and Q are 2-torsion forms

(0)*i *; i *
Q =Chdx A8y
o 1 (5.10")
Q = ER*ijkdxj ~dx" + P dx A8y
and Qj." are 2-curvature forms
*i 1 *i *i * 1 i * * "
Q) ZERJ. wdx ndx" + P dxt Ay +§Sj PROZAN R (5.10")
R, P",.S,,, being d-curvature tensors of connection CT(N ), [7].

Bianchi identities satisfied by the N "~ canonical metrical connection CT (N *) are ob-
tained from the structure equations (5.10) by exterior differentiation.
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6. H- AND V-ELECTROMAGNETICS TENSORS

The canonical metrical connection CT'(N *) of the neolonomic mechanical system X
allows to determine the /- and v-deflection tensor fields [7]:

D; = yfj = yhlj;; —N’Ti

J

6.1)
[ RN h i
d;=y"[;=98,+)y'C".
Using the formulas (5.3), (5.3') for the coefficients L, and C;; we obtain
. | . 0 0g,; og,;
D-z/:vatv_’__yrglh[Ki g};a +K£ g/;] _K]i glj]:
T2 T oy e)Y oy
= ySLiy' +ysgih[K;Chsz +K5{Chjl _Ki[zcgz]
and
i i s i i s _ih
d;=8,+y'C;=8,+y'g"C,.
Then, the covariant deflection tensors are given by:
_ ro_ s ri s 1 1 1
{Dij = girDj =&y L.vj +y (KjCisl +K.scg/l -K; Csjz) 6.2)
dij = gird‘/r' =& +ySCvij'

~ But, these tensors satisfy fundamental identities from (5.6) for Liouville vector field
. Then, we have:
Theorem 6.1. h- and v-covariant deflection tensors D, and d,; satisfy the identities:

D.-D. =yR.. —dR;
ik ik j y sijk ir™*jk
D,-,- |k _dik |j = ysps;k _DisC;k _disI)j):fs (6.3)

dy | =dy ;= "S-

These identities give the Lorentz equations for electromagnetic tensor fields for
Lagrangian nonholonomic mechanical system X.
Definition 6.1. The following d-tensors

1
% :E(Dz‘/ -D;)
. (6.4
ij :E(dij _dji)

are h- and v-electromagnetic tensors of X.
From (6.2) we see that v-deflection tensor d;; is symmetric. Therefore we have:
Proposition 6.1. The v-electromagnetic tensor f; of nonholonomic mechanical system
Y vanishes.
We study only h-electromagnetic tensor 7, for determining the Lorentz equations

that are satisfied.
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We observe that the d-tensor 7, do not coincide with the elicoidal tensor F; from
(3.1). So, from (6.2), F; is given by

Jj sl

1 r r S S
Fy =31 Ly~ g, L)y + 2K ,Cy K C,)y') (6.5)

But, from (5.4), we deduce:
j J
K/ = 1 6L +A° %
4\ o o'

and we obtain

1 s r r 1 s aFl c aav’s aF[ &) aai
‘fl;' ==y (girLéj _gersi)-i__yA |:( +A jcisl _( +A CjSl ?

2 2 \a " o Ry

where F' = g"F, and C,

isl

, ) ) 1 a 1 1 a 1
Fo=Ly (g,,L;.—g,L;,.)+l OF e |g [ o % g | (66)
]| CTRR Y b YT

= g,C,; . Thus

From Theorem 6.1, (6.4) and Bianchi identities for CI'(N") we have
Theorem 6.2. The h-electromagnetic tensor F,; of nonholonomic mechanical system
2 with respect to CT(N *) satisfies the following generalized Maxwell equations:
C
F. +F . +F. ==Y »R",
glk okl KL Zy H* (6.7)
]:ij |k +-7:jk |i +‘7:ki |j:0‘

We remark that, if the electromagnetic tensor Fy does not depend of F; and a;, then

it is given by
1 S r r
]-:j = Ey (girLAj - gersi) (68)

Thus, we have N} = N! and the Maxwell equations are those that appear, in general,

in Lagrange spaces theory. An easier method of determination of Maxwell equations is
given by the almost hermetian model of nonholonomic mechanical system X.
So, we consider the 2-form

0=g,5y Adx’ (6.9)
Using 1-forms §°y' from (4.13) and (5.4) or from the equivalent formula
8y =8 —K'dx' (6.10)

we have
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Theorem 6.3. The 2-form 0 has the following properties:

1° 0 depend only on nonholonomic mechanical system X.

2° 0 is an almost symplectic structure on phase space TM.

3°0 depends on symplectic structure of associated Lagrange space L' = (M ,L(x,y))

0 . .
0=g;0" ndx’.
0
The relation between 0 and 6 is given by
0 . .
0=0-g,Kdx’ ndx’. (6.11)

Proof. 1° In (6.9) the fundamental tensor g; and the nonlinear connection N " of £ appear.

. . 0 g
2° 0 is 2-form of rank 2n with det J

8
TM. 1t is an almost symplectic structure on the manifold given by the phases space.
3° Using &°y' from (6.10) in the expression of 2-form 6 we obtain (6.11).

#0. So, 0 is a nonsingular 2-form on

In order to study the case when 0 is a symplectic structure, we will examine the exte-
rior differential of 6.
Proposition 6.2. The exterior differential of 2-form 0 is given by

0= _%[d (g,K} — g, K})ldx' ndx’ (6.12)

0
Proof. We exterior differentiation (6.11) and remark that 6 is a closed 2-form, so

0
d 0 =0 and we obtain (6.12). O
Since we have

* *

1 6 s s 8 s s
(g.st} - g.y[Kj ) +§(gsth - g.ijh )+

Y
6* s s h i j 1 a s S\S* L h i j

+F(gsiKh — 8K )ox" A dx Adxj]‘lrgy(g.in —8,K3)8 y' ndx' ndx’
. ;

do=
(6.13)

Thus we state:
Theorem 6.4. The almost symplectic structure 0 is integrable if and only if the non-
holonomic mechanical system X has the properties:

6*

—(g, K —-g,K)=0,
25Kl ~8.K)
0 ; s . :
— (g,K —g,K;)=0, Z being cyclic sum.

oy" ijh

Finally, we observe that the exterior equations d (d0) =0 give us the Maxwell equa-
tions for nonholonomic mechanical system X. So, it is sufficient that to evidence the
electromagnetic tensor F, in equations (6.12).

y

Then, d (d6) = 0 give the generalized Maxwell equations (6.7).
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7. THE GRAVITATIONAL FIELD

The nonholonomic mechanical system %= (M, L (x,), F; (x,y), Os (x,)) has the
gravitational potentials given by the system of functions

L1 2L
o200y

We remark that this field does not depend on the external forces F; (x,y) and on the
nonholonomic constrains Qs(x.y) = ds(x))". So that the gravitational potentials g (x,y)

(7.1)

do not depend on the Lagrange multipliers A7 (c=p+1,...,n).
This fact results from
g =g;(x, ), (7.1
where g;; (x,p) is the fundamental tensor of the Lagrange space associated to system X,
L= (M,L(x.y)).
The Theorem 5.1 shows that the canonical metrical connection CT'(N') = (L;;,C;k)
has the properties
g = 0, g,;,=0 (7.2)
and it is unique in the following conditions:
T, =0,8,=0.

We rewrite the coefficients of the connection CI'(N") :

I _lgih (8 &jn " S*gkh _ 0 gjk}
kT j
2

Sx* ox’ Sx" (73)
cl =Lg (ag’f B _ ag’)k J
2 oy oy’ oy
where L7, is given by (5.3)
L =Ly + Uy, (7.4)
u}k =g" (Klichjk + K;'Chjl _Klicjkl)
We apply the Ricci identities to the fundamental tensor g; and we use (7.2):
0=Ry, +R;, =0 75)
B+ Py = 03y, + 8 1y, =0
where
R;‘kh = glei*lkh;Pz';ch = gle*lkh; (7.5

.
Sijkh = glei kh
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We must calculate the curvature tensors R;’ kh,P;"kh by means of the curvature tensors
of the connection CT'(N).

So, we suppose that CI'(N) is the metrical connection of the associated Lagrange
space L". Therefore the formulas (5.2") hold:

i % gih(sg,,k L5 Sg,kJ

s &/ &t - Sx”

(7.6)
C=2g" (ag”f‘ En % ]
S22 o o oy
and
i =0,8; ,=0 (7.7)
T". =0,8" =0 (7.7
R + Ry = 0, By + Py, = 0 7.7
Sy +S i = 0. ’
The Ricci tensors of CT'(N) are:
R; = Rihjh; Py = Pihjh: Py = Pz‘hhj (7.7")
and the curvature scalars are:
R= gi"Ri/.,S = g""SU. (7.7")

The following theorem is known [7]

Theorem 7.1. The Einstein equations of the Lagrange space L'= (M,L(x,y)), n>2,
corresponding to the canonical metrical connection CU(N) are given by

1 0 H , 01
Rij_ERgij :kTij, Py :kTij
(7.8)

1 ov 02
S, —ESg,-j =kTy, B =—kTj;
H 4
The energy momentum tensors 7;,7; satisfy the conditions (5.5) from §5 of the
book [7].
Using the previous theory we determine the Einstein equations of the Lagrange space
L= (M,L’(x,y)) named the Einstein equations of the nonholonomic mechanical system X.

Theorem 7.2. The Einstein equations of the nonholonomic mechanical system ¥ corre-
sponding to the canonical metrical connection CT(N") for n>2 are the following:
* 1 * H* ' sk 1 :
R, —ER g;=kTy, B, =kTj
* (7.9)
1

14 2
Sij_ESgij =kTij, sz =—kTij
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where RU R R, ,}3] ,S, are the Ricci tensors of the system Z, R" and S are the scalar curva-
oY Vo1t 2"
ture, T;,Ty,Ty, Ty are the energy momentum tensors of the system X and % is a constant.

.
P, and the curvature scalars R, we con-

CE

In order to determine the tensors R, P/,

sider the transformation of nonlinear connection N — N given by (4.8)
N;=N'-K (7.10)

Then the connection CI(N) =(L,,,C’,) is transformed into the connection LI'(N") =

& é;k) given by (7.10) and its coefficients are:

Jk>

Tio o 7i s i
L,=L, +KijS,

Cli = Ciy (7.11)

We observe that LT'(N") is also a metrical connection with respect to g;;. So, we have

8itv = 8w + & Iy Kis & 1= 85 I (7.11%

A new transformation LT'(N") - LT(N") given by

N;i - N
L*/'k = l_’_l/'k +gih (K;Chkx _K;C'jkv) (7.12)
C:/Ic = Cj‘k

determines, also, a metrical connection with respect to g;;.
Consequently, we have the following succesive transformations
7.11 7.12

CF(N)(—>)ZF(]\_/)(—>)C*F(N*) (7.13)
and, by their composition, we obtain:
CI(N)=(L,,C;,) > CT(N)=(L},C).
The curvature tensors have the same transformation of connections (7.13).
Theorem 7.3. The following formulas hold:
N;=N;-K}.L;, =L + K;C,

Js?

5ik = C;k
T, =C\K;-C,K;,5, =0 (7.14)
P. =P —{aK; +C} K%}
Jjk Jjk 5yk ks> j
{@ [ W, g 2, ]K K K 6K;} .19
oy oy ox" ox’ oy oy

and



18 R. MIRON, V. NIMINET

Di _ pi i i s h rys
Ry, =Ry, + Py — Py K, + 5, K, K,

Py =Py + Sy K, (7.16)
S ;kh = S;'kh
Last formulas can be established directly from complicated calculus.

Theorem 7.4. Also, we have the formulas:

Bjk =8 (K, Cus — K, C/k.v)
and
R;llfh = R;‘kh + S‘/l'kh >
P;:h = ﬁ/lkh + ﬁ;klx (7.18)
S;/ih = S,/l'.kh
where
B}th

_ pi i roi r pi i r i pr
= Bjk i _ij + Bjkcrh - thBrk +Bjrckh + erpkh

S =B

Jkh JkTh

T,

Jkh

ropi ropi i i pr
+ BjkBrh - thBrh + Ber;{h + erRkh

(7.19)

We consider also that these formulas can be established directly.

In order to determine the relations between the curvature tensors of N - canonical metrical
CI(N") and N-canonical metrical connection CI'(N), we must eliminate N,R,P,S from
(7.14)—(7.19).

Theorem 7.5. The curvatures of the connections CT(N") and CT(N) are related by
the following formulas:

Rj'/l(h = R;‘kh + S;‘kh >

ijh = P/lkh + Hj‘kh (7.20)

Qi
Sjkh _Sjkh

where
* i s i s h < qi
R A e (7.21)
ijh = S/'kah +H/'kh

Now, we can determine the Ricci tensors and the curvature scalars.

Theorem 7.6. The Ricci tensors and the curvature scalars of the connections CTU'(N b}
and CTU(N) satisfy the following relations:
* _ *h. ' Sk _ A *h
R, =R, +S,; b, = F,+I1,

iho L

"ok " * *
P ="P +II;S; =S, (7.22)

i R

R =R+g"s,.S =g"S,

ijh > ij
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We also have

Theorem 7.7. The Einstein equations of the nonholonomic mechanical system
=M, L (xp), F; (x), O (x.)) with respect to the N - canonical metrical connection
CT(N") (7.9), for n>2, are given by:

ijh

1 I H
Rij _ERgi/"'{S'I _Eg rx};lg;'j}:kTij

1*

P+, =kT,;

ijh ij

' "

2*
*h
P, +TI) = kT, (7.23)

ij ihj —

l Vv
Sy =558 =kTs

where § " and IT" are expressed in (7.21) and (7.19).
Remarks:
1. In (7.23) complementary terms to the Einstein equations of the Lagrange space
L" appear. The external forces F; (x,y) and O (x,y) are those that determine these
terms.
2. Evidently, it is not simple to obtain the Einstein equations (7.22) of the system X, but
this procedure is an algorithm imposed by the transformations of connection (7.13).
In Lagrange geometries, there are many situations where the calculus of the Ricci ten-
sors from the Einstein equations is very difficult. The most eloquent example is given by
the Randers or the Ingarden spaces [6].

8. EXAMPLES

8.1. Classical nonholonomic mechanical systems

We consider nonholonomic scleronomic mechanical systems
L =(M,L(x,), F(x),0,(x, 7)) 8.1

where L (x,y) is given by the kinetic energy
P . dx’
L(x,y)=g;(x)y'y’, y' = > (8.2)

g, (x) being the fundamental tensor of a Riemann space R'= (M.g;(x)), the external
forces F; (x) give a d-covectors field on the base manifold M and Q, give the cinematic
constrains Q. =a_x' (c=m+l,..,n).

The space R" will be named the associated Riemann space of the system X. It coin-
cides with the space L" = (M,L(x,y)) whose fundamental tensor is gij (x) (depending only
by the material points x of X).

We observe that the elycoidal tensor of the system X, F; given by (3.1) vanishes

F;(x,»)=0 (8.3)

The Lagrangian L*(x, y) from (3.3) has the classical form:
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L(x,)=g;(x)y'y’ +1°(x)ag,(x)y' (8.5)

n
(2 (a2
where A°a,; means Z Alag; .

o=m+l
So, we have
Proposition 8.1. The Lagrangian L*(x,y) of a classical nonholonomic mechanical sys-
tem ¥ has the form of a Lagrangian from electrodynamics where the electromagnetics
potentials A; (x) are given by
A1) =27 (), (x) (8.6)

Proposition 8.2. The Euler — Lagrange equations of the Lagrangian L*(x, V) are given by

oL dolL o L00. d ..
L2 0,1 L) (8.7
ox' dtoy' ox ox' dt
or
: ba,
O _doL (O T, po@a Duyig 8.7)
ox' dtoy’ ox' 7 ox’ ox' ox’

Proposition 8.3. The Lagrangians L*(x,y) and L(x,y) are equivalent if and only if the
Lagrange multipliers \°(x) satisfy the exterior equations:

d[ °aIndx' =0 (8.8)

Evidently (8.8) give restrictions for the multipliers A°.
We have

Theorem 8.1. The equations of evolution of the nonholonomic mechanical system X
are:

a’x ax’ dx* 1 -
7+ij(x)zz=5g [F, () +2%a, (x)] (8.9)

I, (x) being the Christoffel symbols of g, (x) .

Theorem 8.2. The canonical semispray of the system X is given by
s :yii—ZG*i(x,y)i (8.10)
ox' o'
where

26" (x,y) = Ty (1) —%(Ff(x) 27 (x) &.11)

F_"/.k (x) are the Christoffel symbols of the associated Riemann space R" and

F'(x)=g"(X)F, (x),a. (x) = g" (x)a,, (x) .
The Theorem 4.2 leads to:
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Theorem 8.3. The integral curves of the semispray S~ are the evolution curves of the
nonholonomic mechanical system .
OF' . .
Because the tensor Fvi vanishes, the Theorem 4.3 gives us
y
Theorem 8.4. The canonical nonlinear connection N* of the system S coincides with
the canonical nonlinear connection N with the coefficients N’ =T", (x)y* of the associ-

ated Riemann space.

So, the nonlinear connection N~ does not depend on the external forces F; (x) or on
the nonholonomy forces Qs (x,)). This property simplifies the whole theory because:

N - canonical metrical connection CI'(N *) has the coefficients

L, =T (x),C}, =0.

So, CI'(N ) is a Cartan connection [7].

8.2. Finslerian nonholonomic mechanical systems

The Finslerian holonomic mechanical systems were studied in the paper [9]. But, the
Finslerian nonholonomic mechanical systems have not been studied until now.

Their geometrical theory appears here for the first time. It is a particular case of the
theory from precedent paragraphs.

Let a Finsler space F'=(M,F(x,y)) be. Its canonical Cartan nonlinear connection N has the
coefficients N'/F " is endowed with N-canonical metrical connection CT(N) = (F,C» 7]

The function F?(x,y) is a regular Lagrangian and the fundamental metric tensor

2 2

gy | OF" has the property

2o/
F?(x,y) = g;(x, )y'y’ (8.12)
Then, the absolute energy of the space F" is exactly (8.12) and its kinetic energy is

dx dx_dx' dx’
Fz (X,Z) = gij(xa_)

—_—— 8.12'
dt” dt dt ( )

Definition 8.1. A Finslerian nonholonomic mechanical system is a quadruple:

S =(M,F?(x,), F(x,),0,(x, 7)) (8.13)

where F*(x,y) is ‘the kinetic energy (8.12") F(x.y) are the external forces and
Oo(x,dx) = agi(x)dx', (6 =m + 1,...,n).
The Pfaff equations
0,(x,dx) =a, (x)dx' =0, (c=p+1,..,n) (8.14)

determine the kinematic nonholonomic constrains of the system X.
The elycoidal tensor of the system is
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OF. OF
= — (8.15)
oy oy’

Let the Lagrangian be
L (x,3)=F(x, )+ A7(0)0, (x,») = F*(x, ) + 17 (x)a; (x))' (8.16)

We observe that:
1. The Lagrangian L(x,y) of the Finslerian nonholonomic mechanical system X is
not a homogeneous function with respect to y'.
2. The Lagrangian L(x,y) has the fundamental tensor g*ij equal with the fundamen-

tal tensor g;; of Finsler space F":
g;(x,y)=g,(x,») (8.17)
3. The Euler — Lagrange equations of L(x,y) are:

OF* d oF* _o\° oN° ., 0a,;
R | a. +A1°(—2
o' dt oy o'

oa,,
—a_ —— -——)]=0 8.18
ax, o ax] Gi 6)(?] )] ( )
Under the condition that the Lagrangians L"(x,y) and F (x,y) give the same Euler —
Lagrange equations, we obtain

d(A°0. (x,dx)) =0 (8.19)

The exterior equations (8.19) give the restrictions of he Lagrange multipliers A°(x).
The canonical semispray S of the Finslerian nonholonomic mechanical system X is
given by (4.2):

. ii_ . i
S =y o 2G (x,y)ayi (8.20)
where
2G(x,y) =2G"(x,) —%(F’ (x, ) + A% (x)a, (x)) (3.21)

2G" =y (x, )y )"
F'(x,y)=g" (x,y)F;(x,y)
ag(x,) = g" (x,y)a(x)

where y;.,( (x,) is the Christoffel symbols of the fundamental tensor g (x,y) of the space F".
Regarding S" we have

Theorem 8.5. The integral curves of the canonical semispray S of the Finslerian
nonholonomic mechanical system I are the solutions curves of the system of differential
equations

d’x' dx dx’ dx* 1

+v. (x,—)—
dr> Vil dt) dt dt 2

(F[(x,%)ﬁ-kcF (x)ag(x,%)) (8.23)
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But (8.23) gives the equations of evolution of the system X.
In particular, if F, =0,A°(x) =0, then the equations (8.23) are reduced to the equations

of the geodesics of the Finsler space F".

The conclusion is the following:

Theorem 8.6. The Finslerian nonholonomic mechanical system % may be considered

as a dynamical system given by the semispray vector field S’ on the phases space TM,
where the Lagrange multipliers \°(x) satisfy the exterior equation (8.13).

Consequently, the geometry of system X is the geometry of the canonical semispray S

on the phase space TM.

11.

12.

13.

14.
15.

16.

17.

18.
19.
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GEOMETRIJSKI MODEL LAGRANZIJANA I PRIDRUZENI
DINAMICKI SISTEM NEHOLONOMNOG MEHANICKOG
SISTEMA

Radu Miron, Valer Niminet

Razmatra se geometrijski model Lagranziana i pridruzeni dinamicki sistem mehanickog sistema
X=(M,L(x,y),05(x,dx),F;(x,%)) , sa y=x, Cije su evolucione jednacine (1.3). Kanonski
semisprej S” udruzuje se u system X na prostoru faze TM, koja ima integralne krive date evolucionim
Jjednacinama X, Lagranzeova geometrija sistema X je geometrija S™ koja je dinamicki system, na TM,
sustinski pridruzen u 2. Dobijeni rezultati su novi i originalni.

Kljuéne reci: Lagranzeov prostor, semisprej, dinamicki sistem, LagranZijan mehanickog sistema



