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Abstract. One considers a Lagrangian nonholonomic mechanical system Σ = 
( , ( , ), ( , ), ( , ))iM L x y Q x dx F x xσ , with y x= , whose  evolution equations are (1.3). One 
associates to system Σ a canonical semispray S∗  on the phase space TM, which has the 
integral curves given by the evolution equations of Σ. The Lagrange geometry of system Σ is 
the geometry of semispray S∗ which is a dynamical system, on TM, intrinsically associated to 
Σ. The obtained results are  new and original. 
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1. INTRODUCTION 

In this paper we propose to study a new Lagrangian model for nonholonomic 
mechanical systems Σ = (M, L (x,y), Fi (x,y), Qσ (x,y)) in the most general case when 
L (x,y) is a regular Lagrangian, Fi (x,y) are the external forces defined on the phases space 
TM, and Qσ = 0, (σ = m + 1,…,n = dim M) are the kinematic nonholonomic constrains 
defined on the configuration space M. Σ will be named Lagrangian nonholonomic 
mechanical system. 

The classical nonholonomic mechanical systems are the particular cases of Σ, ob-
tained for ( , ) 2 ( , ) ( ) i j

ijL x y T x y g x y y= = , iy xi=  the kinetic energy of a Riemannian metric 
ds2 = gij(x)dxidxj and the external forces Fi depend on the material points (xi)∈M. 
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In the case when L (x,y) = F2(x,y), where F(x,y) is the fundamental function of a 
Finsler space, Σ is a new class of nonholonomic mechanical systems – which have not 
been studied yet. It is called Finslerian nonholonomic mechanical system. 

Some particular properties of Σ were investigated by us in the paper [10]. 
So, we study tangent bundle of configurations space M, Lagrangian scleronomic non-

holonomic mechanical systems Σ, canonical semispray and canonical nonlinear connec-
tion of system Σ, N*- canonical metrical connection, h- and v- electromagnetic tensors, 
gravitational field, examples: classical nonholonomic mechanical systems and Finslerian 
mechanical systems. Consequently, the obtained results are new and original. 

Recalling that the geometrization of holonomic mechanical systems was done by 
Levi-Civita, [1], [3], [14], [17], while, in 1926, Gh. Vrănceanu, by introducing the notion 
of Riemannian nonholonomic space, realized a first geometric model for the non-
holonomic, scleronomic mechanical system. He considers as evolution the equations of 
system,  the Lagrange equations: 

 
1

( ) ( ) (
n

i ii i
m

d T T a x F x
dt x x σ σ

σ= +

∂ ∂
− = λ +

∂ ∂ ∑ )  (1.1) 

where  give the kinematic constraints. ( , ) ( ) 0  ( 1,..., )i
iQ x dx a x dx m nσ σ= = σ = +

At the International Congress of Mathematicians from Bologna, 1928, Elie Cartan 
showed that the equations (1.1) are not sufficient. He gives the geometrization of these 
systems by fixing the normal distribution to the distribution Qσ = 0. 

But, one proves that these new elements are not enough. 
Mendel Haimovici [3] completed E. Cartan, supposing that the system of Pfaff equa-

tions Qσ = 0 has the first derivate system identically null. 
In his Ph.D. Thesis (1956), [5], R. Miron solved the general case in which for the sys-

tem Qσ = 0, a number r < m of derivate subsystems exist. E. Cartan considered this case 
unrecheable, because of the calculating difficulties [2]. 

The holonomic mechanical Finsler systems was studied recently by R. Miron and C. 
Frigioiu [9]. They are given by Σ = (M,F(x,y),Fi(x,y)), where F n = (M,F(x,y)) is a Finsler 
space and Fi(x,y), with y x= , are the external forces depending on material point (xi) and 
his velocity ( )ix . 

The general case was investigated by the second author in [13], [14]. 
We notice that the previous geometrical study can be extended to nonholonomic case. 
So that, in this paper, we study Lagrangian nonholonomic scleronomic mechanical 

systems 
 ( , ( , ), ( , ), ( , ))iM L x y F x y Q x yσΣ = , (y x)= , (1.2) 

where Ln = (M,L(x,y)) is a Lagrange space, [7], ( , )iF x x  are external forces and the Pfaff 
equations Qσ(x,dx) = aσi(x)dxi = 0, (σ = m + 1,...,n) are the kinematic constrains of the system. 

The equations of evolution of system Σ are Lagrange equations (1.1) 

 1
( ) ( ) ( , ),

  ,

( , ) ( ) 0,

n
i

i ii i i
m

i
i

d L L x a x F x y dxdt y x y
dt

Q x dx a x dx

σ
σ

σ= +

σ σ

⎧ ⎛ ⎞∂ ∂
− = λ +⎪ ⎜ ⎟∂ ∂ =⎨ ⎝ ⎠

⎪ = =⎩

∑  (1.3) 
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where ( )xσλ  are Lagrange multipliers. 
Finslerian nonholonomic mechanical systems are obtained for L (x,y) = F2(x,y), where 

F (x,y) is the fundamental function of a Finsler space. Finslerian or Lagrangian non-
holonomic mechanical systems will be named Lagrangian nonholonomic mechanical 
systems. 

Evidently, we study only scleronom systems associating a canonical semispray S 

* to 
them, whose integral curves are given by the evolution equations (1.3) of Σ. 

The vector field S 

* is a dynamical system on the phase space TM. Then, the problems 
concerning the equilibrium of Σ and the stability of its solutions can be approached on the 
phase space TM, in a classical manner, [7], [14]. 

The geometry of the pair (S 

*,Qσ = 0) represents the Lagrange geometry of Σ on the 
phase space TM. We highlighted the fundamental geometric objects of this geometry as 
N*-metrical canonical connection, its structure equations, etc. 

2. THE TANGENT BUNDLE OF THE CONFIGURATIONS SPACE 

Let M be a real differentiable manifold of dimension n. A point x ∈ M has local 
coordinates (xi),(i = 1,...,n). The tangent bundle (TM,π,M) is the differentiable manifold 
TM of dimension 2n, real and orientable. The points u = (x,y) ∈ TM have the local coordi-
nates (xi,yi) and π (u) = x. M is called the configuration space and TM the phase space. 

A change of coordinates on TM is given by 

 

1( ,..., ),det 0,

.

i
i n

j

i
i j

j

xx x x x
x

xy y
x

⎛ ⎞∂
= ≠⎜ ⎟∂⎝ ⎠

∂
=

∂

 (2.1) 

The natural base of the tangent space  is (uT TM ) , , ( 1,..., )i i
u

i n
x y

⎛ ⎞∂ ∂
=⎜ ⎟∂ ∂⎝ ⎠

. 

The vertical distribution : ( ) uV u TM V u T TM( )∈ → ⊂  is locally generated by the 

vector fields 1 ,..., n
u

y y
⎛ ⎞∂ ∂
⎜ ⎟∂ ∂⎝ ⎠

. 

There exists a vector field i
iC y

y
∂

=
∂

 on TM, called the Liouville vector field, belonging 

to vertical distribution V. C does not have singular points on the differentiable manifold 
. Also, on TM there exists an integrable tangent structure J, given by: \{0}TM TM=

 ,i
iJ dx

y
∂

= ⊗
∂

 (2.2) 

J has the property 

 2; 0;i i iJ J
x y y

⎛ ⎞∂ ∂ ∂⎛ ⎞ 0J= = =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. (2.2') 
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A vector field  with the property (S TM∈ χ )

 JS C=  (2.3) 

is called a semispray. If M is a paracompact manifold then on TM there exists semisprays.  
Locally, a semispray S is expressed in the form: 

 2 ( , )i i
iS y G x y ix y

∂ ∂
= −

∂ ∂
. (2.4) 

The function G i(x,y) are called the coefficients of S. A change of coordinates (2.1) 
change G i as follows: 

 2 2
i i

i j
j

x yG G
x x

∂ ∂
= −

∂ ∂
j

j y . (2.5) 

The integral curves of the vector field S are given by 

 , 2 ( , )
i i

i idx dyy G x y
dt dt

0= + =

( )

. (2.6) 

A nonlinear connection on TM is a regular distribution : ( ) uN u TM N u T TM∈ → ∈  
supplementary to the vertical distribution V, that is: 

 ( ) ( ) ( ),   uT TM N u V u u TM= ⊕ ∀ ∈ . (2.7) 

A local base adapted to (2.7) is ,  ( 1,..., )i i
u

i
x y

⎛ ⎞δ ∂
=⎜ ⎟δ ∂⎝ ⎠

n , where  

 ( , )j
ii i N x y jx x y

δ ∂
= −

δ ∂ ∂
∂ . (2.8) 

Its dual base is ( , )i i

u
dx yδ  where 

  (2.8') i i i
jy dy N dxδ = + j

The functions (N  
i
j) are called the coefficients of the nonlinear connection N. It is 

known that the integrability of N  distribution is characterized by the vanishing of the d-
tensor field 

 
i i
ji k

jk k

N N
R jx x

δ δ
= −

δ δ
 (2.9) 

Autoparallel curves of the nonlinear connection N are given by the equations  

 ,
i i

idx yy
dt dt

δ 0= =  (2.10) 

If S is a semispray with the coefficients G 

i, then the functions 
i

i
j j

GN
y

∂
=

∂
 determine 

the coefficients of a nonlinear connection. 
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3. LAGRANGIAN NONHOLONOMIC, SCLERONOMIC MECHANICAL SYSTEMS 

We will apply the theory from the preceding paragraph and the variational problem in 
case of the scleronomic Lagrangian systems Σ.  

The evolution equations of these systems will be given in the classical form (1.3), but 
more generally, because the exterior forces Fi (x,y) are considered as the components of a 
d-covectors fields on the phases space TM, [14]. 

Let Σ (1.2) be a Lagrangian nonholonomic, scleronomic mechanical systems with the 
evolution equations (1.3), (1.3'). Σ determines, in a canonic way, a semispray S * on the 
phase space TM, which we will study in this section. 

We denote with gij (x,y) the fundamental tensor of the Lagrange space Ln = (M,L(x,y)) 

and with gij(x,y) its contravariant. As it is known [7], 
21

2ij i j

Lg
y y
∂

=
∂ ∂

, rank ijg n=  on 

 and g\{0}TM ij has constant signature. 
External forces Fi (x,y) determine a d-covariant vector field and  

 j i
ij i

F
j

F
F

y y
∂ ∂

= −
∂ ∂

 (3.1) 

is an antisymmetric d-tensor field, named elicoidal tensor of system Σ. 
The functions that determine the constrains of the system 

( , ) ( ) ,   ( 1,..., )i
iQ x y a x y m nσ σ= σ = +  

are scalars with respect to the changes of the coordinates on TM. 
So,  are covector fields on M and  ( )ia xσ n m−

 
1

( ) ( , )
n

m
x Q x yσ

σ
σ= +

λ∑  (3.2) 

is also a scalar function on TM. The functions ( )xσλ  are the Lagrange multipliers. 

Let  be the Lagrangian L∗

 . (3.3) *

1
( , ) ( , ) ( ) ( , )

n

m
L x y L x y x Q x yσ

σ
σ= +

= + λ∑
We have: 
1o * ( , ) ( , )ij ijg x y g x y=

2o * , ,dx dxL x L x
dt dt

⎛ ⎞ ⎛=⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

⎞
⎟  on the distribution ( , ) 0Q x dxσ = . 

3o The integral of action of the Lagrangian  is  *L

 . (3.4) 
1 1*

0 0
( , ) [ ( , ) ( ) ( , )]L x x dt L x x x Q x x dtσ

σ= + λ∫ ∫
4o The Euler – Lagrange equations of L*: 

* *

0,   
i

i
i i

L d L dxy
dt dtx y

∂ ∂
− = =

∂ ∂
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are given by 

( )
[ ( )] 0,

i
i

i i i i

QL d L d dxQ y
dt dt dtx y x y

σ
σσ

σ
∂ λ∂ ∂ ∂

− + − λ = =
∂ ∂ ∂ ∂

 

or by 

0i i i i i

Q QL d L dQ
dt dtx y x x y

σ
σ σσ σ

σ

⎛ ⎞⎛ ⎞∂ ∂∂ ∂ ∂λ
− + + λ − λ =⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

. 

But ( )ii

Q
a x

y
σ

σ
∂

=
∂

. 

We obtain 

( ) 0ii i i i

QL d L dQ a
dt dtx y x x

σ
σ σσ

σ σ

⎡ ⎤⎛ ⎞ ∂∂ ∂ ∂λ
− + + λ − λ⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

=  

or, equivalently: 

 0,   
i

j j ii
j ii i i j i j

a aL d L dxa a y y
dt dtx y x x x x

σσ
σσ σ

σ σ

⎡ ∂ ⎤⎛ ⎞⎛ ⎞ ∂∂ ∂ ∂λ ∂λ
− + − + λ − = =⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (3.5) 

The Lagrangians L*, (3.3) and L are equivalent if corresponding solutions of Lagrange 
equations: 

* *

0, 0i i i i

L d L L d L
dt dtx y x y

∂ ∂ ∂ ∂
− = − =

∂ ∂ ∂ ∂
 

are equal and *
ij ijg g= . 

Theorem 3.1. The Lagrangians  and  are equiva-
lent if and only if one of the following equations are satisfied. 

( , )L x y * ( , ) ( , ) i
iL x y L x y a yσ

σ= + λ

 0j i
j ii j i j

a a
a a

x x x x

σ σ
σσ σ

σ σ

∂⎛ ⎞∂∂λ ∂λ
− + λ − =⎜

∂ ∂ ∂ ∂⎝ ⎠
⎟

0

 (3.6) 

 ( ( , ))d Q x dxσ
σλ =  (3.7) 

Proof. The first method: The Lagrangians  and  have the property ( , )L x y * ( , )L x y

 
2 2 *

*1 1
2 2ij iji j i j

L Lg g
y y y y
∂ ∂

= =
∂ ∂ ∂ ∂

=  (3.8) 

From (3.5) it results that the Euler - -Lagrange equations for L and  hold if and only if *L

0j ji
j ii j i j

a a
a a y

x x x x

σ σ
σσ σ

σ σ

⎧ ∂⎛ ⎞∂∂λ ∂λ⎪ ⎪− + λ −⎨ ⎬⎜ ⎟
∂ ∂ ∂ ∂⎪ ⎪⎝ ⎠⎩ ⎭

⎫
= . 

Deriving with respect to yi, we obtain equations (3.6).  
The second method: The Lagrangians  and  are 

equivalent if and only if 1-form λ
( , )L x y * ( , ) ( , ) ( , )L x y L x y Q x yσ

σ= + λ
σQσ(x,dx) is closed (theorem of Carathéodory) [14]. 
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So 
  (3.9) ( ( , )) ( )j

jd Q x dx d a dxσ σ
σ σλ = λ 0=

We have, exterior differentiating: 

1( ( , ))
2

i ji i
j ii j i j

a a
d Q x dx a a dx dx

x x x x

σ σ
σ σ σ σ

σ σ σ

⎡ ⎤∂ ∂∂λ ∂λ ⎛ ⎞λ = − + λ −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦
∧  

which are the equations (3.6). 
Using Theorem 3.1, we can introduce: 
Postulate. The equations of evolution of the Lagrangian nonholonomic,scleronomic 

mechanical system Σ = (M, L (x,y), Fi (x,y), Qσ (x,y)) are: 

 ( , ) ( ) ( ),   ,
i

i
i ii i

d L L dxF x y x a x y
dt dty x

σ
σ

∂ ∂
− = + λ =

∂ ∂
 (3.10) 

where the multipliers ( )xσλ  satisfy the equation 

 [ ( ) ( , )] 0d x Q x dxσ
σλ =  (3.11) 

4. THE CANONICAL SEMISPRAY AND NONLINEAR CONNECTION OF SYSTEM Σ 

The canonical semispray S 
* of the system 

 ( , ( , ), ( , ), ( , ))iM L x y F x y Q x yσΣ =  (4.1) 

is a vector field S 
* on the phase space 

 * *2 ( , )i i
iS y G x y ,ix y

∂ ∂
= −

∂ ∂
 (4.2) 

whose integral curves are given by the evolution equations of the system Σ, (3.10), (3.11). 
But the equations (3.10) can be written in the following form 

 ( ) ( ) ( )
2

2

12 , , , ,
2

i i
i i i id x dx dxG x F x y x a x y y

dt dtdt
σ

σ
⎛ ⎞ ⎡+ = + λ =⎜ ⎟ ⎣⎝ ⎠

,⎤⎦  (4.3) 

where 

 
212 ( , ) ( , )[ ]

2
i ij k

j k

LG x y g x y y
y x x j

L∂ ∂
=

∂ ∂ ∂
−  (4.4) 

 ( , ) ( , ) ( , )i ij
jF x y g x y F x y=  (4.5) 

 . (4.6) ( , ) ( , ) ( )i ij
ja x y g x y a xσ = σ

Let  the system of functions be 

 * 12 ( , ) 2 ( , ) [ ( , ) ( ) ( , )]
2

i i i iG x y G x y F x y x a x yσ
σ= − + λ . (4.7) 

Then 
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Theorem 4.1. The system of functions G*i(x,y) from (4.7) are the coefficients of a 
semispray determined only by the Lagrangian nonholonomic mechanical system Σ. 

Proof. Since 

(*) 2 2
i ii i j
j j

x yG G
x x

∂ ∂
= −

∂ ∂
y

i

  

and ,iF aσ
σλ  are d-contravariants vectorial fields, it results that G*i(x,y), from (4.7) is 

transformed by (2.1) in the same manner as G 

i(x,y). 
The semispray S 

* (4.2) with the coefficients G*i from (4.7) and the multipliers λ
σ 

verifying (3.11) is called the canonical semispray of the system Σ. 
The vector fields S 

* defines a dynamic system on TM. It has the following important 
property: 

Theorem 4.2. The integral curves of the canonic semispray S 

* are given by the evolu-
tion equations of the system Σ (4.3), (3.11). 

Proof. The integral curves of S 

* are given by  

*, 2
i i

i idx dyy G
dt dt

= = − , 

λ
σ verifying (3.11) and G*i from (4.7). 

These equations are equivalent to (4.3), (3.11), q.e.d.. 
We define the Lagrange geometry of system Σ as being the Lagrange geometry on the 

phase space TM of the canonic semispray S 

*. 
The nonlinear connection N * of S* is called canonical nonlinear connection of system Σ. 
Theorem 4.3. The canonical nonlinear connection N * of system Σ, has the coefficients: 

 
*

* 1
4

ii i
i i

j jj j

aG FN N
y y

σ σ⎛ ⎞∂∂ ∂
= = − + λ⎜

∂ ∂⎝ ⎠
jy ⎟

∂
 (4.8) 

Theorem 4.4. The Berwald connection of system Σ has the coefficients 

 
22

* 1
4

ii
i i

jk jk j k j k

aFB B
y y y y

σ σ⎛ ⎞∂∂
= − − λ⎜

∂ ∂ ∂ ∂⎝ ⎠
⎟  (4.9) 

Corollary 4.1. The weak torsion *
i i
ji k

jk k

N N
t

y y
∂

j

∂
= −

∂ ∂
 of N * vanishes. 

The nonlinear connection N * on TM gives a direct decomposition of tangent space 
Tu(TM): 
  (4.10) *( ) ( ) ( ),    uT TM N u V u u TM= ⊕ ∀ ∈

Therefore, it admits a local adapted basis 
*

,i i
u

x y
⎛ ⎞δ ∂
⎜ δ ∂⎝ ⎠

⎟ , where 

 
*

* 1
4

ji
j

ii i j i i i

aFN ix x y x y y
σ σ⎛ ⎞∂δ ∂ ∂ δ ∂ ∂

= − = + + λ⎜
δ ∂ ∂ δ ∂ ∂ ∂⎝ ⎠ y⎟ , (4.11) 
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with j
ii i N jx x y

δ ∂ ∂
= −

δ ∂ ∂
. 

Dual basis  has 1-forms *( ,i idx yδ ) * iyδ : 

 * * 1
4

ii
i i i j i

j j j

aFy dy N dx y dx
y y

σ σ⎛ ⎞∂∂
δ = + = δ − + λ⎜

∂ ∂⎝ ⎠
j⎟

j

 (4.13) 

and where . i i i
jy dy N dxδ = +

Corollary 4.2. The integrability conditions of nonlinear connection N * are given by 
* * *

* 0
i i

ji
jk k j

N N
R

x x
δ δ

= − =
δ δ

. 

5. - CANONICAL METRICAL CONNECTION *N

Let " | " and " | " h and v covariant derivates defined by a N *- linear connection, [7]. 
The first author, in [6], [7], proves: 
Theorem 5.1. There exists only one N *- linear connection * * *( ) ( , )i i

jk jkC N L CΓ = , having 
the properties: 

  (5.1) 
*

*

|

* * * * * *

0,    | 0

0, 0,

kij
ij k

i i i i i i
jk jk kj jk jk kj

g g

T L L S C C

= =

= − = = − =

where *

* *
* * *

|
; |ij ij *s s s

k
s

sj ik is jk ij sj ik is jkk kij k

g g
g g L g L g g C g C

x y
δ ∂

= − − = − −
δ ∂

. 

Theorem 5.2. The connection CΓ(N *) has the coefficients given by the generalized 
Christoffel symbols: 

 

* **
*

*

1
2

1
2

hj jki ih hk
jk k j h

hj jki ih hk
jk k j h

g gg
L g

x x x

g gg
C g

y y y

⎛ ⎞δ δδ
= + −⎜ ⎟⎜ ⎟δ δ δ⎝

∂ ∂⎛ ⎞∂
= + −⎜ ⎟

∂ ∂ ∂⎝ ⎠

⎠  (5.2) 

This N *- linear connection CΓ(N *) will be called the N * - canonical metrical connec-
tion of Lagrangian nonholonomic mechanical system Σ. 

CΓ(N *) is related to N-metrical connection of Lagrange space Ln = (M,L(x,y)), 
( ) ( , )i i

jk jkC N L CΓ =  where  

 

1
2

1
2

hj jki ih hk
jk k j h

hj jki ih hk
jk k j h

g gg
L g

x x x

g gg
C g

y y y

δ δ⎛ ⎞δ
= + −⎜ ⎟

δ δ δ⎝
∂ ∂⎛ ⎞∂

= + −⎜ ⎟
∂ ∂ ∂⎝ ⎠

⎠  (5.2') 
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by the relations from the following theorem: 

Theorem 5.3. We have: 
 * *,i i i i i

jk jk jk jkL L C C= + =U jk

]

 (5.3) 
where  
 [i ih l l l

jk k hjl j hkl h jklg K C K C K C= + −U  (5.3') 

 1
4

jj
j

i i

aFK
y y

σ σ⎛ ⎞∂∂
= + λ⎜

∂ ∂⎝ ⎠
i ⎟  (5.4) 

and  is Cartan tensor of L, ijkC
31

4ijk i j k

LC
y y y

∂
=

∂ ∂ ∂
. 

Proof. With notation (5.4) we obtain 

 
*

l
ii i K lx x y

δ δ
= +

∂
δ δ ∂

 (5.5) 

Then, 
*

hj hj hjl
kk k l

g g g
K

x x y
δ δ ∂

= +
δ δ ∂

. 

Substituing in (5.2) we have: 
* 1 [ ]

2
hj jki i ih l l lhk

jk k j hjk l l l

g gg
L L g K K K

y y
∂ ∂∂

= + + −
∂ ∂ ∂y

 

or 
* [ ]i i ih l l l

jk k hjl j hkl h jkljkL L g K C K C K C= + + − . 

The fact that *i i
jkC C= jk  results from (5.2) and (5.2'). 

Now, we can use the h- and v-covariant derivatives [7] with respect to connection 
CΓ(N *). Also, we observe that in the particular case of nonholonomic mechanical sys-
tems, which have the properties 

( , ) ( ), ( , ) ( )ij ij i ig x y g x F x y F x= = . 

We have  with ( )ia xσ
σλ ( )ii a

y
σ

σ
∂ 0λ =

∂
. Consequently, we obtain the tensors  

and . The connections  and 

0j
iK =

0i
jk =U *(C NΓ ) ( )C NΓ  have the coefficients *i i

jk jL L= k , 

and . * 0i i
jk jkC C= =

In the general case, the Ricci identities, with respect to N *- canonical metrical 
connection * *( ) ( , )i i

jkjkC N L CΓ = , for a d-vector field ( , )iX x y  on TM, are given by 

  (5.6) 

* * * * *

* * *

* * *

| | | | |

* *

| | |

|

| | |

| | | | | 

h k k h l

kh h l

i i l i i l i l
l hk hk l hk

i i l i i l i
k l hk hk l hk

i i l i i l
h k k h l hk l hk

X X X R X T X R

X X X P X C X P

X X X S X S

− = − −

− = − −

− = −

*l
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where d-tensors of curvature and torsion of N *- canonical metrical connection CΓ(N *) are: 

 

* * * *
* * * * *

*
* *

|

  

i i
jk jhi i i l i

j kh jk jh jh lk jl khh k

i
jki i i l

j kh jh k jl k lh

i i
jk jhi l i l i

j kh jk lh jh lkh k

L L
R L L L L

x x
L

P C C P
y
C C

S C C C C
y y

δ δ
= − + − +

δ δ
∂

= − +
∂

∂ ∂
= − + −

∂ ∂

* *i lC R

 (5.7) 

and  

 

* *

* * * * *
* *

0, 0, ,

,

i i i i
jk jk jk jk

i i i
ji ik *i

jk jkk j k

T S C C

N N NR P
x x y

= = =

δ δ ∂
= − = −

δ δ ∂ jkL
 (5.8) 

In these formulas we use the formulas (5.3), (5.4), (5.5). The formulas (5.7) and (5.8) 
and (5.3), (5.4) and (5.5) can also be obtained directly using 

 

* *

*

*

,

,

.

i i
j j

i i i
jk jk jk

i i
jk jk

N N

L L

C C

⎧ =
⎪⎪ = +⎨
⎪

=⎪⎩

U  (5.9) 

We have the following result: 
Theorem 5.4. The structure equations of the N *- canonical metrical connection of 

nonholonomic mechanical system Σ are given by 

 

*(0)
*

*(1)
* * *

* * * *

( ) ,

( )

( ) ,

i
i l i

l
i

i l i
l

i l i i
j j l l

d dx dx

d y y

d

− ∧ ω = − Ω

,δ − δ ∧ ω = −Ω

ω − ω ∧ ω = −Ω

 (5.10) 

where  and 
*(0) i

Ω
*(1) i

Ω  are 2-torsion forms 

 

*(0)
* *

*(1)
* *1

2

i
i j k

jk

i
i j k i j

jk jk

C dx y

R dx dx P dx y

Ω = ∧ δ

Ω = ∧ + ∧ δ* k

 (5.10') 

and  are 2-curvature forms *i
jΩ

 * * * * *1 1 ,
2 2

 
 

i i k h i k h i k
j j kh j kh j khR dx dx P dx y S y yΩ = ∧ + ∧ δ + δ ∧ δ *h  (5.10") 

* *, ,  
 

i i i
j kh j kh j khR P S  being d-curvature tensors of connection CΓ(N *), [7]. 

Bianchi identities satisfied by the N *- canonical metrical connection CΓ(N *) are ob-
tained from the structure equations (5.10) by exterior differentiation. 
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6. H- AND V-ELECTROMAGNETICS TENSORS 

The canonical metrical connection CΓ(N *) of the neolonomic mechanical system Σ 
allows to determine the h- and v-deflection tensor fields [7]: 

  (6.1) 
*

* *

|

| .

i i h i
j hj

j

i i i h i
j j j

D y y L N

d y y C

= = −

= = δ +

i
j

hj

Using the formulas (5.3), (5.3') for the coefficients  and  we obtain *i
hjL i

hjC

1 [ ]
2

[ ]

hj sji s i s ih l l lhs
j sj j s hl l l

s i s ih l l l
sj j hsl s hjl h sjl

g gg
D y L y g K K K

y y y
y L y g K C K C K C

∂ ∂∂
= + + −

∂ ∂ ∂

= + + −

=

hjC

*

 

and  
i i s i i s ih
j j sj j sd y C y g= δ + = δ + . 

Then, the covariant deflection tensors are given by: 

  (6.2) 
( )

.

r s i s l l l
ij ir j ir sj j isl s ijl i sjl

r s
ij ir j ij sij

D g D g y L y K C K C K C

d g d g y C

⎧ = = + + −⎪
⎨

= = +⎪⎩

But, these tensors satisfy fundamental identities from (5.6) for Liouville vector field 
yi. Then, we have: 

Theorem 6.1. h- and v-covariant deflection tensors  and  satisfy the identities: ijD ijd

 

* *
* *

| |

*
*| |

| | .

s r
sijk ir jk

ij k ik j

s s
jij k ik sijk is jk is jk

s
ij k ik j sijk

D D y R d R

D d y P D C d P

d d y S

⎧ − = −
⎪
⎪⎪ − = − −⎨
⎪

− =⎪
⎪⎩

s  (6.3) 

These identities give the Lorentz equations for electromagnetic tensor fields for 
Lagrangian nonholonomic mechanical system Σ. 

Definition 6.1. The following d-tensors 

 

1 ( )
2
1 ( )
2

ij ij ji

ij ij ji

D D

f d d

= −

= −

F
 (6.4) 

are h- and v-electromagnetic tensors of Σ. 
From (6.2) we see that v-deflection tensor dij is symmetric. Therefore we have: 
Proposition 6.1. The v-electromagnetic tensor fij of nonholonomic mechanical system 

Σ vanishes. 
We study only h-electromagnetic tensor  for determining the Lorentz equations 

that are satisfied. 
ijF
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We observe that the d-tensor  do not coincide with the elicoidal tensor FijF ij from 
(3.1). So, from (6.2),  is given by ijF

 1{( ) 2( ) }
2

r r s l l
ij ir sj ir si j isl j jsl

sg L g L y K C K C y= − + −F  (6.5) 

But, from (5.4), we deduce: 
1
4

jj
j

i i i

aFK
y y

σ σ⎛ ⎞∂∂
= + λ⎜ ⎟

∂ ∂⎝ ⎠
 

and we obtain 

( )1 1
2 4

l ll l
s r r s

ij ir sj jr si isl jslj j i i

a aF Fy g L g L y C C
y y y y

σ σσ σ
⎡ ⎤⎛ ⎞ ⎛∂ ∂∂ ∂

= − + + λ − + λ
⎞

⎢ ⎥⎜ ⎟ ⎜
∂ ∂ ∂ ∂

⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

F , 

where l il
iF g F=  and . Thus h

isl il slC g C=

 ( )1 1
2 4

l ll l
s r r

ij ir sj jr si ir jrj j i i

aF Fy g L g L g g
y y y y

σ σσ aσ
⎡ ⎤⎛ ⎞ ⎛∂ ∂∂ ∂

= − + + λ − + λ
⎞

⎢ ⎥⎜ ⎟ ⎜
∂ ∂ ∂ ∂

⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

F  (6.6) 

From Theorem 6.1, (6.4) and Bianchi identities for  we have *( )C NΓ
Theorem 6.2. The h-electromagnetic tensor  of nonholonomic mechanical system 

Σ with respect to CΓ(N 
ijF

*) satisfies the following generalized Maxwell equations: 

  (6.7) 
* * *

*

| | |

| | | 0.

F F F

F F F

C
s r

jk
ij k jk i ki j isr

ij k jk i ki j

y R+ + = −

+ + =

∑

We remark that, if the electromagnetic tensor  does not depend of FijF i and aσi, then 
it is given by  

 1 (
2

)s r
ij ir sj jr siy g L g L= −F r  (6.8) 

Thus, we have i*i
j jN N=

j

 and the Maxwell equations are those that appear, in general, 
in Lagrange spaces theory. An easier method of determination of Maxwell equations is 
given by the almost hermetian model of nonholonomic mechanical system Σ. 

So, we consider the 2-form 
 * i

ijg y dxθ = δ ∧  (6.9) 

Using 1-forms  from (4.13) and (5.4) or from the equivalent formula * iyδ

  (6.10) * i i i
jy y K dxδ = δ − j

we have 
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Theorem 6.3. The 2-form θ has the following properties: 

1o θ depend only on nonholonomic mechanical system Σ. 
2o θ is an almost symplectic structure on phase space TM. 
3o θ depends on symplectic structure of associated Lagrange space  ( , ( , ))nL M L x y=

0
i j

ijg y dxθ = δ ∧ . 

The relation between  and θ
0
θ  is given by 

 
0

i s j
ij sg K dx dxθ = θ− ∧ . (6.11) 

Proof. 1o In (6.9) the fundamental tensor gij and the nonlinear connection  of Σ  appear. *N

2o  is 2-form of rank 2n with θ
0

det 0
0
ij

ij

g
g

≠ . So, θ is a nonsingular 2-form on 

TM. It is an almost symplectic structure on the manifold given by the phases space. 
3o Using * iyδ  from (6.10) in the expression of 2-form θ we obtain (6.11). 
In order to study the case when θ is a symplectic structure, we will examine the exte-

rior differential of θ. 
Proposition 6.2. The exterior differential of 2-form θ is given by 

 1 [ ( )]
2

s s i
sj i si jd d g K g K dxθ = − − ∧ jdx  (6.12) 

Proof. We exterior differentiation (6.11) and remark that 
0
θ  is a closed 2-form, so 

 and we obtain (6.12).  
0

0d θ =
Since we have 

 

* *

*
*

1 [ ( ) ( )
3!

1( ) ] ( )
2

s s s s
sj i si j sh j sj hh i

s s h i j s s h i
si h sh i sj i si ji h

d g K g K g K g K
x x

jg K g K x dx dx g K g K y dx dx
x y

δ δ
θ = − − + − +

δ δ
δ ∂

+ − δ ∧ ∧ + − δ ∧ ∧
δ ∂

 (6.13) 

Thus we state: 
Theorem 6.4. The almost symplectic structure θ is integrable if and only if the non-

holonomic mechanical system Σ has the properties: 
*

( ) 0,

( ) 0,    being cyclic sum.

s s
sj i si jh

ijh

s s
sj i si jh

ijh

g K g K
x

g K g K
y

δ
− =

δ

∂
− =

∂

∑

∑
 

Finally, we observe that the exterior equations d (dθ) = 0 give us the Maxwell equa-
tions for nonholonomic mechanical system Σ. So, it is sufficient that to evidence the 
electromagnetic tensor  in equations (6.12). ijF

Then, d (dθ) = 0 give the generalized Maxwell equations (6.7). 
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7. THE GRAVITATIONAL FIELD 

The nonholonomic mechanical system Σ = (M, L (x,y), Fi (x,y), Qσ (x,y)) has the 
gravitational potentials given by the system of functions 

 
2

* 1
2ij i j

Lg
y y
∂

=
∂ ∂

 (7.1) 

We remark that this field does not depend on the external forces Fi (x,y) and on the 
nonholonomic constrains Qσ(x,y) = aσi(x)yi. So that the gravitational potentials * ( , )ijg x y  

do not depend on the Lagrange multipliers . ( 1,...,i p nσλ σ = + )
This fact results from  

 * ( , )ij ijg g x y= , (7.1') 

where gij (x,y) is the fundamental tensor of the Lagrange space associated to system Σ, 
Ln = (M,L(x,y)). 

The Theorem 5.1 shows that the canonical metrical connection * *( ) ( , )i i
jk jkC N L CΓ =  

has the properties 
 *

|
0, | 0   ij k

ij k
g g= =  (7.2) 

and it is unique in the following conditions: 
* 0, 0i i

jk jkT S= = . 

We rewrite the coefficients of the connection : *( )C NΓ

 

* **
* 1

2

1
2

jh jki ih kh
jk k j h

jh jki ih kh
jk k j h

g gg
L g

x x x

g gg
C g

y y y

⎧ ⎛ ⎞δ δδ
= + −⎪ ⎜ ⎟⎜ ⎟δ δ δ⎪ ⎝⎨

∂ ∂⎛ ⎞∂⎪
= + −⎜ ⎟⎪ ∂ ∂ ∂⎝ ⎠⎩

⎠  (7.3) 

where *i
jkL  is given by (5.3) 

  (7.4) 
*

( )

i i i
jk jk jk

i ih l l l
jk k hjk j hjl h jkl

L L

g K C K C K C

= +

= + −

U

U

We apply the Ricci identities to the fundamental tensor gij and we use (7.2): 

 
* *

* *

0 0

0; 0
ijkh jikh

ijkh jikh ijkh jikh

R R

P P S S

= + =

+ = + =
 (7.5) 

where  

  (7.5') 
* * * *

*

; ;l l
ijkh jl i kh ijkh jl i kh

ijkh jl i kh

R g R P g P

S g S

= =

=
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We must calculate the curvature tensors * *,i i
j kh j khR P  by means of the curvature tensors 

of the connection . ( )C NΓ
So, we suppose that  is the metrical connection of the associated Lagrange 

space L
( )C NΓ

n. Therefore the formulas (5.2') hold: 

 

1
2

1
2

jh jki ih hk
jk j k h

jh jki ih hk
jk j k h

g gg
L g

x x x

g gg
C g

y y y

δ δ⎛ ⎞δ
= + −⎜ ⎟

δ δ δ⎝
∂ ∂⎛ ⎞∂

= + −⎜ ⎟
∂ ∂ ∂⎝ ⎠

⎠  (7.6) 

and 
 | 0, | 0ij k ij kg g= =  (7.7) 

 0, 0h h
ij ijT S= =  (7.7') 

 
0, 0

0.
ijkh jikh ijkh jikh

ijkh jikh

R R P P

S S

+ = + =

+ =
 (7.7'') 

The Ricci tensors of  are: ( )C NΓ

  (7.7''') ' ''; ,h h
ij i jh ij i jh ij i hjR R P P P P= = = h

and the curvature scalars are: 
  (7.7'''') ,ij ij

ij ijR g R S g S= =

The following theorem is known [7] 
Theorem 7.1. The Einstein equations of the Lagrange space Ln = (M,L(x,y)), n > 2, 

corresponding to the canonical metrical connection ( )C NΓ  are given by 

 

0 0
'

0
''

1 ,
2
1 ,
2

H
ij ijij ij ij

V
ij ijij ij ij

R Rg k T P k T

S Sg k T P k T

⎧ − = =⎪⎪
⎨
⎪ − = = −
⎪⎩

1

0 2
 (7.8) 

The energy momentum tensors ,
H V

ij ijT T  satisfy the conditions (5.5) from §5 of the 
book [7]. 

Using the previous theory we determine the Einstein equations of the Lagrange space 
L*n = (M,L*(x,y)) named the Einstein equations of the nonholonomic mechanical system Σ. 

Theorem 7.2. The Einstein equations of the nonholonomic mechanical system Σ corre-
sponding to the canonical metrical connection  for n ≥ 2 are the following: *( )C NΓ

 

** 1
* * ' *

*2
''

1 ,
2
1 ,
2

H
ij ijij ij ij

V
ij ijij ij ij

R R g k T P k T

S Sg k T P k T

− = =

− = = −

 (7.9) 
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where *
ijR , ' *

ijP , ''
ijP ,  are the Ricci tensors of the system Σ, RijS * and S are the scalar curva-

ture,  are the energy momentum tensors of the system Σ and k is a constant. 
* ** 1 2

, , ,
H V

ij ij ij ijT T T T
In order to determine the tensors *

ijR , ' *
ijP , ''

ijP  and the curvature scalars R*, we con-

sider the transformation of nonlinear connection N N→  given by (4.8) 

 
i i
j jN N K= − i

j  (7.10) 

Then the connection ( ) ( , )i i
jk jkC N L CΓ =  is transformed into the connection *( )L NΓ =  

( , )i i
jk jkL C  given by (7.10) and its coefficients are: 

 ,i i s i i i
jk jk k js jk jkL L K C C C= + =  (7.11) 

We observe that *( )L NΓ  is also a metrical connection with respect to gij. So, we have 

 || | , |r
ij k ij r k ij ij kij k |g g g K g g= + =  (7.11') 

A new transformation * *( ) ( )L N L NΓ → Γ *  given by 

 

*

*

*

(

i i
j

i ih s s
jk jk j hks h jks

i i
jk jk

N N

L L g K C K C

C C

=

= + −

=

)  (7.12) 

determines, also, a metrical connection with respect to gij. 
Consequently, we have the following succesive transformations 

 
(7.11) (7.12)

* *( ) ( ) ( )C N L N C NΓ → Γ → Γ  (7.13) 

and, by their composition, we obtain: 
* * *( ) ( , ) ( ) ( , )i i i i

jk jk jk jkC N L C C N L CΓ = → Γ = . 

The curvature tensors have the same transformation of connections (7.13). 

Theorem 7.3. The following formulas hold: 

 

, ,

, 0

i i i i i s i
j j j jk jk k j

i i
jk jk

i i s i s i
jk js k ks j jk

i
ji i i s

jk jk ks jk

N N K L L K C

C C

T C K C K S

K
P P C K

y

= − = +

=

= − =

⎛ ⎞∂
= − +⎜ ⎟⎜ ⎟∂⎝ ⎠

s

 (7.14) 

 
i i i i i i
j j ji i s s r rk k

jk jk k j j ks s k j r

N N K KK K
R R K K K K

y y x x y y

⎧ ⎛ ⎞∂ ∂ δ ∂δ ∂⎪ ⎪= + − − − + −⎜ ⎟⎨ ⎬⎜ ⎟∂ ∂ δ δ ∂ ∂ ⎪⎪ ⎝ ⎠⎩

j
r

⎫

⎭
 (7.15) 

and 
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,i i i i s h r s
jkh jkh jks jhs k irs h k

i i i s
jkh jkh jks h

i i
jkh jkh

R R P P K S K K

P P S K

S S

= + − +

= +

=

 (7.16) 

Last formulas can be established directly from complicated calculus. 

Theorem 7.4. Also, we have the formulas: 

 
* * *, ,

( )

i i i i i i i
j j jk jk jk jk jk

i ih s s
jk j hks h jks

N N L L B C C

B g K C K C

⎧ = = + =⎪
⎨

= −⎪⎩
 (7.17) 

and 

 

*

*

*

,i i i
jkh jkh jkh

i i i
jkh jkh jkh

i i
jkh jkh

R R S

P P

S S

= +

= + Π

=

 (7.18) 

where 

 | |

||

i i i r i r i i r i r
jkh jk rh jh rh jr kh jr khjk h jh k

i i i r i r i i r i r
jkh jk h jk rh jh rk jr kh jr khjk k

S B B B B B B B T C R

B C B C C B B C C P

= − + − + +

Π = − + − + +
 (7.19) 

We consider also that these formulas can be established directly. 
In order to determine the relations between the curvature tensors of N *- canonical metrical 

CΓ(N *) and N-canonical metrical connection CΓ(N), we must eliminate , , ,N R P S  from 
(7.14) – (7.19). 

Theorem 7.5. The curvatures of the connections CΓ(N *) and CΓ(N ) are related by 
the following formulas: 

 

*

*

*

,i i i
jkh jkh jkh

i i i
jkh jkh jkh

i i
jkh jkh

R R S

P P

S S

= +

= + Π

=

 (7.20) 

where 

 
*

*

i i s i s h r s i
jkh jks h jhs k irs h k jkh

i i s i
jkh jks h jkh

S P K P K S K K S

S K

= − + +

Π = + Π
 (7.21) 

Now, we can determine the Ricci tensors and the curvature scalars. 

Theorem 7.6. The Ricci tensors and the curvature scalars of the connections CΓ(N *)  
and CΓ(N ) satisfy the following relations: 

 

* * ' * '

' * '' * *

* * *

;

;

,

h h
ij ij ijh ij ij ihj

h
ij ij ihj ij ij

ij k ij
ijh ij

R R S P P

P P S S

R R g S S g S

*= + = +

= + Π =

= + =

Π

 (7.22) 
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We also have  
Theorem 7.7. The Einstein equations of the nonholonomic mechanical system 

Σ = (M, L (x,y), Fi (x,y), Qσ (x,y)) with respect to the N *- canonical metrical connection 
CΓ(N *)  (7.9), for , are given by: 2n ≥

 

*

* *

1* 2*
' * '' *

1 1{ }
2 2

;

1
2

H
h rs h

ijij ij ijh rsh ij

h h
ij ijh ij ij ihj ij

V
ijij ij

R Rg S g S g k T

P k T P k T

S Sg k T

− + − =

+ Π = + Π = −

− =

 (7.23) 

where S * and *Π  are expressed in (7.21) and (7.19). 
Remarks: 
1. In (7.23) complementary terms to the Einstein equations of the Lagrange space 

Ln appear. The external forces Fi (x,y) and Qσ (x,y) are those that determine these 
terms. 

2. Evidently, it is not simple to obtain the Einstein equations (7.22) of the system Σ, but 
this procedure is an algorithm imposed by the transformations of connection (7.13). 

In Lagrange geometries, there are many situations where the calculus of the Ricci ten-
sors from the Einstein equations is very difficult. The most eloquent example is given by 
the Randers or the Ingarden spaces [6]. 

8. EXAMPLES 

8.1. Classical nonholonomic mechanical systems 

We consider nonholonomic scleronomic mechanical systems 

 ( , ( , ), ( ), ( , ))iM L x y F x Q x yσΣ =  (8.1) 

where L (x,y) is given by the kinetic energy 

 ( , ) ( ) ,
i

i j i
ij

dxL x y g x y y y
dt

=   =

)

 (8.2) 

gij (x) being the fundamental tensor of a Riemann space Rn = (M,gij(x)), the external 
forces Fi (x) give a d-covectors field on the base manifold M and Qσ give the cinematic 
constrains . ( 1,...,i

iQ a x m nσ σ= σ = +  

The space Rn will be named the associated Riemann space of the system Σ. It coin-
cides with the space Ln = (M,L(x,y)) whose fundamental tensor is gij (x) (depending only 
by the material points x of Σ). 

We observe that the elycoidal tensor of the system Σ, Fij given by (3.1) vanishes 
 ( , ) 0ijF x y =  (8.3) 

The Lagrangian L*(x,y) from (3.3) has the classical form: 
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  (8.5) * ( , ) ( ) ( ) ( )i j i
ij iL x y g x y y x a x yσ

σ= + λ

where  means . iaσ
σλ

1

n

i
m

aσ
σ

σ= +

λ∑
So, we have 
Proposition 8.1. The Lagrangian L*(x,y) of a classical nonholonomic mechanical sys-

tem Σ has the form of a Lagrangian from electrodynamics where the electromagnetics 
potentials Ai (x) are given by 
 ( ) ( ) ( )i iA x x aσ

σ= λ x  (8.6) 

Proposition 8.2. The Euler – Lagrange equations of the Lagrangian L*(x,y) are given by  

 [ ii i i i

QL d L dQ
dt dtx y x x

σ
σ σσ

σ
∂∂ ∂ ∂λ

− + + λ − λ
∂ ∂ ∂ ∂

( )]aσ  (8.7) 

or 

 [ ( j ji
j ii i i j i j

aaL d L a a y
dtx y x x x x

σ
σσσ σ

σ σ

∂∂λ ∂∂ ∂ ∂λ
− + − + λ − =

∂ ∂ ∂ ∂ ∂ ∂
)] 0

0

 (8.7') 

Proposition 8.3. The Lagrangians L*(x,y)  and L(x,y) are equivalent if and only if the 
Lagrange multipliers λσ(x) satisfy the exterior equations: 

 [ ] i
id a dxσ

σλ ∧ =  (8.8) 

Evidently (8.8) give restrictions for the multipliers σλ . 
We have 
Theorem 8.1. The equations of evolution of the nonholonomic mechanical system Σ 

are: 

 
2

2

1( ) [ ( ) ( )]
2

i j k
i is
jk s s

d x dx dxx g F x a x
dt dtdt

σ
σ+ Γ = + λ  (8.9) 

( )i
jk xΓ  being the Christoffel symbols of ( )ijg x . 

Theorem 8.2. The canonical semispray of the system Σ is given by 

 * *2 ( , )i i
iS y G x y ix y

∂ ∂
= −

∂ ∂
 (8.10) 

where 

 * 12 ( , ) ( ) ( ( ) ( )
2

i i j k i i
jkG x y x y y F x a xσ

σ= Γ − + λ )  (8.11) 

( )i
jk xΓ  are the Christoffel symbols of the associated Riemann space  and  nR

( ) ( ) ( ), ( ) ( ) ( )i ih i ih
h hF x g x F x a x g x a xσ σ= = . 

The Theorem 4.2 leads to: 
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Theorem 8.3. The integral curves of the semispray S * are the evolution curves of the 
nonholonomic mechanical system Σ. 

Because the tensor 
i

j

F
y

∂
∂

 vanishes, the Theorem 4.3 gives us 

Theorem 8.4. The canonical nonlinear connection N * of the system Σ coincides with 
the canonical nonlinear connection N with the coefficients ( )i i

j jk
kN x y= Γ  of the associ-

ated Riemann space. 
So, the nonlinear connection N * does not depend on the external forces Fi (x) or on 

the nonholonomy forces Qσ (x,y). This property simplifies the whole theory because: 
N * - canonical metrical connection CΓ(N *) has the coefficients 

* ( ), 0i i i
jk jk jkL x C= Γ = . 

So, CΓ(N *) is a Cartan connection [7]. 

8.2. Finslerian nonholonomic mechanical systems 

The Finslerian holonomic mechanical systems were studied in the paper [9]. But, the 
Finslerian nonholonomic mechanical systems have not been studied until now. 

Their geometrical theory appears here for the first time. It is a particular case of the 
theory from precedent paragraphs. 

Let a Finsler space Fn=(M,F(x,y)) be. Its canonical Cartan nonlinear connection N has the 
coefficients N ij⋅F n is endowed with N-canonical metrical connection ( ) ( , )i i

jk jkC N F CΓ = , [7]. 

The function  is a regular Lagrangian and the fundamental metric tensor 2 ( , )F x y
2 21

2ij i j

Fg
y y
∂

=
∂ ∂

 has the property 

 2 ( , ) ( , ) i j
ijF x y g x y y y=  (8.12) 

Then, the absolute energy of the space Fn is exactly (8.12) and its kinetic energy is  

 2 ( , ) ( , )
i j

ij
dx dx dx dxF x g x
dt dt dt dt

=  (8.12') 

Definition 8.1. A Finslerian nonholonomic mechanical system is a quadruple: 

 2( , ( , ), ( , ), ( , ))iM F x y F x y Q x yσΣ =  (8.13) 

where F 2(x,y) is the kinetic energy (8.12') F 
i(x,y) are the external forces and 

Qσ(x,dx) = aσi(x)dxi, (σ = m + 1,...,n). 

The Pfaff equations 
  (8.14) ( , ) : ( ) 0, ( 1,..., )

i

iQ x dx a x dx p nσ σ= = σ = +  

determine the kinematic nonholonomic constrains of the system Σ. 
The elycoidal tensor of the system is 
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 j i
ij i

F
j

F
F

y y
∂ ∂

= −
∂ ∂

 (8.15) 

Let  the Lagrangian be 

  (8.16) * 2 2( , ) ( , ) ( ) ( , ) ( , ) ( ) ( ) i
iL x y F x y x Q x y F x y x a x yσ

σ= + λ = + λσ
σ

We observe that: 
1. The Lagrangian L*(x,y) of the Finslerian nonholonomic mechanical system Σ is 

not a homogeneous function with respect to yi. 
2. The Lagrangian L*(x,y) has the fundamental tensor g*

ij equal with the fundamen-
tal tensor gij of Finsler space F n: 

 * ( , ) ( , )ij ijg x y g x y=  (8.17) 

3. The Euler – Lagrange equations of L*(x,y) are: 

 
2 2

[ ( j i
j ii i i j i j

a aF d F a a
dtx y x x x x

σ σ
σσ σ

σ σ

∂ ∂∂ ∂ ∂λ ∂λ
− + − + λ −

∂ ∂ ∂ ∂ ∂ ∂
)] 0=

0

 (8.18) 

Under the condition that the Lagrangians L*(x,y) and F2(x,y) give the same Euler – 
Lagrange equations, we obtain 
 ( ( , ))d Q x dxσ

σλ =  (8.19) 

The exterior equations (8.19) give the restrictions of he Lagrange multipliers λσ(x).  
The canonical semispray S* of the Finslerian nonholonomic mechanical system Σ is 

given by (4.2): 

 * *2 ( , )i i
iS y G x y

y yi

∂ ∂
= −

∂ ∂
 (8.20) 

where  

 * 12 ( , ) 2 ( , ) ( ( , ) ( ) ( ))
2

i iG x y G x y F x y x a xσ
σ= − + λ i  (8.21) 

2 ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( )

i i j k
jk

i ij
j

i ij
j

G x y y y

F x y g x y F x y

a x y g x y a xσ σ

= γ

=

=

 

where ( , )i
jk x yγ  is the Christoffel symbols of the fundamental tensor gij (x,y) of the space F n. 

Regarding S* we have 

Theorem 8.5. The integral curves of the canonical semispray S* of the Finslerian 
nonholonomic mechanical system Σ are the solutions curves of the system of differential 
equations 

 ( )
2

2

1( , ) ( ( , ) ( , ))
2

i j k
i i
jk

d x dx dx dx dx dxx F x x a
dt dt dt dt dtdt

σ
σ+ γ = + λ i x  (8.23) 



  The Lagrangian Geometrical Model and the Associated Dynamical System of a Nonholonomic Mechanical System  23 

But (8.23) gives the equations of evolution of the system Σ. 
In particular, if , then the equations (8.23) are reduced to the equations 

of the geodesics of the Finsler space F
0, ( ) 0iF xσ≡ λ ≡

 n. 
The conclusion is the following: 

Theorem 8.6. The Finslerian nonholonomic mechanical system Σ may be considered 
as a dynamical system given by the semispray vector field S* on the phases space TM, 
where the Lagrange multipliers λσ(x) satisfy the exterior equation (8.13).  

Consequently, the geometry of system Σ is the geometry of the canonical semispray S* 
on the phase space TM. 
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GEOMETRIJSKI MODEL LAGRANŽIJANA I PRIDRUŽENI  
DINAMIČKI SISTEM NEHOLONOMNOG MEHANIČKOG 

SISTEMA  

Radu Miron, Valer Nimineţ 

Razmatra se geometrijski model Lagranžiana i pridruženi dinamički sistem mehaničkog sistema  
( , ( , ), ( , ), ( , ))iM L x y Q x dx F x xσΣ = , sa y x= , čije su evolucione jednačine (1.3). Kanonski 

semisprej S∗ udružuje se u system  Σ  na prostoru faze TM, koja ima integralne krive date evolucionim 
jednačinama Σ. Lagranžeova geometrija sistema Σ je geometrija S∗

 koja je dinamički system, na TM, 
suštinski pridružen u Σ. Dobijeni rezultati su novi  i originalni. 

Ključne reči: Lagranžeov prostor, semisprej, dinamički sistem, Lagranžijan mehaničkog sistema 
 


