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Abstract. In this article, the standpoint is the terms action and principle in classical 
mechanics. The ontological clarification of the term "action'' is defined through expressions (1), 
(2) and (3). The example of the linear body motion is showing uselessness of the standard 
action integral. Then, using the integral (4), the term "Action of force", is defined. The action of 
the inertia force will be named "counteraction". Similarly, the term the "principle of 
mechanics" is analyzed and defined. The principle of action and counteraction is formulated. 
The independence of this principle is proved, with the comparison of generalized variational 
principles of mechanics. We give the very simple, but essentially important examples. 
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1. INTRODUCTION 

The terms indicated in the title, action and principle, are not uniformly and unambigu-
ously defined in classical mechanics. Therefore, for the sake of a clear understanding of 
this paper, it is necessary to clarify this statement and then to proceed to a generalization 
and definition of the concepts of action and principle. 

The first concept of action can be found in the work of Leibnitz (1669) (Ref. [1], 
p.782) as the actio formalis, whose dimension is a product of mass, velocity and path. 
According to Newton's definition, [2] it is written that: "Vis impressa est actio in corpus 
exercita, ad mutandum eius statum vel movendi actio'', (An impressed force is exerted 
upon a body, in order to change its state of uniform motion, in a right line). ([2a], 4). 

Accordingly, the force is defined by means of the concept of action that has not been 
previously defined and thus it is assumed to be clear and known. The concept of actio 
was later used by Christian Wolff (1726): " actio consists of mass, velocity and 
space.''([1], pp. 111, 750, 787). Maupertuis P. L. wrote (1746): "The quantity of action is 
a product of the body masses, their velocities and the distances they are traversing'' ([1], 
pp. 53, 881). Euler L. found (1748) that the sum of all momentary actions has the form 

 ∫dt ( ∫ +′′′′+′′+ ...)vdVvdVVdv ,  (1)  
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where VVV ′′′,,  are forces expressed as functions of distances vvv ′′′,, , ([1], pp. 76, 791, 
882). Let's also quote Hamilton (Ref. 1, p.179) who wrote (1834) that  the integral 

∫∫∑ =′+′+′= TdtdzzdyydxxA 2)(1  

namely accumulate living force (vis viva) often termed as the action of system from its 
initial to its final position. In the Van Nostrand's Scientific Encyclopedia, Second Edition 
(New York, 1947) it is formulated in the following way: "ACTION: In certain 
discussions of dynamics there is a need of an expression for the product of twice the 
mean total kinetic energy of a system of particles, during a specified interval of time, by 
the duration of the interval. This product is called action. Mathematically, it is expressed 
by 

 dtEA
t
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in which Ek is the kinetic energy and t0, t1 are the times of beginning and ending of the 
interval'' The concept of action has been much more or quite sufficiently discussed in the 
above-mentioned anthology [1]. Still, for our purpose here let's also quote a few 
sentences from A. Sommerfeld's book [3], (1944):" . . . just as power is defined as energy 
magnitude time, so action is defined as energy magnitude x time''. "When we speak about 
the cause and action, we imply that the action is a consequence or result'' . . . "However, 
afterwards, if the term action is sanctioned by Hemholtz and Planck, each attempt to 
substitute it by some other term will be without perspective'' . . . "As an example, the 
elementary quantum of Planck's action can be used". In further development of analytical 
mechanics the concept of action was accepted in the form Pof the functional 
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where L ),,( tqq &  is the kinetic potential, often called Lagrange's function. The physical 
dimension of action are ML2T −1; dim mass m = M, dim lengt l = L, dim time t = T. 

2. THE DEFINITION OF THE TERM ACTION OF FORCE AND COUNTERACTION 

Here we will retain the accepted dimensions of action, but we will uniformly define 
the term action of force and the term counteraction. 

Definition 1. The action A(F) of a force F during an interval of time [t1 − t0] is deter-
mined by the integral 
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where W(F) is the work of all resulting forces Fv on the v-th dynamical point Mv with arc 
Sv of the path Sv ∈ S. As it is well known the work of the forces, in general case, is a 
curvilinear integral 
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If the force F is potential then W(F) is just a negative potential energy in the current 
point of the path S. 

At first sight it may appear that it is just a different formal way of writing. However, 
this definition - just like Euler's action (1) has more important both mathematical and 
physical differences with respect to action (3) or (2). In paper [4], it is shown that func-
tional (3) is not invariant with aspect to Lagrange's generalized coordinates 
q = (q1,...,q n)T ∈ M n and Hamilton's (p,q) ∈ T ∗M n canonical variables for rheonomic 
systems. Namely, for mechanical systems with time-independent constraints, the 
functional (2) and (3) can be written with respect to Descartes' coordinates y, curvilinear 
coordinates x, generalized independent coordinates q as well as with respect to 
Hamilton's coordinates p, q in invariant form 
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However, if the constraints of the system depend on time, [4], relations (5) and (6) 
loose both mathematical and physical sense, since it is 
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because in the classical interpretations 
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The action (4) is invariant with respect to all the above-mentioned transformations, 
that is 
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both for scleronomic and rheonomic mechanical systems. 
Definition 2. The action of the inertia force I, determined by integral 
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it will be named counteraction. 
For a material point of constant mass m, moving at the velocity v, it will be 
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Although integrals (2) and (3) seem to be similar in form to the integral (8), there is a 
basic difference between them. Namely, for a constant velocity motion, integral (8) is 
always zero, 
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while integrals (2) and (3) may attain arbitrarily large values. In additional, integral (2) is 
the action by definition, and in relation (8) it appears as the consequence of action of 
inertia force (7) 

A very simple example of a mass point  moving at constant velocity v = c along an 
ideally smooth horizontal straight line very clearly points out a quantitative difference 
between action (2) and action of forces (4). Actions (2) and (3), in this case are 
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However, action (7) is  
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since in this example 0/ =dtdv . It is enough to give some thought to result (9) in or-
der to reach  the conclusion that such an action does not exist in nature while it is sense-
less in theory. The classical terms of action (2) and (3) differ from the new introduced 
ones, (4) and (7), not only by quantity, but also logically, which is seen from the 
following text.  

A. If the trajectory is given by parameterized finite equations of the form r = r(t) by 
differential equations of motion Fv =&m then the curvilinear integral of work can be re-
duced to definite integrals 
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Example 2. A material point of mass m moves along S of the spiral: 

 .,sin,cos ctztbytax =ω=ω=  
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Let us find the action of the force F in the interval [ ]2,0 10 ω
π

== tt . Since 
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we have .0,2,2 =ω−=ω−= zyx FymFxmF Thus 
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the work on the nonclosed path of spiral is zero, and then the action in this case is 

 0)( =FA . 

B. When one considers the general case of arbitrary forces, and the corresponding 
trajectories, then the problem can be treated as it is shown below. 

3. ON THE PRINCIPLE OF ACTION OF  FORCE AND COUNTERACTION 

The word principle (lat. principium) denotes, among other things, the following: the 
beginning, the basic rule, the basic teaching, the foundation of knowledge; ``Principle is 
only a noun, usually designating a law or rule"; (Webster's Dictionary of English Usage, 
1989, p. 771). In the literature on mechanics, there is no previous determination of what it 
is meant by the principle; however, there are widely spread titles and subtitles such as 
Principia Mathematica, Galilei's Principle of Relativity, Newton's Principle of Determi-
nacy, Variational Principles of Mechanics, Hamilton's Principle, Hertz' principle of least 
curvature ([6], pp.228-234) etc. In numerous books on mechanics one and the same 
assertion is referred to as a principle or law as well as a theorem. In order to avoid differ-
ent understandings of the principles of mechanics, the concept of the principle of 
mechanics here implies the following: an expression significance based on the intro-
duced concepts and definitions of mechanics whose truthfulness is not liable to verifica-
tion. 

In the book (Ref. 5, p. 91) Paul Appell  writes: " Principe de Légalité de l'action et 
de la réaction. - Newton a la énonc é, sous le nom de principe de légatité de l'action et de 
la réaction}, la loi suivasnte: Si un point M est sollicité par une force F due à la presence 
d'un autre point M', sette force est dirigé suivant MM' et le second point M' é prouve de 
lapart de M une force égale et directement opposé à} F.'' 

Likewise, the much respected scientist who explored the celestial mechanics Milank-
ovich M. ([7], pp. 44, 435) has used the phrase "the third Newton's law of action and 
reaction'' as well as "the principle of action and reaction''. In the sense of principles of 
mechanics and the definition (4) of action as they are understood here the term "the 
principle of action and counteraction'' can achieve the meaning of the principle if the 
counteraction is taken to be (7). Now the sentence of the principle: to action there is 
always opposed an equal counteraction could be written as: 

 )()( IF AA −= , (10) 

where " – " means "opposed". Regarding the fact that the inertia force is by definition 
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dt
dvI −=  relation (10) can be written in the form 
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As it can be seen, this is followed by important well-known assertions of theoretical 
mechanics. For the sake of a much clearer understanding of assertion (11) and its accep-
tance, let's first discuss the state of motion of a material point for which inertia force I is 
equal to zero. Accordingly, relation (11) is degenerated into equation 
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For the case that one point is acted upon only by two forces it will follow that 
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As it can be seen, for this relation it is sufficient that F1 = −F2 or F1 + F2 = 0 and this, 
in essence, is the assertion of the third Newton's law if the force and the action of force 
are equal. It is agreed that in the classical statement of the Newton's third law one has an 
isolated system consisting of two points, that act on  each other with forces F1 and F2 . 
The law says that in this case these forces are directed along the line connecting the 
points and satisfy F1 = −F2. Note that if the vectors of forces, originating from the two 
points M1 and M2 have equal size and direction, and have opposite orientation, then the 
third point exists, where the sum of forces is zero; that point C is not moving , or it has 
uniform and rectilinear motion. 

In order to understand better our statement, let's quote the Newton's 

LEX.III: Actioni contrariam semper et aequalem esse reactionem: sive corporum 
duorum actiones in sae mutuo semper asse aequales et in partes contrarias. 

Translated in English, [2a]: That reaction is always contrary and equal to action: or, 
that the mutual actions of two bodies upon each other are always equal and directed to 
contrary parts. 

Thus, in this axiom or law, the used terms are action and reaction. The words force or 
vis, are not mentioned here, as they are mentioned in Lex I and Lex II. We are trying to 
make a clear difference between the terms force and action of force, as well as between 
the terms principle and Law. However, for the pretension to claim that relation (11) 
represents the principle of mechanics it should also be related to arbitrary systems of N 
dynamic points. Relation (11) comprises it; thus, it can be written in a more recognizable 
form 
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where ∑=
k

ikiF F  is the resultant force of all applied forces acting upon point i-th, and ∆r 

is a possible displacement of point i-th, [8] N conditions would follow from here in the 
form of equations 

 0=+ iIFi ),...,1( Ni =  (13) 

while this system of equations in mechanics represents D'Alembert's principle. Therefore, 
relation (11) or equivalent relation (12) is more general than this well-known general 
principle of dynamic equilibrium (13) leading to the conclusion that the relation (12) is 
also a principle. Yet, for relation (11) to become a principle of mechanics in our previ-
ously defined sense, it is necessary to generalize upon real displacement by any other 
arbitrary possible displacement, for example ∆r this requires the introduction of the con-
cept of work by any possible hypothetical trajectory S*, that is 
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and  adequate possible action of forces upon this trajectory  
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Where  is 1
**

+=∆ kk NNs N and the point N 1+∈ kkk NN ; 1,...,1,0 −= nk . 
Since this way of writing the integral is not traditional, let's clarify our understanding 

of the term ``possible hypothetical actual trajectory'', as well as rs ∆≈∆ * . The functions 
of trajectory consist of independent variables, and also of some geometrical and 
kinematic constants. For example, the simplest function of the straight line, which is 
passing through one point of the plane xy is y = αx + β, (α,β = const.). For α = 1 β = 1 is 
the observed continuous line (Fig. 1). 

 
Fig. 1. 
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For the case α ≈ 1 and y0 = 1, this S* is a set of punctual line. If α = 1 and y0 ≈ 1 we 
obtain the bundle (sheaf) of parallel line (Fig. 1). For the more probable possibilities, that 
α and β are approximately close to each other in the neighborhood each point N ∈ S 
there are many possible displacements ∆s in the neighborhood of the observed line 
y = αx+y0. The line S symbolizes all possible lines S*. Thus the possible work W* (F) of 
force F on the path ∆s* differs from the standard integral  

 ∫ ∫ ++=⋅
S S

zyx dzFdyFdxF )dsF .  

As ∆s is a possible size, and ds is a defined differential of path in the clearly defined 
point of trajectory, it is possible to calculate it using the standard integral calculated. We 
can see that from formula (14), the work cannot be calculated, as δs is a hypothetic line 
which is not precisely determined. Instead, the integral form is analyzed in the same way 
as for the differential principle of possible displacement. Within the context of what has 
been said here, relation (10) would have the generalized form 

 )(*)(* IF AA −=  (15) 

and relation (11) would have the form 
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The truthfulness and existence of this relation are confirmed by following 

 0)( =∆− rvF
dt
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from relations (13) as a necessary and sufficient condition. Accordingly, relation (15a) 
represents an operational form of the verbal expression of the principle of mechanics. 

The principle of action and counteraction. Total or possible action A(Q) of 
generalized forces Q and generalized forces of inertia I upon a possible displacement is 
equal to zero as it is determined by the equation 
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t

W * 0)](*)( =+ dtIWQ . (16) 

The assertion that on the basis of this principle the whole theory of dynamics can be 
developed is justified by the statement that it is from this principle that, as a consequence, 
three Newton's axioms or laws follow, just like the general differential D'Alembert-La-
grange's principle comprising all the mechanical systems. The opposite proof is also sim-
ple. If equations (13) are multiplied by scale by respective vector of possible displace-
ment 
 qq ∆∂∂=∆ )/( rr   

and if thus-obtained equations are added and the whole sum is integrated in time interval 
t0 − t1, relation (15) is obtained. This principle is invariant with respect to all common and 
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usable transformations of the coordinates. With respect to the previously introduced 
coordinates, relation (16) can be written in the following forms: 
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inertia forces. 

4. THE COMPARATION WITH INTEGRAL VARIATIONAL PRINCIPLE 

First of all, let's set the facts that the concepts of real displacement, possible displace-
ment and variation differ from one another here. Real displacement is displacement of a 
material point in time dt along the real trajectory; possible displacement ∆r is any small 
distance in the vicinity of the observed point that is allowed by constraints f (r,t) = 0, ([9], 
p. 84) in non-singular area; the variation here assumes deviation of the observed point 
from the real trajectory due to a possible change of some or more parameters that final 
equation of motion depend on, that is,  

 δα
α∆

α−α∆+α
=δα

α∂
∂

=δ
→α∆

),(),(lim:
0

tt rrrr    

For the sake of a more general and shorter presentation further on, let's observe the 
mechanical system upon configuration manifolds M n+1. The elementary work δW(F) of 
the force F upon variation δr delta is by definition  
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N
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1
. 

Generalized variational action principle. Starting from definitions (4) and (7) and 
the understanding of the principle of mechanics given here, as it has previously been 
stated, the general variational integral principle can be formulated ([9], p.104) as: Varia-
tions of all actions A(F) of applied forces F during time [t0,t1] is equal to variation of 
action A(I) of inertia force I for the same amount of time, that is 
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for I = 0. Relations (17) and (18) are not obtained by formal varying of relations (4) or 
(11a) as can be seen by sign "-"; relation (11) represents a sum of all the actions, while 
relation (17) represents a difference of variational of action (4) of the imposed forces and 
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variational of action of the inertia forces. The formula (4) represents the action of all im-

posed forces F, while ∫δ
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dtW )(F  represent a variation 
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Because  variation δt of independent variable t is zero. If a force F has a function of 
force U(r), e.g. if F = gradU, the following is 
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In case of  our Example 2. for motion a material point of mass m along the spiral:  
 ,,...,222 ctzRyx ==+  

let us find the variation 
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Second approach: In any point M(x,y,z) of spiral, the forces are ,0,, === zyx FcyFcxF  and 
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This makes the principles mutually independent. However, as it is necessary, the 
principles are mutually equivalent. 

Hamilton--Ostrogradsky's principle. From relation (17), for I ≠ 0 it follows Hamil-
ton's-Ostrogradsky principle, Ref. [2], 
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where Q = ( Q1 , . . ., Q n ), δ q:=( Tnqq ),,1 Kδ and ji
ijk qqaE &&2/1=  kinetic energy of systems. 



  The Action of Force and Counteraction Principle   69 

Proof: Work W(I) of generalized inertia forces 

 )()( lk
kl

j
j

ij

j

iji qqG
dt
qda

dt
qDqaI &&

&&
+−=−=   

is equal to negative kinetic energy Ek. Really, 
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Hamilton's principle. In the case of the potential forces, when the work is equal to 
non positive potential energy Ep and I ≠ 0, relation (17) or (19) reduces to Hamilton's 
principle 
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For inertial motion (I = 0) or for a static case the principle of action reduces to (18) or 
to the equivalent form  
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This is equivalent to generalized conditions of equilibrium 

 .0=iQ  

For a system with scleronomic constraints all relations above have the same form ex-
cept that the indexes i,j go over 1,2,…,n (instead 0,1,…,n) when n is the number of de-
grees of freedom of the scleronomic system. 

CONCLUSION 

In this paper we introduce into Analytical Mechanics the term Counteraction as inte-
gral t0∫

 t1W(I)dt, where W(I) is work of inertia force I. The new Principle of action of force 
and counteraction is formulated then by the relation 
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where W*(Q) is the work of generalized force Q on possible trajectory S*. In order to 
prove the independence of this principle from other integral principles, we compare it 
with the realized Variational principle of action, Ref. [12, 13, 14], 
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PRINCIP DEJSTVA SILA I PROTIVDEJSTVA  

Veljko A. Vujičić 

Više znamenitih autora dela iz klasične analitičke mehanike nazivaju treću Njutnovu aksiomu Princip 
dejstva i protivdejstva. Ovde se pokazuje da se ta aksioma ne može smatrati principom mehanike. Reafirmiše se 
Ojlerov pojam dejstvo sile i uvodi pojam Protivdejstvo, kao dejstvo sile inercije u toku vremena kretanja. 
Fizička dimenzija dejstva sile jednaka je, kao i u klasičnom shvatanju, proizvodu dimenzija rada i vremena. 
Medjutim, pri ravnomernom kretanju protivdejsvo jednako je nuli, što se znatno razlikuje od odgovarajućeg 
standardnog dejstva, koje je proporcionalno intervalu vremena kretanja. Princip dejstva sile i protivdejstva 
definisan je matematickom relacijom kao iskazom: Dejstvo sila je jednako i suprotno usmereno protivdejstvu. 
Ovaj princip ne može se identifikovati sa trećom Njutnovom aksiomom. Na osnovu ovog iskaza može se razviti 
skladno cela teorija o kretanju tela, što ga čini principom mehanike. U cilju boljeg poimanja stvari ovaj princip 
je uporedjen ovde sa integralnim varijacionim principima mehanike. 

Ključne reči: Analitička mehanika, principi, dejstvo, protivdejstvo. 


