
FACTA UNIVERSITATIS  
Series: Mechanics, Automatic Control and Robotics Vol. 5, No 1, 2006, pp. 99 - 116 

 

ASYMPTOTIC APPROACHES IN THE THEORY OF SHELLS: 
LONG HISTORY AND NEW TRENDS   

UDC 531.3 

I.V. Andrianov1, J. Awrejcewicz2 
1Institut für Allgemeine Mechanik, RWTH Aachen,  

Templergraben 64, D-52056, Aachen, Germany 
2Technical University of Łódź, Department of Automatics and  

Biomechanics, 1/15 Stefanowski St., 90-924 Łódź, Poland 

This paper is dedicated to the memory of Professor J.J. Telega 

If no parameters in the world were very large or very small, 
 science would reduce to an exhaustive list of everything.  

L.N. Trefethen  

Abstract. This paper provides a state-of-the-art review of asymptotic methods in the Theory of 
Plates and Shells (TPS). Asymptotic methods of solving problems related to TPS have been 
developed by many authors. The main features of our paper are: (i) it is devoted to the basic 
principles of asymptotic approaches, and (ii) it deals with both traditional approaches, and less 
widely used, new approaches. The authors have paid special attention to examples and discussion 
of results rather than to burying the ideas in formalism, notation, and technical details. 

Key words: plates, shells, asymptotic methods, homogenization 

1. INTRODUCTION 

The theory of Plates and Shells (TPS) is applied usually for technical purposes. How-
ever, a role of today’s modern TPS is certainly wider. In fact, in many important cases 
the physical objects cannot be described by equations of 3D theory of elasticity. The 
examples can be biological membranes, liquid crystals, thin polymeric films, thin-walled 
objects made from materials with shape memory, as well as various nanostructural de-
vices. TPS does notgive only practically useful results, but it also outlines a general 
methodology of the transition from 3D to 2D (or 1D) models. It is worth noting that 
development of mathematical physics in many cases has been motivated by TPS prob-
lems, in particular we mean the problems associated with the application of variation and 
asymptotic methods (AMs). Note that a key (for singular asymptotics) concept of an edge 
effect appeared in the works of Lamb and Basset in 1890, while the concept of boundary 
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layer occurred in Fluid Mechanics only in 1904 [1]. The classical papers by Vishik and 
Lyusternik are a generalization of some results obtained earlier by Gol’denveizer [2]). On 
the other hand, TPS problems associated with high technology development of materials 
and constructions implied development of various homogenization procedures [3-12]. 
The investigation of rods stability yielded a linearization procedure, whereas Koiter’s 
approach [13] has strongly influenced today’s Catastrophe Theory.  

Generally, AMs are applied in the field of TPS first for transition from 3D to 2D mod-
els, and then to solve 2D problems. Our attention is focused on the latter problem. 

2. ON THE PARAMETER OF ASYMPTOTIC INTEGRATION 

Almost always while considering any asymptotic behavior, a term “small” or “large” 
parameter is applied. Since this traditional meaning may lead to confusion, we further 
apply the term of “asymptotic integration parameters”, not restricted to be necessarily 
small (large). Notice that any asymptotic analysis should begin with normalization of the 
problem, that is defining it in terms of non-dimensional variables whose typical scale is 
of the order of one, and the relative magnitude of different physical effects is measured 
by non-dimensional parameters or dimensionless groups [14]. In particular, in TPS the 
following parameters are often used: h/R is the ratio of shell thickness to its characteristic 
size, i.e. radius [2, 15]; a/b is the ratio of characteristic dimensions (i.e. a plate length to 
its width) [16]; ω−1, where ω is the dimensionless frequency of vibrations [17]; A is the 
dimensionless amplitude of vibrations [18]; ε = w / h, where w is the normal displacement 
(the case ε << 1 belongs to Koiter’s asymptotics [13], whereas the case ε >> 1 is called 
Pogorolev’s asymptotics [19]); B1 / B2 is the ratio of bending stiffnesses of structurally 
orthotropic shell or the ratio of shear rigidity to membrane rigidity [20]; a small deviation 
of shell shape from canonical one [21] or a changeable thickness from a constant one; the 
ratio of shallow shell rise H to curvature radius R, and so on. 

For periodically non-homogeneous plates and shells, the small parameter is the ratio 
of a period of non-homogeneity to a characteristic size of considered structure [3-12]. 

If it is impossible to define a suitable real physical parameter, it can be introduced to 
equations in a purely formal manner (artificial parameter of asymptotic integration) [22]. 

“Let us try to find the asymptotics of some nontrivial solutions. First of all it is neces-
sary to guess (no better word may be chosen) in what form this asymptotics must be 
sought. This stage – guessing the form of the asymptotics – of course, defines formaliza-
tion. Analogies, experience, physical considerations, intuition, and ‘just lucky’ guesses 
are the toolkit which is used by every investigator”. But after the introduction of the 
parameters of asymptotic integration and after the choice of an AM, it is not necessary to 
‘reinvent the wheel’ – it is better to use some well known and well worked out approach.  

3. HOW TO FIND PARAMETERS OF ASYMPTOTIC INTEGRATION 

One of the most peculiar aspects of TPS is that associated with the existence of a few 
parameters of asymptotic integration yielding complexity of the problem being analyzed. 
In general, this fact is omitted in most studies. Therefore, a domain of application of the 
results is not clear enough. Gol’denveizer [2] indicated the importance of estimation of 
the order of coefficients of the PDE and differential operators. In reference [2] the index 
of variation of a function has been introduced and found to be very convenient. For 
example [2, 15, 16, 23, 24]  
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~ ;xw wαε ~ ;yw wβε ~ .tw wγε  
To compare the orders of several functions their indices of intensity are introduced in 

the following way 
~ ;w δε ~ .w uσε  

Parameters of asymptotic integration α,β, etc. are chosen in a way which yields a 
generalization of the Newton polygon. Notice that one gets finally not only simplified 
BVP, but also the estimation of application domains for used asymptotic simplifications. 

Let us introduce some remarks. Solutions of linear BVP of TPS usually include 
exponential and trigonometric functions, which cause the efficiency of the described 
technique. But, for example, the solution of corner boundary layer type can contain pow-
ers of coordinates, and in this case the indices of variations should be applied carefully. 
In addition it should be noted that the described technique gives local estimations. 

Although Gol’denveizer’s monograph [2] was published long time ago, some of the results 
reported there have been reconsidered again in the frame of the so called power geometry [25]. 

Key steps of the method will be illustrated by the example of a membrane lying on an 
elastic support and governed by the equation 

 1 1( ) 0xx yyw w wε + + = . (1) 

The parameters of asymptotic integration α, β are introduced 
α β

1 1~ε , ~ , - α, βx yw w w wε ∞ < < ∞ . 

Exponents of ε power for all terms of equation (1) follow: 

1-2α; 1−2β; 0. 

Considering plane α β (see Fig. 1), the areas corresponding to the smallest values of 
exponents associated with all terms of equation (1) are constructed. 

 

Fig. 1. Newton polygon for equation (1). 
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Note that exponent 1−2α is the smallest one under the choice of α and β values in 
area 4, exponent 1−2β – in area 1, and exponent 0 − in area 6 (areas 1, 4, 6 are open sets, 
i.e. their boundary lines are not included). 

In areas 1, 4, 6 the limiting equations follow 

1 10; 0; 0yy xxw w w= = = . 

The equations include only one term. The values of α and β associated with the equa-
tions with two terms are located on boundary lines (without point α = β = 1 / 2) 

1 1 1 10; ε 0; ε 0xx yy xx yyw w w w w w+ = + = + = . 

Finally, for α = β = 1 / 2 in equation (1) all terms remain. Since there are no blank 
spaces on the α β plane, there are no other limiting systems. 

Note that the occurrence of more than two parameters of the asymptotic integration 
results in an increase of the problem complexity. In references [26, 27] the effective algo-
rithms to solve the occurring problems are introduced, whereas in reference [28] a 
generalization is proposed. 

Simultaneous splitting of governing equations should be matched with an appropriate 
splitting of the associated boundary conditions. This complicated problem is discussed 
and illustrated in references [2, 15, 16, 23, 24]. 

4. TIMOSHENKO TYPE PLATE EQUATIONS 

Below, we consider an illustrative example showing the efficiency of AM [27]. 
According to Timoshenko, the effect of a shear deflection occurring for plate vibration is 
comparable to that of rotary inertia. However, the wave front sets are predicted incor-
rectly due to the Timoshenko theory. On the other hand, AM shows that a transverse 
compression effect is comparable with effects of rotary inertia and shear deflection. 
Correct asymptotic theory gives a proper location of wave fronts as well as averaged 
characteristics of stress-strain state in the vicinity of the mentioned fronts within two 
dimensional equations of the form 
 2 2

1 1 2 1 18 ( ) 0xx s yy xy x s x tta e cW a wϕ + ϕ + ϕ + − + ϕ − ϕ =  (2)  

 2 2
2 2 1 2 28 ( ) 0yy s xx xy y s y tta e cW a wϕ + ϕ + ϕ + − + ϕ − ϕ =  (3) 

 2
1 2( ) ( ) 0s xx yy x y tta w w e W w+ + ϕ + ϕ + − =  (4)  

 1 2
1( ) 0.5 016x y tt ttW c w W+ ϕ + ϕ + + =  (5) 

 1 1 2 2 2 1; ;x y y xM c cW M c cW= ϕ + ϕ + = ϕ + ϕ +  (6) 

 1 2x yN W c= + ϕ + ϕ  (7) 

 
2

2 1 1 1 1

2 2 2

( ); ;s x y x

y

H a Q w

Q w

= ϕ + ϕ = + ϕ = β

= + ϕ = β
 (8) 
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 1
2(1 )

e =
− ν

,
1

c ν
=

− ν
, 2

2

1 2
(1 )sa − ν

=
− ν

. 

Compare equations (2)-(8) with the equations of Timoshenko plate at the shear coeffi-
cient k2 = 2 / 3: 

 1 1 2 1 12
1

1 1 14(1 )( ) 0
2 2xx yy xy x ttw

a
− ν + ν

ϕ + ϕ + ϕ − − ν + ϕ − ϕ =  (9) 

 2 2 1 2 22
1

1 1 14(1 )( ) 0
2 2yy xx xy y ttw

a
− ν + ν

ϕ + ϕ + ϕ − − ν + ϕ − ϕ =  (10) 

 1 2 2
3 0

2xx yy x y tt
s

w w w
a

+ + ϕ + ϕ − =  (11) 

 
2

1 1 1 2

2 2
2 1 2 1 2 1

( );

( ); ( )
x y

y y s x y

M a

M a H a

= ϕ + νϕ

= ϕ + νϕ = ϕ + ϕ
 (12) 

 
1 1 1

2
2 2 2 1 2

;
1 2;
(1 )

x

y

Q w

Q w a

= + ϕ = β
− ν

= + ϕ = β =
− ν

 (13) 

Note that equations (2)-(8), contrary to (9)-(13), govern the velocities of all wave 
displacements even in comparison with the 3D case. 

Equations (9)-(13) can be obtained from equations (2)-(8), but using the asymptoti-
cally inconsistent procedure: the last term of equation (5) as well as the function N in 
equation (7) should be neglected, and expression W = −c(ϕ1x + ϕ2y) should be introduced 
to equations (3)-(5). 

5. INTERMEDIATE ASYMPTOTICS 

The idea of an intermediate asymptotics is related to the construction of certain 
particular self-similar solutions of non-linear problems, being asymptotics of a wide class 
of other solutions. Dynamic edge effect method (DEEM) proposed by Bolotin [17] gives 
a good example of the intermediate asymptotics. The main idea of this approach is 
separation of a continuous elastic system into two parts. In one of them – an interior zone 
– solutions may be expressed by trigonometric functions with unknown constants. One 
can use exponential functions in the dynamic edge effect’s zone. Then, a matching proce-
dure permits to obtain unknown constants, and a complete solution of dynamic problem 
may be written in a relatively simple form. This approximate solution is very accurate for 
high frequency vibrations, but even at low frequency vibrations the error is not excessive. 
DEEM is naturally generalized for nonlinear case [18, 23].  

We should also emphasize that DEEM works properly in connection with variation meth-
ods [18, 23]. This is due to the fact that the DEEM gives good approximation of displacements. 
While finding the eigenvalues the following general rule can be formulated: if you are looking 
for the eigenforms then asymptotics should be used; if you need an eigenvalue then the found 
asymptotic function can be used further by one of the variation methods. 
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6. HOMOGENIZATION APPROACH 

The replacement of a non-homogeneous shell by a homogeneous one with some re-
duced characteristics belongs to one of the most popular approximations in TPS. We can 
mention structurally orthotropic theories of ribbed, corrugated, perforated PS, PS with 
many attached masses, etc. For many years a design of similar simplifications depended 
fully on engineers‘ intuition, and the obtained quantities differed from each other depend-
ing on the theory used. Mathematical difficulties were caused by the occurrence of PDE 
with rapidly changing coefficients. Beginning from the 70s of the 20th century, the the-
ory of homogenization of PDE has been developed. It should be emphasized that a simi-
lar mathematical approach was proposed earlier in the theory of ribbed shells [12]. 

Using the homogenization approach one must deal with two successively solvable 
problems: a local problem for periodically repeated element (cell) as well as the global 
homogeneous problem with some reduced parameters. As a rule, the fundamental diffi-
culty is associated with solution of the cell problem. Although this problem can be solved 
numerically, an analytical solution is always highly required. The application of AM to 
solve local problems allowed us to get homogenized solutions for various periodically 
non-homogeneous TPS with correctly reduced coefficients. The areas of applicability of 
approximated theories are estimated, and full stress-strain states can be calculated. It is 
important that one can also predict boundary layers occurring in the vicinity of bounda-
ries. The lack of this knowledge does not allow the shell stress-strain to be fully esti-
mated. Using the homogenization procedure one should take into account the relations 
between parameters of investigated structures. As an example, a deformation of a rein-
forced membrane governed by the following equation is analyzed 

 
2 2

12 2 ( , )u u q x y
x y

∂ ∂
+ =

∂ ∂
,     kl ≤ y ≤ (k+1)l . (14) 

The conditions of conjugations of the neighboring parts of membrane are 

 u ulim u lim u
y k 0 y k 0l l

+ −≡ ≡ ≡
→ + → −

, (15) 

 
2

1 2y
u u ud

y x

+ −⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− =⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

, (16) 

 u = 0       for  x = 0, H. (17) 

Let a characteristic period of external load be L >> l, ε =l/L <<1. We introduce the 
variables η = y/l , y1= y/L and the following series 

u = u0(x,y) + εα¹[ u10(x,y) + u1(x,y,η)] + εα²[ u20(x,y) + u2(x,y,η)] + … ,0 < α1 < α2 < … .  (18) 

Substituting (18) into (14)-(17), the following recurrent system is obtained 

 
2 2 22

2 10 0 01
2 2 2 2

 
u u uu

yx y
α− α−∂ ∂ ∂∂

+ + ε + ε +
∂ ∂η∂ ∂ ∂η

22
2 1 02

2 2 ( ) ( , )
 
uu O q x y

y
α− α− α∂∂

ε + ε + ε =
∂ ∂η∂η

;(19) 

 α α
0 10 1 0 10 1[ ε ( ) ...] [ ε ( ) ...]u u u u u u+ −+ + + = + + + ; (20) 
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2

α 1 01 1
2

α αε O(ε ) O(ε )
η η

uu u d
x

−
+ +⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂∂ ∂⎢ ⎥− + = +⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

where: q = L²q1; d =d 1 / L. (21) 

The character of asymptotics depends essentially on the order of magnitude of d in 
comparison to ε. Let us introduce the estimation: ~ εd β . 

Depending on the value of β one obtains the following limiting systems 

 0 <α < 2,   
2

1
2 0
η
u∂

=
∂

; (22) 

 α = 2,       
2 2 2

0 0 1
2 2 2 ( , )

u u u q x y
x y

∂ ∂ ∂
+ + =

∂ ∂ ∂η
; (23) 

 α > 2,       
2 2

0 0
2 2 ( , )

u u
q x y

x y
∂ ∂

+ =
∂ ∂

, (24) 

and the following conjugation conditions 

 β < α − 1, 
2

0
2 0

u
x

∂
=

∂
; (25) 

 β = α − 1, 1
21 α 01 1

2ε
η η
u u u

d
x

+ +⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞ − ∂⎢ ⎥− =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

; (26) 

 β > α − 1, 11

η η

uu ++ ∂⎛ ⎞∂⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

. (27) 

The plane of parameters β > 0, α > 0 is divided into nine parts (Fig. 2). 

 

Fig. 2. The plane of parameters β > 0, α > 0. 
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In zones 1−3 one has 
2

1
2 ( , )
η
u q x y∂

=
∂

. 

In zones 4−6 the equation has the form of (24). For zones 7 and 9 the limiting systems 
are incorrect. A particular role plays the case of α = 2, β = 1 (zone 8). The corresponding 
limiting equation is (23) and 

u+ = u− ;      
2

-1 01 1
2ε

η η
u u u

d
x

+ +⎡ ⎤∂ ∂⎛ ⎞ ⎛ ⎞ ∂⎢ ⎥− =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

. 

Homogenized BVP is 
2

2 01
0 2 ( , )

udu q x y
l x

∂
∇ + =

∂
. 

Equation (23) yields 
2

01
1 2

( , ) η (η )
ud x yu l

l x
∂

= −
∂

. 

Boundary conditions (17) are not satisfied. In order to construct a boundary layer ub 
the new “fast” variable ξ=x/l is introduced and the following series is applied 

un = εγ¹u11(x, y, ξ, η) + εγ²u22(x, y, ξ, η) + … ,      0 < γ1< γ2< … . 
BVP for u11 are as follows 

2 2
11 11
2 2 0
ξ η
u u∂ ∂

+ =
∂ ∂

;      u11| η=kl=0, k=0, ±1, ±2, … . 

Then, the further construction of a boundary layer may be easily carried out. 

7. DISTRIBUTIONAL APPROACH 

Terms like a(x / ε) often occur in the asymptotic problems. In order to introduce 
parameter ε explicitly, it is useful to apply the distributional approach [29]. As a model 
problem we consider a transition from 2D ribs to 1D ones. The governing PDE for bend-
ing deformation of an infinite plate on the elastic foundation, reinforced by periodic sys-
tems of ribs in two main directions, is 

1 1 2 2( ) ( ) ( , ),xxxx yyyyD w Cw D F x w D F y w q x y+ + + =∆∆  

1 1 1

2 2 2

( ) [ ( ) ( )];

( ) [ ( ) ( )].

n

n

F x H x nl H x ml a

F y H y nl H y ml a

∞

=−∞

∞

=−∞

= + − + +

= + − + +

∑

∑
 

We suppose that the ribs are thin and choose their width a as the parameter of asymp-
totic integration. To introduce parameters a, b explicitly, we analyze function 
f(x) = H(x) − (x + a). Applying two-sided Laplace transformation, and using development 
into a Maclaurin series, one obtains 
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1

1
( ) ( 1) /( 1)!,n n n

n
f p a a p n

∞
+

=

= + − +∑  

where: ( )f p  is the Laplace transform of f(x) ( x p→ ). 
The inverse Laplace transform leads to the following series 

1 ( )

1
( ) ( ) ( 1) ( ) /( 1)!n n n

n
f x a x a x n

∞
+

=

= δ + − δ +∑ . 

Functions F1(x) and F2(y) can be expanded in a similar way. As a result, we obtain the 
following equation: 

1 1 2 2( ) ( ) ( , ),xxxx yyyyD w Cw D x w D y w q x y+ + + =∆∆ Φ Φ  

2 1 ( )
1 10 11 12 1 1 1

2
( ) ( ) ( ) ( ) ( ) 0.5 '( ) ( 1) ( ),k k n

n n n k
x x x x a x nl a x nl a x nl

∞ ∞ ∞ ∞
+

=−∞ =−∞ =−∞ =

Φ = Φ + Φ + Φ = δ + − δ + + − δ +∑ ∑ ∑ ∑
2 1 ( )

2 20 21 22 2 2 2
2

( ) ( ) ( ) ( ) ( ) 0.5 '( ) ( 1) ( ).k k n

n n n k
y y y y a y nl a y nl a y nl

∞ ∞ ∞ ∞
+

=−∞ =−∞ =−∞ =

Φ = Φ + Φ + Φ = δ + − δ + + − δ +∑ ∑ ∑ ∑  

A solution to the equation can be sought in the form of the following series: 

0
0

i
i

i
w w a w

∞

=

= + ∑ . 

In the zero order approximation one gets a plate with 1D ribs 

0 1 10 0 2 20 0( ) ( ) ( , ).xxxx yyyyD w Cw D x w D y w q x y∆∆ + + Φ + Φ =  

An influence of the ribs width appears in the next approximations.  

8. REAL AND ASYMPTOTIC ERRORS 

Accuracy of AM is usually estimated by an asymptotic error, i.e. owing to the order 
of estimation of the last omitted term. However, a TPS analyst is more interested in a real 
rather than asymptotic error. It may happen that in order to increase real accuracy of the 
obtained solution one has to omit the asymptotic character of constructed solutions. Some 
methods for decreasing the real error of constructed approximate solutions follow. 

1. Asymptotically accurate semi-membrane theory of cylindrical shells can be devel-
oped using the condition of absence of shear and ring deformations in the shell 
middle surface. However, the condition of absence of shear deformations is real-
ized with less accuracy than for ring deformation. Although, a theory, constructed 
on the basis of only ring deformation absence is asymptotically inaccurate, practi-
cally it gives more accurate results. 

2. Owing to the asymptotic splitting of BVP, a fundamental error is introduced by 
simplification of the boundary conditions. In many cases one may analytically ob-
tain a general solution of edge effect equations. Using this solution, it is possible 
to exclude exactly the terms of edge effect solution from boundary conditions and 
avoid splitting of the boundary conditions. 
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3. The method of composite equations is devoted to constructing uniformly suitable 
solutions on the basis of various limiting cases. A fundamental idea of the method 
can be formulated in the following way. First, the components of the governing 
equations are detected, which, when neglected, lead to non-homogeneity in a zero 
order approximation. Second, the mentioned components are defined in a rela-
tively simple way (they must include essential properties in the non-homogeneous 
states). Matching of the limiting relations leads to uniformly suitable equations. In 
the TPS a composite equation of the stress-strain fundamental state has been ob-
tained, unifying the semi-membrane and membrane theories and a plane plate 
deformation. A simple edge effect and bending of the plate are included in a 
composite equation of the edge effect type. The obtained composite equations are 
of the fourth order because of a longitudinal variable and are applicable in the 
whole range of different loadings [18, 23]. 

4. In order to improve the accuracy with a help of AM of the zero order approxima-
tion, one may apply either variation methods or Newton-Kantorovitch approaches. 

9. BEYOND THE SERIES LOCALITY 

The principal shortcoming of AMs is the local nature of solutions based on them. 
Problems of elimination of the expansion locality, evaluation of the convergence domain 
and construction of uniformly suitable solutions are very urgent. 

There are many approaches to these problems [18, 22, 23, 30-32]: the method of ana-
lytic continuation, Borel summation procedure, Euler transformation, Domb-Sykes dia-
gram. As a rule, they need a significant number of the expansion components. 

Not diminishing the merits of the mentioned techniques, let us, however, note that in 
practice only a few of the first components of the expansion of perturbations are usually 
known. Lately, the situation has indeed changed a little due to computer application. It 
may happen that a number of terms of asymptotic series can be increased without any 
serious problems. For instance, computing improvement terms with respect to an eigen-
value are usually successfully defined by eigenvalues and eigenfunctions. The knowledge 
of the n-th eigenfunction allows us to define 2n+1 eigenvalues [33]. However, until now 
there are usually 3-5 components available in a perturbation series, and exactly from this 
segment of the series we have to extract all available information. To this end the method 
of Padé approximants (PA) may be very useful. 

Let  

 0

0 0

( ) ,

( ) / ,

i
i

i
m m

i i
mn i i

i i

F C

F a b

∞

=

= =

ε = ε

ε = ε ε

∑

∑ ∑
 

where the coefficients ai, bi are determined from the following condition: the first (m+n) 
components of the expansion of the rational function Fmn (ε) in a Maclaurin series coin-
cide with the first (m+n+1) components of the series F(ε). PA performs meromorphic 
continuation of the function given in the form of the power series. If the PA sequence 
converges to a given function, then the roots of its denominators tend to singular points.  
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A wide application of the PA is observed due to its suitable properties. Among others, 
we should mention the effect of error autocorrection: even very significant errors in the 
coefficients of PA do not affect the accuracy of the approximation. This is because the 
errors in the numerator and the denominator of PA compensate each other, because the 
errors in the coefficients of the PA are not distributed in an arbitrary way, but from the 
coefficients of a new approximant to the approximated function. 

PA can be used for a heuristic evaluation of the domain of applicability of a perturba-
tion series. The ε values, up to which the difference between calculations according to the 
truncated perturbation series and its diagonal PA do not exceed a given value (e.g. 5%), 
can be considered as a limiting value for applicability of the perturbation series. 

10. HOMOTOPY PERTURBATION TECHNIQUE 

Dorodnitzyn (1969) proposed a method of introducing the parameter ε into the input 
BVP in such a way that for ε = 0 the simplified problem is obtained, whereas for ε = 1 the 
input problem is governed. Then, the perturbation method can be used. Now this ap-
proach is known as a homotopy perturbation technique [31, 34]. The main problem for it 
is the divergence of perturbation series for ε = 1. In order to overcome the occurring 
difficulties, the PA can be used effectively [18, 22, 23]. 

Let us focus on the application of the homotopy perturbation method [18, 22, 23] 
when solving mixed BVP – the vibration of a rectangular plate (−0.5k ≤ x ≤ 0.5k, 
−0.5 ≤ y ≤ 0.5) , simply supported at x = ±0.5k, and having mixed boundary conditions of 
the “clamped - simple supported” type, symmetrical to the y axis or the sides y = ±0.5k 
(Fig. 3). The governing equation is 

4 0.w w∇ − λ =  

The boundary conditions after introducing a homotopy parameter have the form 

0,         0        0.5 ;

0,     ( ) ( )      0.5,
xx

yy yy y

w w for x k

w w H x w w for y

= = = ±

= = ε ± = ±
 

where: ( ) ( ) ( ).  H x H x H x= − − µ + − − µ  
Substituting w and λ in the form of ε-series: 

0 1 0 1...,   ...w w w= + ε + λ = λ + ελ + , 
and after applying the usual perturbation procedure, one has 

 4 2 2 2
0 1, 4 ,mmnλ = π ψ λ = π γ  

{ }

2 2
2 2 ( 1) ( 1)

2 2
1,3,5,...
2,4,6.....

( 1) 2 2 2

2 2 2( 1)

3 24 1 '
2 2 2 2

( / 2)
,      

( / 2)

m i

i

i

mm i
mm im i

i
i

i i

i i

n nn cth cth

cth i m n k
i m n kcth

∞
− −

=
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−

−

⎫⎧ ⎤ ⎡⎡γ απα πα ⎛ ⎞⎛ ⎞⎪ ⎪λ = π γ − + − − γ α⎨ ⎬⎥ ⎢⎢ ⎜ ⎟ ⎜ ⎟ψ ψπ ψ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎣⎦⎩ ⎭

⎤⎧ ⎫ ⎧ ⎫−φ φ > +⎪ ⎪ ⎪ ⎪⎥+ ⎨ ⎬ ⎨ ⎬
⎥ < +⎪ ⎪β β⎪ ⎪ ⎩ ⎭⎩ ⎭⎦

∑

.

where: 
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2 2

2 2
2 2,      2 ,m mn n

k k
ψ = + α = +

2 2 2 2
2 2

2 2,      ,i i
i m m in n

k k
+ −

α = + β = π +  

 2 2

( 1)2(0.5 ) sin(2 ),         

4 1 sin( ) cos( )
( )

sin( )cos( ) ,        ,

m

im

m for i m
m

i
i m

mm i

m
m i for i m

i

⎧
−⎪ − µ + πµ =

⎪ π
⎪

⎡⎧ ⎫⎪γ = πµ πµ −⎨ ⎢⎨ ⎬π − ⎩ ⎭⎪ ⎣
⎪ ⎤⎧ ⎫⎪− πµ πµ ≠⎨ ⎬ ⎥⎪ ⎩ ⎭ ⎦⎩

 

∑ '  is the sum without the component i = m. 

 

Fig. 3. Relationship between the vibration frequency λ and the clamped segment length. 

Truncated perturbation series for µ = 0 (both sides y = ± 0.5 are completely clamped) 
for the square plate gives (1.4783π)4. PA is 

 0 1

1

( ) ,
1p
a a

b
+ ε

λ ε =
+ ε

 0 0 1 1 1 0 1 2 1,   ,   /a a b b= λ = λ + λ = −λ λ , 

and for ε = 1 one obtains λp = (1.7081π)4, while numerical value λ = (1.7050π)4 Figure 3 
presents the relation of λ versus µ and some experimental data (dots and triangles). 
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11. THEORIES OF HIGHER ORDER APPROXIMATIONS 

In order to increase approximation accuracy the terms of higher order may remain in 
the input equations, but such an approach can increase the order of the approximate PDE. 
This problem can be overcome by PA. Let us consider vibrations of a stretched beam 

 0w w wττ ξξ ξξξξ− + ε = ; (28) 

 0 0,1.forw wξξ= = ξ =  (29) 

A string type model is obtained from (28) for ε = 0 

 0w wττ ξξ− = ; (30) 

 0 0,1 .forw = ξ =  (31) 

Using PA for differential operator, one obtains 

 
2

2(1 ) 0w wττ ξξ
∂

+ ε − =
∂ξ

. (32) 

The associated boundary conditions have the form (31). Observe that if the model 
(30), (31) approximates eigenvalues of the initial problem up to the order of ε, then model 
(32),(31) includes the second order approximation of ε2 preserving the equation order 
with respect to the spatial coordinates. 

12. MATCHING OF LIMITING ASYMPTOTICS 

It happens often that solutions related to two limiting values of a certain parameter 
can be easily constructed. In this case one can define a solution valid for all parameter 
values with a help of two-point PA [18, 22, 23]. Let 

 0

0

        when     0,
( )

       when     .

i
i
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a
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∞
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∞
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The TPPA is represented by the following rational function 
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where: k+1 (k = 0,1, ...,n+m+1) are the coefficients of a Taylor expansion if ε → 0, and 
m+n+1-k are the coefficients of a Laurent series if ε → A coincide with the corresponding 
coefficients of the series (33).  

As an example we consider the problem of nonlinear deformation of a sphere. The 
solution  

 3 50.42 0.3 0( )Q = ε + ε + ε , (34) 

2 2
2

2

0.5 3 12( / ) 3 1 ,    ,qRw h Q
Eh

− ν
ε = − ν =  

has been obtained by means of the AM for a closed sphere subjected to the uniform 
external pressure q [19]. Here w is the amplitude of postbuckling axisymmetric equilib-
rium form. 

In the region of small displacements the Koiter approach is valid 

 41 0( )Q −= + ε . (35) 

By matching expansions (34) and (35) with the TPPA, one obtains the following solu-
tion [19] 

 
2.19
AQ

A
=

+
, 4 3 20.082 0.386 0.92A = ε + ε + ε + ε . (36) 

Curves 1 and 2 in Fig. 4 correspond to solutions (34), (36), respectively. Accuracy of 
solution (36) is confirmed by comparison with the precise numerical solution. 

 

Fig. 4. Matching of quasi-linear and essentially nonlinear asymptotics. 

In Figure 5 the results of comparison of experimental data for postbuckling equilib-
rium states of shallow elliptic parabolic-shaped shells under external pressure [35] with 
the solution based on TPPA [19] are shown, where: /w w h= ;  

2
1 2

2

0.5 3 1 P .qR R
Eh

−
=

ν  
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Fig. 5. Comparison of TPPA solution (solid line) with experimental results. 

The second example is associated with homogenization of a rectangular plate with 
circular perforations. Analytical solutions for small and large holes were obtained [12] by 
using the AM perturbation of the domain and boundary form. For the coefficients A and 
B of the homogenized equation 

( ) 2 ( , )xxxx yyyy xxyyA W W BW q x y+ + =  

one has the following expressions (for ν = 0.3): 

1 1,          ,
1 0.5785 1 0.6701

A B− λ − λ
= =

− λ − λ
 

where λ = b/a, b is the diameter of the hole, a is the length of the square cell side. 
Figure 6 shows the numerical results for A and B. 

 

Fig. 6. Homogenized coefficients of perforated plates 

The values of coefficients are compared with theoretical results, obtained by means of 
the two-period elliptic functions (curve 1 in Fig. 5) and experimental results (points in 
Fig. 5). 
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Evidently, the TPPA is not a panacea. As a rule, one of the limit expansions 
(ε → 0 or ε → A) contains logarithmic or exponential terms. In this case one can use the 
method of asymptotically equivalent functions (AEF). Suppose that we have a perturba-
tion approach in powers of ε for ε → 0 and asymptotic expansions F(ε) containing, loga-
rithm for ε → A. By definition AEF is the Ra ratio with unknown coefficients ai, bi, 
containing both powers of ε and function F(ε). The coefficients a, b are chosen in such a 
way, that the expansion of Ra in powers of ε matches the corresponding perturbation 
expansion and the asymptotic behavior of Ra for ε → ∞ coincides with F(ε). 

13. MERITS AND DEMERITS OF AM 

Advantages of AMs follow:  
1. Essentially simplified solutions, which in many cases can be obtained in an 

analytical way. 
2. AMs are easily matched with other approaches, i.e. numerical, variation ones, etc. 

Owing to the introduced simplification of the input BVP and separation of the 
associated peculiarities of the considered problem one may effectively apply 
numerical approaches. AMs allow us to exhibit the structure of solution and the 
type of approximating functions in Bubnov-Galerkin, Ritz, Trefftz and Kan-
torovich approaches. Owing to the construction of zero order solution, it can be 
applied as a starting solution for other iteration processes like the Newton-Kan-
torovich method. 

3. АМs are strictly associated with a physical aspect of the analyzed problem allow-
ing for it easier understanding. 

4. АМs allow us to explain mathematical and physical bases of approximated 
engineering methods, increasing their accuracy and reliability of obtained results. 

5. АМs give a possibility of a unified approach to various different problems exhibit-
ing their common aspects and internal unity. 

However, the main drawback of AM is generated by insufficiently accurate results of 
low approximations, while the construction of successive approximations is not always 
easy. Also the accuracy of the estimation of AMs and intervals of their applicability in 
many cases causes serious difficulties. 

CONCLUSIONS 

A choice of discussed and illustrated AM is mainly motivated by authors' subjective 
choice. Many important methods like WKB (Bauer et al., 1994) or matched asymptotic 
expansion [36] are omitted. Other interesting problems about the junction of plates and 
shells with 1D and 3D bodies or the junction of two shells [37, 38], the solutions of shell 
problems in singular domains [36, 39] have not been considered either. Finally, let us 
mention the AM application in the localization problems [16, 40]. 

It is expected that further development of AM is associated with combined numerical-
analytical approaches and include them in standard codes. This is important, because an 
accurate numerical computation of shells with arbitrarily small thickness is impossible in 
practice. Standard finite element codes usually fail to give accurate results for h/R~0.01 
or 0.001. 
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Nowadays in order to compute thin-walled structures, the standard finite element 
codes are used. It seems that an asymptotic information is rather rarely applied. On the 
other hand, AM belongs to fundamental ones during the construction of mathematical 
models of physical processes [14, 34]. “Design of computational or experimental 
schemes without the guidance of asymptotic information is wasteful at best, dangerous at 
worst, because of possible failure to identify crucial (stiff ) features of the process and 
their localization in coordinate and parameter space. Moreover, all experience suggests 
that asymptotic solutions are useful numerically far beyond their nominal range of valid-
ity, and can often be used directly, at least at a preliminary product design stage, for 
example, saving the need for accurate computation until the final design stage where 
many variables have been restricted to narrow ranges” [34]. 

Finally, there is an ocean of books and papers devoted to the considered problems, 
and only some of them are cited. On the other hand, a reader may find additional refer-
ences in [16, 22, 24, 32, 36, 40-44]. 
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ASIMPTOTISKI PRISTUPI TEORIJI LJUSKI:  
DUGA ISTORIJA I NOVI TRENDOVI  

I.V. Andrianov, J. Awrejcewicz 

Rad pruža kompleksan prikaz asimptotskih metoda u primeni na Teoriju ljuski i ploča (TPS). 
Asimptotiske metode rešavanja problema koji se odnose na teoriju ploča i ljuski razvili su mnogi autori. 
Glavne osobine ovog rada su: (i) posvećen je osnovnim principima asimptotskih metoda, i (ii) i bavi se i 
tradicionalnim i, manje rasprostranjenim, novim pristupima. Autori posebnu pažnju posvećuju primerima i 
diskusiji rezultata i ne opterećuju ideje formalizmom, komentarima i tehničkim detaljima 

Ključne reči: ploče, ljuske, asimptotske metode, homogenizacija 


