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Abstract. In this paper a new structure of the Smith predictor based on IMPACT 
structure for control with the long dead time is proposed. The proposed structure 
enables the extraction of the known class immeasurable disturbances and easy setting 
of controller parameters in order to achieve robust stability and performance. Both 
analytical analysis and simulation results show that the tuning of proposed structures 
is extremely simple due to relatively small number of tuning parameters all having 
clear physical meanings. Absorption principle is derived and implemented in the 
general case of continuous SISO systems with dead time. 
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1. INTRODUCTION 

Many physical systems, such as thermal processes, chemical processes, systems 
having transportation or diffusion, long transmission lines in pneumatic systems etc. 
contain time delays. Delays cause systems to destabilise or to degrade their feedback 
performance [1]. The risk of instability or performance degradation is more expressed if 
the time-delay is comparable to or greater than the dominant process time constants [2]. 
Conventional controllers, like the PID controllers could be used when the dead-time is 
small, but they show poor performance when the process exhibits long dead-times be-
cause a significant amount of detuning is required to maintain closed-loop stability. 
Therefore, several methods have been suggested to deal with such processes. The Smith 
predictor is a simple solution to this problem and was used to improve the performance of 
classical PID controller for plants with time delay [3]. Attention has been paid to this 
control structure over the years, but many researchers pointed out that the Smith pre-
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dictor is very sensitive to modeling errors. The most sensitive parameters are the time 
delay and the steady-state gain of the process [1]. As modified, Smith predictor have been 
proposed by several authors: some of them focused their attention on the study of auto 
tuning and adaptive structures, others on the study of robust control structures [1-8]. 
Although the Smith predictor has the capability of transforming a time-delay control 
design to a delay free problem, three principal problems of the Smith predictor structure 
were analyzed by many authors during the last twenty years [8, 3, 4, 7, 5]: 1) the robust-
ness; 2) the disturbance rejection characteristics, and 3) the extension of the idea of the 
Smith predictor to the case of integrative plants. An effective answer to these issues has 
just given by the structure proposed in [5], which is based on IMPACT (Internal Model 
Principle and Control Together) structure [9]. The proposed structure can be interpreted 
as a new structure of the modified Smith predictor for processes that can be described by 
an integrator, a velocity gain and a long effective transport lag. The structure enables 
absorption of arbitrary class of deterministic disturbances and can be easily tuned to 
achieve the desired speed of set-point response and to maintain the preferred system 
robustness with respect to interval changes and/or uncertainties of plant parameters.  

This paper summarizes the previous results and proposes robust continuous controller 
design for processes with dead times. The proposed controlling structure is based on an 
IMPACT structure, or the use of internal model principle (IMP) and internal model 
control (IMC) together. The most important problem in continuous control systems with 
long dead time concerns is internal model principle (IMP) implementation. The IMP and 
absorption principle are based upon the same fundamental idea of inclusion disturbance 
model into the system controlling structure. In the case of IMPACT structure, the model 
of external disturbance is implicitly incorporated into the minor local loop of control 
system in order to eliminate or to reject completely the influence of disturbance on the 
steady-state value of system controlled variable [9, 5]. In this paper, the absorption 
principle is formulated more generally than before in a continuous form and then the 
possibility of its application is made using two most typical models of processes with 
delay that are found in the process industry. Generally, the proposed structure will ex-
clude the effects of a known class of external disturbance on controlled variable and will 
improve the system robustness. The proposed structures enable the set point transient 
response and speed of disturbance rejection to be adjusted independently by setting a 
small number of parameters having clear physical meanings. The efficiency and robust 
properties of the proposed structure are verified and tested by simulation. 

2. THE PLANT MODELS AND CONTROL SYSTEM STRUCTURE 

In most cases, it is possible to find two kinds of typical processes in industry: the ones 
that can be modeled by a static gain Kp, a dead-time L and a time constant T 
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and the ones that can be described by an integrator, a velocity gain Kv and a dead-time L. 
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In both cases Gp(s) represents the delay free part of process, and both of nominal 
models ((1) and (2)) can be considered as simplification of more accurate models 
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Practically, the model is just a simplification of the real system and that the artificial 
model elements do not necessarily have a one-to-one correspondence in the real system. 
Also, the identified parameters may possibly vary depending on the operating point, and 
the model describes the dynamic behavior of the real system only to a certain degree. The 
controller must thus be robust and be able to deal with these constraints (it must be robust 
enough to allow for considerable parameter variation and model uncertainty).  

The IMPACT control structure of the modified Smith predictor is shown in Fig.1. 
[5,9]. The control portion within the system structure in Fig. 1 comprises the Smith pre-
dictor internal controller, in the main loop, and two internal models, in the local minor 
loop: the internal nominal plant model explicitly and the internal model of external dis-
turbance d(t) embedded implicitly into predictive filter A(s)/C(s). Both the internal 
nominal plant model and disturbance model are treated as disturbance estimator. Really, 
disturbance estimator estimates the influence of generalized disturbance ϕ that comprises 
the influence of the external disturbance d and the influence of uncertainties of plant 
parameters on the system output. Uncertainties of plant modeling may be adequately 
described by the additive bound of uncertainties ( )al ω  

 0( ) ( ) ( ), ( ) ( )a a aW j W j l j l j lω = ω + ω ω ≤ ω  (4) 

The controlling structure has two control loops that can be designed independently. 
The minor loop compensates the influence of generalized disturbance and increases the 
robust system performance. The minor local control loop is designed by the proper choice 
of polynomials A(s) and C(s). Polynomial A includes implicit disturbance model, while 
the choice of C affects the speed of disturbance rejection, system robustness, and 
sensitivity with respect to measuring noise. Good filtering properties and the system 
efficiency in disturbance rejection are the mutually conflicting requirements. The lower 
bandwidth of the A(s) / C(s) filter corresponds to a higher degree of system robustness 
and vice versa. The dynamic of minor local control loop within the low frequency band is 
described by nominal plant model. Thus, the main control loop “sees” the minor control 
loop as nominal plant model and determines dynamic behavior of the closed loop system. 
In the main control loop, the main controller Gr(s) will be determined to achieve the 
desired system set point response. 
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Fig. 1. IMPACT structure of the modified Smith predictor with one-input internal 

nominal plant model 

For the integrative plant (2), the proportional main controller 

 ( )r rG s K=  (5) 

may be applied. In that case, under nominal conditions, the closed-loop transfer function 
Y(s)/R(s) and Y(s)/D(s) will be 
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In virtue of (6), the speed of set-point response can be adjusted by choosing appropri-
ate values of controller gain Kr or dominant time constant Tr=1/(KrKv). According to [5], 
the proper choice of R(s) is R(s)=Kv. Since the term (1 − e−Ls) / s in the numerator of 
closed-loop system transfer function (7) has the frequency characteristics of zero-order 
hold, the speed of disturbance transient response is governed by the roots of characteristic 
equation 

 ( ) ( ) 0r vs K K C s+ =  (8) 

If polynomial C is chosen as C(s) = (T0s + 1)n, the lower order n and smaller value of 
T0 will correspond to a faster rejection of disturbance and a lower degree of system ro-
bustness, and vice versa [5]. For the sake of simplicity and easier physical realization, it is 
usually assumed n=2. Then we can distinguish two tuning parameters: Tr and T0 for 
simple and straightforward adjustment of the set point transient response, the speed of 
absorption of disturbance influences on steady state process output value, and the degree 
of system robustness. This is accomplished independently; first by choice of an appro-
priate value of Tr and then by setting of tuning parameter T0. 
In the non-integrative plant (1) case, in order to achieve the desired closed-loop transfer 
function Y(s)/R(s) 



 The Robust Controller Design for Processes with Dead Times 135 

 ( ) 1( )
( ) 1

Ls
de

r

Y sG s e
R s T s

−= =
+

 (9) 

may be chosen the PI main controller (Fig.1) 
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and in that case 
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Note that the system with non-integrative process can be commented on similar 
manner as the system with integrative process. In the case of nonintegrative plant, the 
proper choice of R(s) is R(s)=Kp. The gain and integral time of the PI controller have 
clear physical meanings (see (10)), and the parameter Tr defines the set-point response 
(see (9)). The speed of disturbance transient response is defined by the roots of charac-
teristic equation 

 ( 1)( 1) ( ) 0rT s Ts C s+ + =  (12) 

Practically, apart from the identified plant parameters, there will be two tuning pa-
rameters (Tr and parameter of polynomial C) for setting set-point response, speed of 
disturbance rejection, and system robustness. Disturbance absorption and robustness will 
be in detail commented in the next Sections. 

3. THE ABSORPTION PRINCIPLE 

The absorption principle is basically identical to IMP, and its intention is to include 
the disturbance model in control algorithm in order to suppress or reject disturbance 
influence on steady state value of process output [9].  

Namely, the broad class of continuous functions can be presented as solution of ho-
mogeneous differential equations; and it is the basic result for analogous absorption filter 
synthesis and absorption principle implementation in control systems. For continuous 
class, signals defining the expected type of disturbances may design an absorption filter 
Φ(s) which steady state response on specified class of signal will equal zero. For example, 
the absorption filter Φ(s)=s is suitable for the class of step disturbances, Φ(s)=s2 is 
suitable for ramp disturbances, Φ(s)=s2+ω2 corresponds to d(t)=Asinωt, etc. Generally, 
suppose the class of disturbances d(t) having the Laplace transform D(s)=dnum(s)/dden(s). 
Then, absorption polynomial Φ(s) can be determined explicitly by 
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The principle of absorption means the design of absorption filter whose input is dis-
turbance signal in order to compensate disturbance influence. By implementation of ab-
sorption filter in the control system, the disturbance model is included in controlling 
structure too. Following the compensation equation may be considered as the absorption 
condition of the given class of disturbances 
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where the polynomials Nd(s) and Dd(s) form a stable transfer function Nd(s)/Dd(s) having 
less or more influence on the quality of disturbance transient response. Consider now the 
applications of absorption principle in the process control with dead time.  
The principle of absorption in IMPACT structure is implemented in the minor loop, that 
enables estimation of influence of generalized disturbance, its prediction and feedforward 
compensation. Using the absorption principle in the case of integrative plant and 
IMPACT controlling structure (see (7) and (14)), the absorption condition becomes 
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Since term (1 − e−Ls) / s has the known characteristics of zero-order hold, then the 
transfer function 

1(1 )
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is stable and it can be consider as factor of the polynomial Nd(s). In order to the transfer 
function Nd(s)/Dd(s) will be stable, it is necessary adopt following form of the polynomial 
A(s) 

 0( ) ( )A s sA s=  (16) 

As it is known R(s)=Kv, and the relation (15) is reduced to 
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From (17), it is obviously that the speed of disturbance absorption is defined by the 
roots of characteristic equation (8), and that the absorption condition becomes 

 o 1( ) ( ) ( ) ( )LsA s e N s s C sΦ− + =  (18) 

The solutions of (18) are the polynomials Ao(s) and N1(s), while the stable polynomial 
C(s) is chosen free previously. The selection of polynomial C(s) can be done according to 
the desired speed of disturbance rejection, the filter system properties and the degree of 
system robustness.  

But, in opposition to the discrete case where Diophantine equation is solvable without 
any approximation, the equation (18) has to reduce into polynomial equation. The 
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exponential term Lse−  can be approximated by Pade approximation, or by Taylor series 
expansion as 
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Substituting e−Ls from (19) into (18), relation (18) obtains the specific form of the 
Diophantine equation 
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A single solution of the Diophantine equation, which plays a crucial role in the design 
procedure of the proposed disturbance estimator, does not exist [11]. The relation (20) is 
a linear equation in polynomial A0(s) and N1(s). Generally, the existence of the solution of 
the Diophantine equation is given in [12]. According to [12], there always exists the 
solution of (20) for A0(s) and N1(s) if the greatest common factor of polynomials 

0 ( ) !N k
k Ls k= −∑  and ( )sΦ  divides polynomial C(s); then, the equation has many 

solutions. The particular solution is constrained by the fact that the control law must be 
causal, i.e. 
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Hence, after choosing a stable polynomial C(s), N, and degrees of polynomials A0(s) 
and N1(s), and inserting the absorption polynomial Φ(s) that corresponds to an expected 
external disturbance, polynomials A0(s) and N1(s) are calculated be equating coefficients 
of equal order from the left- and right-hand of equation (20). In the our case, for absorp-
tional polynomial 
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that corresponds to the class of polynomial disturbances 
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and for chosen polynomial C(s) = c0 + c1s + c2s2 + c3s3 +..., the simplest solution of the 
Diophantine equation (20) is given in Tab. 1. Practically, most frequently disturbances 
may be considered as slow varying and in these cases the polynomial A(s) should be cal-
culated to correspond to the ramp signal d(t) (Φ(s) = s2, m = 2). Hence, in majority of 
practical applications an appropriate choice of absorption filter might be Φ(s) = s2, m = 2, 
that corresponds to absorption of linear (ramp) disturbance, but, it enables also the 
extraction of slow varying disturbances and even suppression of the effects of low 
frequency. 

For the sake of clarity and to reduce the number of adjustable parameters, let us 
assume 
 0( ) ( 1)nC s T s= +  (22) 
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Then, from Tab.1 can be calculated A0(s) = 1 + (nT0 + L)s, and the transfer function 
inside the disturbance estimator becomes 
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The value of parameter n is constrained by the condition of causality n ≥ 2. 

Table 1 Implicit disturbance model in general choice of polynomial C(s) 

Class of disturbance Polynomial Ao(s) 
Step, m=1 A0(s) = c0 
Rampa, m=2 A0(s) = c0 + (c1 + Lc0)s 
Parabolic, m=3 A0(s) = c0 + (c1 + Lc0)s + (c2 + c1L + 0.5c0)s2 

In the case of non-integrative plant (1), the similar approach to absorption principle 
implementation may be applied. For the sake of simplicity and correctness of relation 
(12), let us assume 

 0( ) ( 1) ( )A s Ts A s= +  (24) 

Then, analogous to relation (15), the compensation equation becomes 
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From (25), it is obvious that the speed of disturbance rejection is defined by the roots 
of characteristic equation (12), and the absorption condition becomes 

 0 1( ( ) ( ) ) ( ) ( )Lss C s A s e N s sΦ−− =  (26) 

But, by selection of PI controller (10) within the main control loop, the absorption of 
the step distrubance is already designed through the main control loop (Φml(s) = s). As it 
is known, the absorption principle in IMPACT structure is implemented in the inner loop, 
but generally the disturbance absorption can be achieved by main (Φml(s)) and the inner 
(Φil(s)) control loop together. In our case 

 ( ) ( ) ( ), ( )ml il mls s s s sΦ Φ Φ Φ= =  (27) 

where Φml(s) and Φil(s) are absorption polynomials defining absorption by main and inner 
control loop respectively. From here, the relation (26) is reduced to 
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By using a Taylor series expansion of e−Ls and by substituting from (19) into (28), the 
relation (28) becomes the Diophantine equation 
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which is of the same form as (20), and which guarantee the absorption of disturbances 
class specified by the absorption filter Φil(s). The previous comments about choosing a 
stable polynomial C(s) and Tab.1. are also applicable to the solving of Diophantine 
equation (29). For example, by choosing of C(s) = (T0s + 1)n and Φil(s) = s (i.e. Φ (s) = s2) 
the transfer function inside the disturbance estimator becomes 
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or in the case of parabolic disturbances (Φ (s) = s3, Φil(s) = s2) 
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The value of parameter n is constrained by the condition of causality (R(s) = Kp, 
n ≥ deg(A(s))). 

4. THE ROBUSTNESS ANALYSIS  

The design of the controller is based on the nominal model W0(s), but the true open-
loop transfer function is W(s). The closeness of the nominal plant W0(s) and the real plant 
W(s) may be described by relation (4) and by the additive bound of uncertainty ( )al ω . 
The real plant is considered as member of infinite family of plants within which each 
member more or less deviates from the nominal plant. Suppose that W0(s) and W(s) have 
the same number of unstable poles and that the desired closed-loop system transfer 
function Gde(s) is stable. Then, each member of the family is stable if and only if the 
following criterion of robust stability is satisfied 

 ( ) ( )al ω < β ω  (32) 

where 
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while Gff(s) and Gfb(s) are defined from 
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as the transfer functions of feedforward and feedback portions of the system control 
structure respectively. 

In the case of integrative plant and the IMPACT controlling structure of Fig.1, one 
obtains 
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As known, the linear models of finite orders fairly well approximate dynamic behavior 
of plants at low frequency range, while disagreements appear at high frequencies. It is 
significant to notice that β(ω) tends to a constant value at high frequencies. Namely, if 
one chooses polynomial C(s) = (T0s + 1)n and A0(s) = am−1sm−1 + ... +a1s + a0 
(A(s) = sA0(s)), then 
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From (36) and previous, one can conclude that as the suitable choice of parameter n 
may be adopted 

 1 deg ( )n A s= +  (37) 

It is evident that a greater value of Tr = 1/(KrKv) yields a higher degree of system ro-
bustness. The influence of disturbance observer on system robustness will be illustrated 
by the illustrative example in the section that flows. Generally, it will be shown that for a 
higher degree n of chosen polynomial C(s) and a greater value of time constant T0 of C(s) 
(see (22)), the system robustness improves, and vice versa. Also, the implementation of 
more complicated disturbance models within polynomial ( )A s  means a higher degree of 
A(s) and less system robustness. 

In the case of non-integrative plant and the IMPACT controlling structure of Fig.1. 
defined with the relations (1), (9), (10), (24) and R(s) = Kp, one derives 
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It is evident that for defined structures of both plant case with dead time, the influence 
of minor local control loop on system robustness is the same. Similarly to previous, 
respecting the choice of A0(s) = am−1sm−1 + ... +a1s + a0, (22), (24), and (37), one derives 

 lim ( ) , for deg ( ) deg ( )p rK T
C s A s

Tω→∞
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It is clear that to improve the system robustness, the speed of set point response must 
be slowed down (i.e. the desired time constant Tr must be increased). When controlling 
the processes with long dead times, a general rule used in the process industry is that the 
closed-loop time constant Tr is chosen near the open-loop time constant T [4]. The rela-
tions (38) and (39) confirm this rule. 

5. The CONTROLLER TUNING AND SIMULATION RESULTS 

The control part of IMPACT structure of modified Smith predictor in Fig. 1 contains 
five parameters Kv, L, Kr, To, and n in the case of integrative plant, and six parameters Kp, 
T, L, Tr, To, and n in the case of nonintegrative plant. Plant parameters Kv and L, or Kp, T, 
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and L, are measured or estimated by simple experiment. Other parameters Kr, To, and n, or 
Tr, To, and n are to be adjusted with respect to prescribed speeds of set-point transient and 
disturbance transient responses and to the desired degree of system robustness. 
Practically, parameter n may be fixed by (37), and then both of the structures have the 
same tuning parameters Tr and To (in the first case Tr=1/(KrKv)) with clear physical 
meaning. By increasing of time constants Tr and To the system robustness and the system 
filter properties will be improved, and at the same time the disturbance rejection and the 
set point response will be slower. Time constant To doesn't influence on the set point 
response. First, by tuning of Tr may be set the set-point response and robust stability area; 
and then by tuning of To may be influenced to the system robust performance and to the 
speed of disturbance rejection. The efficiency of proposed structures and procedures of 
parametar tuning will be investigated by simulation. 
 Let us consider particular examples of the processes given by [3] 
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In both plant cases, within IMPACT controlling structure disturbance observer is ap-
plied with an implicit model of ramp disturbances (the relations (23) and (31)). The main 
controller parameters: Tr=2, Kv=0.1, L=9.7 in the integrative plant case, and Tr=1.5, Kp=1, 
T=1.5, L=10.5 in the non-integrative plant case are chosen. The influence of disturbance 
observer (23) and (31) on robust stability is illustrated on Fig. 2. In virtue of Fig. 2, for a 
higher degree n of chosen polynomial C(s) and a greater value of time constant T0, the 
system robustness improves. The efficiency of the IMPACT structure is illustrated on 
Fig.3 and Fig.4. In all simulation runs the reference is r(t)=0.5⋅1(t), and disturbance is the 
same marked by d(t). Fig.3 explains the capability of IMPACT structure (Fig.1) in the 
integrative plant case. First, the structure is designed to absorb a constant disturbance 
(n=2 and T0=1) and trace y1(t) is obtained. Second, the structure is designed to absorb a 
ramp disturbance by using transfer function (23), with n = 2 and T0=6, and trace y2(t) is 
obtained. Generally, the design of the local minor loop for absorption of more complex 
external disturbances d(t) requires a higher order of polynomial A0(s), and results in a 
lower degree of robustness. Because of that, the similar level of robust stability is reached 
by different values T0 in the shown example on Fig.4. 
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Fig. 2 The influence of disturbance observer parameters on the robust stability – 1) T0=9, 

2) T0=6, 2) T0=3. 
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Fig. 3 The disturbance absorption in the case of IMPACT structure with integrative plant 

and an implicit model of step (y1) and ramp (y2) disturbance  

Fig.4 explains the capability of IMPACT structure (Fig.1) in the non-integrative plant 
case. Trace y2(t) of Fig.4 shows the reference and the disturbance response of the 
structure on Fig.1 with the main controller (10), but without the local minor loop. Then, 
the proposed IMPACT structure for a non-integrative plant (1) is designed to absorb a 
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ramp disturbance. More exactly, the disturbance observer for a step disturbance absorp-
tion (30), with n = 2 and T0=1.5, is implemented in controlling structure, and trace y1(t) is 
obtained. Notice that each linear segment of the disturbance is absorbed after certain time 
period. The disturbance rejection may be improved by choosing n=1 and/or a smaller 
values of T0 and Tr. However, in doing so, one must maintain the robust stability with 
respect to uncertainties of plant parameters. 
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Fig. 4 The response of the structure with non-integrative plant and PI main controller (10) 

with (y1) and without (y2) local minor loop 

6. CONCLUSION 

The most common design goal in the process control is to obtain a critically damped 
closed-loop system which is as fast as possible, with a possibility to take into account the 
model uncertainties and to tune their characteristics with respect to set points and dis-
turbances. In order to meet these requirements , the usage of the absorption principle and 
modified IMPACT structure with a simple and robust tuning is proposed. The analysis is 
made by using two typical processes with delay that are found in the process industry. 
For the process model cases, the application of absorption principle in a continuous form 
is formulated and implemented within appropriate simple controlling structures. The 
tuning of modified IMPACT structures is discussed in the paper and some simple rules 
are given. The proposed structures may be adjusted according to the desired speed of set-
point response and the speed of disturbance rejection, in a simple way by tuning only few 
parameters having clear physical meanings. In both cases, the structure can easily be 
tuned manually. Robustness and response speed are mutually opposite requirements. 
However, proposed structure is suitable for successful design of robust stability and 
robust performance, and for the rejection of influence of arbitrary external disturbance 
class at the same time. Generally, the structure enables further improvements: the on-line 
system adaptation, the combination of advantages of approved control algorithms, etc. 
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Several simulation results are presented to verify previous theory analysis and to illustrate 
the structure efficiency. 
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PROJEKTOVANJE ROBUSTNOG KONTROLERA ZA PROCESE 
SA ČISTIM VREMENSKIM KAŠNJENJEM 

Milan S. Matijević, Milić R. Stojić 

Široka klasa industrijskih procesa ima slično dinamičko ponašanje koje može biti opisano 
jednostavnim matematičkim modelima sa čistim vremenskim kašnjenjem. U ovom radu je 
predložena nova struktura za upravljanje takvim procesima. Predložena struktura je zasnovana na 
IMAPCT strukturi, a može biti tumačena i kao modifikacija poznate strukture sa Smithovim 
prediktorom. Radi se o robustnoj strukturi koja omogućava potiskivanje proizvoljne klase 
nemerljivih poremećaja na upravljanu promenljivu, i ima mali broj podešljivih parametara sa 
jasnim fizičkim značenjem. U radu je princip apsorpcije izveden i implementiran za generalan 
slučaj kontinualnih SISO sistema sa kašnjenjem, što čini bitan doprinos ovoga rada.  

Key words:  IMPACT struktura, Robustno upravljanje, Princip apsorpcije, Procesi sa čistim 
vremenskim kašnjenjem, Smithov prediktor 


