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Abstract. The research results in the area of mechanics of hereditary discrete systems, 
obtained by the authors of this paper, are generalized and presented in the monograph 
[4] which contains the first completed presentation of the analytical dynamics of 
hereditary discrete systems. Two classes of dynamically defined and undefined hereditary 
systems are defined and considered by introducing corresponding restrictions. The main 
results of mechanics of hereditary discrete systems are presented with new applications 
important to engineering. 
The approximation of expressions for the coefficients of damping and corresponding 
decrements as well as for the circular frequency of oscillations of hereditary oscillatory 
systems are obtained with high accuracy in the first and second approximations.  
The analogy between hereditary interactions and reactive forces in the systems of 
automatic control is identified and a possibility to extend the  theory of analytical 
dynamics of hereditary systems to mechanical systems with automatic control is pointed 
out.  
The Lagrange's mechanics of hereditary systems is extended and generalized to 
thermo-rheological and piezo-rheological discrete mechanical systems as well as to 
discrete mechanical systems with standard light creep elements. 
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1. INTRODUCTOIN  

Analytical dynamics as general science of mechanical system motions was founded 
by Lagrange (Joseph Luis Lagrange (1735-1813)) in the period of his work at the Berlin 
Academy. The Lagrange's book "Mècanique Analytique" [14] contains basic analytical 
methods of mechanics and was published in France in 1788. The introduced analytical 
methods in Mechanics by Lagrange are main and the first base of analytical mechanics in 
general. Lagrange's equations of the second kind and Lagrange's equations of the first 
kind with unwoven Lagrange's multipliplicators of constraints are the main fundament of 
Analytical Dynamics.  

After first period of Analytical Mechanics foundation, canonical equations obtained 
by Hamilton (Wiliam Rowan Hamilton (1805 – 1865)) were the main advanced results of 
fundamental progress of analytical methods in mechanics. .  

In Lagrange's opinion his equations of the first and second kind are universal and 
applicable to all mechanical systems. In 1985 С.А.Чаплыгин's (S.A. Chapligin’s) 
analysis of a paper written by Э. Линделефа (E. Lindelef) follows to the conclusions that 
Lagrange's equations are not applicable to nonholonomic mechanical systems [15]. Then, 
С.А.Чаплыгин (S.A. Chapligin) proposed  the beginning of research in a new area of 
Analytical mechanics under the name Nonholonomic Mechanics – Mechanics of 
nonholonomic mechanical systems.  

 Lagrange's equations of first kind with unwoven Lahrange's multiplicators of con-
straints are really general and universal. At the beginning of the XX century nonholonomic 
mechanics was founded as a separate science discipline. Equations of С.А. Чаплыгин (S.A. 
Chapligin), В. Вольтерра (V. Voltera), П.В. Воронца (P.V. Voronc), Г. Маджи 
(G.Madzi), П. Аппеля (P.Apela) and others are considered to be great contributions in the 
area of Analytical dynamics of nonholonomic systems. Separate parts of mechanics of 
nonholonomic systems are applicable to the control of systems and to systems containing 
deformable bodies.  

Analytical dynamics is largely applied and used in engineering system dynamics and 
in natural sciences as well as for investigation of mechanical system dynamics and in the 
physics of the microworld.  

 The appearance and distribution of new materials for construction on the basis of 
synthetics with clear rheological properties are source and inspiration for development of 
a new area of mechanics – Mechanics of hereditary systems. The mechanics of hereditary 
continuum is presented by the series of fundamental publications and monographs [1] and 
is applied for estimations of the construction built by new material.  

The new material with high rigidity parallel possesses series of unequal properties 
like dielectric and radio properties as well as the properties and possibilities of high 
deformability and "lightibility". These properties of new materials give them advantages 
for application in engineering systems over classical metals and materials. Thanks to 
advanced knowledge in the area of chemistry and technology of materials, new materials 
with new properties are produced. In accordance with previous Mechanics of deformable 
rheological (hereditary materials), the intensive development continues.  

In current literature term "hereditary" and "rheological" systems are equivalent. In 
opinion of Работнов Ю.Н.(Rabotnov Yu..H.) [1], the name "hereditary" system or 
continuum proposed by В.Вольтерра (V. Voltera), is more precise as well as suitable. By 
using this name, the property of rheological systems "to remember" the history of loading 
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is fully described. By series of the fundamental papers and monographs, Mechanics of 
hereditary continuum is presented. Also, in numerous references, many examples with 
applications in engineering, biological and other areas [2] are published. The pioneer 
research results in the area of mechanics of discrete hereditary systems are presented in a 
publication written by a talented scientist А.Р.Ржаницин (A.R.Rzanicin) [2]. Also, 
numerous applications in this area grow.  

The mechanics of discrete hereditary systems up to a few years before was presented 
only by separate single papers [3] containing only solutions of partial problems. 

The research results in the area of mechanics of hereditary discrete systems, obtained 
by authors of this paper, are generalized and presented in the monograph [4], published in 
2001, which contains the first presentation of analytical dynamics of hereditary discrete 
systems. We can conclude that this monograph contains complete foundation of 
analytical dynamics theory of discrete hereditary systems and by using these results, 
numerous examples are obtained and solved (see Refs. [5-12]). In this analytical 
mechanics of hereditary discrete systems, modified Lagrange's differential equations of 
the second kind in the form differential and integro-differential forms with the kernels of 
relaxation or rhelogogy are derived.  

This paper based on research results from monograph [4] and new authors' advanced 
research  is published [5-13 and 17] with unpublished results. 

As we say, in the name "hereditary" properties of rheological body "to remember" 
history of loading is fully described for both cases: for the first case of the short time 
loading period when rheological body possesses property to obtain quickly the previous 
unloaded body form after unloading and the second case of the long time loading when 
rheological body possesses property to obtain the previous unloaded body form after 
unloading for long period when the material property "to remember" is present as history 
of loading, and name "hereditary elasticuisty" of  the corresponding name.  

The hereditary properties are present as property in every solid body. For example, 
the stainless steel spring excited by forces during numerous years obtained a deformed 
state, and after the break of the excitation needs some time to obtain previous 
undeformed state. In this example it is visible that a long time period is necessary for 
identification of hereditary properties of rheological material.  

For numerous visco-plastic synthetic materials the necessary time for identification of 
hereditary properties is expressed by minutes or by seconds. Then hereditary theory is 
suitable to describe internal tribological in material for small deformations.  

2.1. TERMINOLOGY AND DEFINITIONS OF DYNAMICS OF HEREDITARY SYSTEMS  

The hereditary discrete mechanical system can be a mechanical system containing one 
or more hereditary interconnections or inter-influence between bodies and material 
particles. In a similar way, the hereditary connection is possible to be realized by 
rheological element like a synthetic string or by rubber band.  

In this paper term "hereditary", "rheological" and "viscoelastic" will be considered 
synonimous.  

For the presentation of the hereditary body we used symbols and graphics usually 
used in the world literature in the area of Rheology. In this paper we used two kinds 
(groups) of rheological bodies – viskoelastic with properties to obtain previous 
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undeformed forms after the ceasing of external excitations and elastoviscose bodies with 
property for non bounded deformation under external excitation during the time. The 
accepted names and terms of rheological bodies in the world literature are different and 
numerous.and not uniform. In our paper we use terminology accepted in publications 
written by Г.Н. Савин. and Я.Я. Рущицкий [2] (G.N. Savin and Ya..Ya. Ruschickij). 
For the dynamical equivalent bodies of the types Kelvin and Thompson- Poyting, a therm 
"standard .visco-elastic body" is used.  

For the schematic presentation of hereditary multibody discrete systems the general 
presentations of rheological elements are used. It is necessary to point out that rheological 
elements in analytical dynamics, like a pure elastic element introduced in discrete 
mechanical system, do not appear as constraints, and the numbers of degrees of the 
system freedom are not smaller.  

2.2. THE MODELS OF HEREDITARY ELEMENTS IN ANALYTICAL DYNAMICS  
OF HEREDITARY DISCRETE DYSTEMS  

The hereditary system is every system which contains mutual hereditary interaction 
between material particles in the form of one or more constraints with hereditary 
properties.  

The simple viscoelastic element is Foight's type element. In the state of extension the 
resultant force appears by two components, one by visco and one by elastic properties in 
the deformation of viscoeelastic element and constitutive stress-strain relation given as 
relation between force and the extension of element in the following form: 

 ( ) ( ) ( )P t cy t y t= + µ  (1) 

In Mechanics of hereditary continuum in the case of axial (in one direction) stressed 
and deformed Foight's type body stress strain constitutive relation is expressed by 
following relation: 
 ( ) ( ) ( )t E t tσ = ε + µε  (a) 

The model of a Foight's type body approximately describes viscoelastic properties of 
real bodies. And due to its simple form and description large applications to the 
engineering systems are obtained. Basic disadvantage of this Foight's type body model is 
strong dependence of damping coefficients with the change of frequency and the 
dependence of frequency on the energy degradation that aren't compatible with 
experimental data.  

More acceptable and precise and better compatible with experimental data with real 
hereditary body properties is the model of the standard viscoelastic body (Kelvin and 
Poyting-Thompson's body). The constitutive stress strain relation given as the relation 
between the force and extension of element in the following form: 

 ( ) ( ) ( ) ( )nP t P t ncy t cy t+ = +  (2) 

In the mechanics of hereditary system constants n, c and c~  obtain special names: the 
time of relaxation, rigidity coefficients, one momenteneous and the prolonged one. 

For generalized hereditary element model relation between force and deformation it is 
possible to describe by differential equation high order derivative in the following form: 
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For example of generalized hereditary body we can analyze a typical industrial rubber 
amortizer which is applied for vibroisolation of heavy machines. The relation between 
the deformation and external excitation for this amortizer obtained by Goroshko's 
experiment has the following form: 

 
( )
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( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
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+ + + + + + + =

= + + + + + + +
 (4) 

where times of relaxations are n1 = 36[sec], n2 = 220[sec], n3 = 2218[sec] and the rigidity 
coefficients of momentary and the prolonged one are: c = 2,57⋅105[N/m], 
c~  = 1,91⋅105[N/m] and coefficients of the rigidity of particular components are: 
c1 = 0,865c,  c2 = 0,926c. 

The stress-strain state of viscous element (Maxwell's body) is described by the 
following constitutive relation: 
 ( ) ( ) ( )nP t P t ncy t+ =  (5) 

where c is the coefficient of momentary rigidity. For the case of long time loading of the 
element by constant intensity load P(t) = P0 the deformation of the Maxwell's element is:  

 0 ( ) ( )P t ncy t=  or 0( )
P

y t t
nc

= . 

It is visible that deformation increases unbounded.  
For more complex viscose elements (represented by the Jeffreys' bidy (J-body) and 

Lethersich's body) stress-strain state is described by differential equation in the form: 

 1 2( ) ( ) ( ) ( )nP t P t b y t nb y t+ = +    (6) 

For the generalized viscous element the constitutive relation of the stress-strain state 
is described by the following differential equation: 
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For all viscous bodies as well as viscous elements the term b0 y(t) is not included in 
the equation because material does not have elastic properties, only viscous properties.  

It is necessary to point out that the properties of Maxwell's elements in discrete 
hereditary systems are the  source of cyclic coordinates appearing.  

The equivalency and analogy of hereditary interactions and reactive forces in the 
systems of automatic control give the possibility to extend the theory of analytical 
dynamics of hereditary systems to mechanical systems with automatic control. For 
example, automaton with transfer function presented in the following form  
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=
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...)(

1

10  (8) 

presents a hereditary interaction (3) between material particles of the discrete mechanical 
system with one degree of freedom. 
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The parameters of the automaton of arbitrary structures are defined in an experimental 
way and it is possible to obtain amplitude-phase characteristic. In our opinion there are 
real possibilities and the perspective to use method of amplitude-phase characteristic for 
the experimental obtaining of mechanical characteristic of the hereditary discrete 
mechanical systems. It is possible to solve some difficulties with identification coefficient 
of the momenteneous rigidity which appears in the mechanical investigation of the 
hereditary forms and shortened longtime experiments.  

2.3. THE INTEGRAL MODELS OF THE STRESS-STRAIN STATE OF THE HEREDITARY ELEMENTS  

There are three mathematical forms for the description of the constitutive relations of 
the hereditary properties of hereditary interaction [2], in the building of hereditary 
system's mechanics. These forms are:  

1* Differential equation, expressed in the form of dependence reaction force P of the 
rheological coordinate x, usually presented as deformation or relative displacement of the 
hereditary constraint in the form (3).  

2* Integral equation, expressed in the form of dependence reaction force P of the 
rheological coordinate y, usually presented as deformation or relative displacement of the 
hereditary constraint: 

 
0

( ) ( ) ( ) ( )
t

P t c y t t y d
⎡ ⎤

= − ℜ − τ τ τ⎢ ⎥
⎢ ⎥⎣ ⎦

∫  (9)  

where 
1 ( )

( )
t

nc ct e
nc

− −τ−
ℜ − τ =  is relaxation kernel,  

and 1
n

β = is coefficient of the element relaxation.  

This integral relation (9) can be obtained by solving equation (2) with respect to the 
force P. By this integral equation, the relaxation of the reaction force P depending on the 
rheological coordinate y, is presented and expressed. 

For the case of the generalized standard hereditary element (3) integral equation is 
possible to obtain in the form (9) in which relaxation kernel ℜ(t − τ) presents sum by sum 
of exponents.  

3* Integral equation, expressed in the form of dependence rheological coordinate y, 
usually presented deformation or relative displacement of the hereditary constraint and 
reaction force P: 

 
0

1( ) ( ) ( ) ( )
t

y t P t t P d
c

⎡ ⎤
= + ℵ − τ τ τ⎢ ⎥

⎢ ⎥⎣ ⎦
∫  (9a) 

where 
( )

( )
c t
ncc ct e

nc
− −τ−

ℵ − τ =  is kernel of rheology and  

1β
c
nc

=  is the coefficient of the creep or retardation or rheology.  
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This integral relation (9a) can be obtained by solving equation (2) with respect to the 
rheological coordinate y. By this integral equation, the relaxation of the reaction force P 
depending of the rheological coordinate y, is presented and expressed. 

By this integral equation, the retardation of the rheological coordinate y of the 
reaction force P is presented and expressed. 

In the previous integral equations ℜ(t − τ) and ℵ (t − τ) - are relaxational and 
rheological kernel. The history of stress strain state up to beginning of the motion of the 
system t = 0 is described by the following integrals:  

( ) ( )
t

t y d
−∞

ℜ − τ τ τ∫   and  ( ) ( )
t

t P d
−∞

ℵ − τ τ τ∫  

and previous integral equations (9) and (9a) take the following forms: 

( ) ( ) ( ) ( )
t

P t c y t t y d
−∞

⎡ ⎤
= − ℜ − τ τ τ⎢ ⎥

⎢ ⎥⎣ ⎦
∫  

and  

 1( ) ( ) ( )
t

y t P t t P d
c −∞

⎡ ⎤
= + ℵ − τ τ τ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ( )  (10) 

where by integral operators, the histories of the previous interactions of the hereditary 
constraints are expressed. The model of the standard hereditary element is one of the used 
models, but it is possible to use the model of a weak singular element in which the 
models of the kernel of relaxation as well as of the rheology are in the form: 

 
( )

( )
( )

taet
t

−β −τ

α
ℜ − τ =

− τ
,  and  

1( )
1( )
( )

ta et
t

−β −τ

α
ℵ − τ =

− τ
   (11) 

where 0 < α < 1. (and usually 0 < α << 1) and the integral members obtained from the 

final bounded values in the order compared with 
1

1
t −α

− α
. By introducing that t − τ = s, the 

constitutive equations of hereditary elements take the following forms: 

 
0

( ) ( ) ( ) ( )P t c y t s y t s ds
∞⎡ ⎤

= − ℜ −⎢ ⎥
⎢ ⎥⎣ ⎦

∫   and  
0

1( ) ( ) ( ) ( )y t P t s P t s ds
c

∞⎡ ⎤
= + ℵ −⎢ ⎥

⎢ ⎥⎣ ⎦
∫  (12) 

It was accepted [1] that in the initial motion moment of time, constitutive stress strain 
relation with weak singular kernel is more precise description of the stress-strain state of 
a hereditary element. Ю.Н. Работнов (Yu.N. Rabotnov) proposed a special function 
known under the name of Rabotnov's function in the following form: 

 
(1 )

0

( )( , )
[( )(1 )]

k k

k

tt t
k s

−α∞
−α

α
=

−β
∋ −β =

Γ + − α∑  (13) 

with properties for generating a class of fractional-rational functions for weak singular 
kernels (resolvents).  

During the research of particular problems with hereditary elements in analytical 
dynamics of hereditary discrete systems in the forms with weak singular integral 
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equations (12) is useful concerning reason that is possible to use special Euler's Gama 
functions. Then methods for solving problems of dynamics of hereditary systems are 
considered with special Euler's Gama functions. 

At the end of this part it is necessary to make one comparison between equations of 
stress-strain state for the cases of the standard hereditary element and for the case of the 
weak singular element. In the first case equations of the stress-strain state of standard 
hereditary element in the integro-differential forms (8) and (9) are equivalent to the 
equation (1) in the differential form. For the case of weak singular hereditary element 
integro-differential forms of stress-strain state equations (11) are unique and there aren't 
corresponding differential forms.  

3. THREE FORMS OF EQUATIONS OF MOTIONS OA A HEREDITARY OSCILATOR  

 THE Simple model of a hereditary discrete system is hereditary oscillator with one 
degree of freedom which contains one material particle with mass m and one standard 
hereditary element P with material viscoelastic properties defined by the following 
coefficients: n, c and c~  constitutive stress-strain relation expressed by relation (2) 
between force P(t) and generalized and rheological coordinate y(t). Then by using principle 
of dynamical equilibrium of the oscillator it is possible to obtain the equation of the 
oscillator motion in the following form: 
 ( ) ( ) ( )my t P t F t+ =      (14) 

where P(t) is resistive reaction of the rheological element, F(t) external forced excitation. 
Using constitutive relation (2) or (10) for stressed and deformed standard hereditary 
(rheological) element for eliminating  resistive reaction of the rheological element  P(t) 
from the last equation (14) we obtain three corresponding forms of the equation of 
motion of the rheological – hereditary oscillator with one degree of freedom listed as 
follow: one in differential form: 
 ( ) ( ) ( ) ( ) ( ) ( )nmy t my t ncy t cy t nF t F t+ + + = +     (15) 

and two in integrodifferential forms  

 ( ) ( ) ( ) ( ) ( )
t

my t c y t t y d F t
−∞

⎡ ⎤
+ − ℜ − τ τ τ =⎢ ⎥

⎢ ⎥⎣ ⎦
∫     (16) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

my t c y t t my d F t c t F d
−∞ −∞

⎡ ⎤
+ + ℵ − τ τ τ = + ℵ − τ τ τ⎢ ⎥

⎢ ⎥⎣ ⎦
∫ ∫          (17) 

For the case of the weak singular hereditary oscillator equation of the dynamic 
equilibrium (oscillator motion) in the differential form is not possible to obtain, but in the 
integro-differential forms it is possible.  

3.1.THE FORMS OF INITIAL VONDITIONS FOR SOLVING EQUATIONS OF THE MOTIONS  
OF THE HEREDITARY OSCILLATOR  

 The initial condition for solving integro-differential equations (16) or (17) are in 
the classical form   
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 0(0)y y=   0(0)y y=  (18) 

In these cases the initial conditions are defined in classical way by initial position y(0) 
and initial velocity (0)y  of the material particle.  

The history of the rheological standard element loading in these integro-differential 
equations is taken into account by integral members in the period of integration (−∞,0).  
For solving differential equation (15) in every case, initial conditions are defined by three 
initial conditions y(0), (0)y  and (0)y . In these cases initial conditions are defined by 
initial position y(0), initial velocity (0)y  and initial acceleration ˆ(0)y  of the material 
particle. The last initial condition, initial acceleration ˆ(0)y  of the material particle is 
directly defined from stress-strain state of the standard hereditary (rheological) element 
on the basis of element loading history. Particular examples to obtain or to define the 
third initial condition in accordance with the  different loaded element history  are 
presented in the Refs. [3,4]. 

In Ref. [3] a detailed schema  to obtain initial conditions of the hereditary oscillator in 
the case of the impulse external excitations is presented.  

3.2. THE ESTIMATIONS OF THE FREQUENCY, DECREMENT AND COEFFICIENT  
OF THE RHEOLOGY OF THE HEREDITARY OSCILLATOR  

The characteristic equations for equation of oscillation of the hereditary oscillator have 
the following form: 
 3 2 0nm m nc cλ + λ + λ + =  (19) 

Let’s present the roots of the previous equation in the complex form 

 0 0λ = −δ , 1,2 iλ = −δ ± ω   

and after their introduction in the characteristic equation (19) we obtain: 

 0( )( )( ) 0i iλ + δ λ + δ + ω λ + δ − ω =  

or in the form 
 3 2 2 2 2 2

0 0 0( 2 ) ( 2 ) ( ) 0λ + δ + δ λ + ω + δ + δδ λ + δ ω + δ =  (20) 

After we put that coefficients of equations (19) and (20) of the corresponding 
exponents we obtain relations between kinetic parameters of the hereditary oscillator in 
the following forms: 

 
2 2

0
2 2

0

( )
( 2 )

c
nc

δ ω + δ
=

ω + δ + δδ
,   0

12
n

δ + δ = ,  2 2
0( 2 ) c

m
ω + δ + δδ =  (21) 

from which follows: 

0
0 2 2

0

21c
nc

⎛ ⎞δδ
δ = +⎜ ⎟⎜ ⎟ω + δ⎝ ⎠
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 0 0
2 2

0

1
2 2 2

c c c
n nc nc

δ δδ−
δ = − = −

ω + δ
 (22) 

2 0
2

( 2 )
1c

m
δ δ + δ⎡ ⎤ω = −⎢ ⎥ω⎣ ⎦

 

In the first approximation, taking into account that ratio 
2δ⎛ ⎞

⎜ ⎟ω⎝ ⎠
is small, the kinetic 

parameters δ0, δ, ω of the hereditary oscillator in the first approximation are obtained in 
the forms: 

 0
c
nc

δ =       
2
c c

nc
−

δ =       2 c
m

ω =  (23) 

By using expressions (23) of the first approximation and putting them in the 
expressions (22), the kinetic parameters δ0, δ, ω of the hereditary oscillator  in the second  
approximation are obtained in the forms: 

 0 2 2 2
( ) 11c c c c

nc c n
−⎡ ⎤δ = +⎢ ⎥ω⎣ ⎦

 

 
2

2 2
11

2
c c c

nc c n

⎡ ⎤− ⎛ ⎞δ = −⎢ ⎥⎜ ⎟ ω⎝ ⎠⎢ ⎥⎣ ⎦
 (24) 

 2
2 2

3 11
4

c c c c c
m c c n

− +⎡ ⎤ω = −⎢ ⎥ω⎣ ⎦
  

 For many visco-elastic hereditary materials the time of hereditary element relaxation is 
n ~ 50[sec]. For the frequency of the hereditary oscillator f ~ 1[hertz] or ω = 2πf = 6,28[sec−1] 
dimensionless ratio  takes the following value 1 / (n2ω2) ≈ 4⋅10

−5
. By this way, the values 

of hereditary oscillator coefficients δ0, δ and circular frequency ω are defined by 
expressions (23) with high degree of precision. 

 By using previous considerations and the approximation of the standard hereditary 
oscillator coefficients  δ0, δ  and circular frequency ω defined by expressions (23), the 
solution of the equation (14) or (15), (16) and (17) for the standard hereditary oscillator, 
we can write in the following form: 

 0
2 2 2

1 1 1 3 1( ) cos sin
2

t
t e c cy t mg e t t

c c c c c n

−δ
−δ⎡ ⎤−⎛ ⎞= + − − ω − ω⎢ ⎥⎜ ⎟ ω⎝ ⎠⎢ ⎥⎣ ⎦

 (25) 

for initial conditions y(0) = 0, (0)y = 0, (0)y + P(0) = mg, where P(0) = cy(0), 
corresponding to applied heavy material particle with weight mg and with zero initial 
velocity of the hereditary oscillator material particle corresponding to the unstressed and 
undeformed natural state of the hereditary element in the hereditary oscillator.  

 The motion of this considered hereditary oscillator in defined initial conditions 
represents damped oscillations in accordance with the curve of rheology.  
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  An estimation of precision expressions of values of the hereditary oscillator with the 
weak singular rheological element for the coefficients: δ0 of rheology, δ for decrement 
and ω for circular frequency expressed by Γ - Euler function give us conclusion, 
presented in reference [4], that  these expressions are with the high steep of the precision. 

The kernel of the relaxation in the governing integro-differential equation of the 
rheological oscillator oscillations in the form  

 
0

( ) ( ) ( ) ( )my t c y t y t d mg
∞⎡ ⎤

+ − ℜ τ − τ τ =⎢ ⎥
⎢ ⎥⎣ ⎦

∫  

is taken in the form ℜ(τ) = ae−βττ−α [1]. The expressions of the weak singular hereditary 
oscillator coefficients:  δ0 of rheology, δ for decrement and ω for circular frequency are 
obtained in the form: 

 1
0 (1 )a−αδ ≈ β − Γ − α ,    1 (1 )

2
a αΓ − α ω

δ ≈    and   2 c
m

ω ≈  (26) 

 For the weak singular hereditary oscillator with the kernel of rheology in the form 
1 ( )

1( )
( )

ta e
t

t

−β −τ

αℵ − τ =
− τ

 (the kernel defined by Ржаницын (Rzanicin) [1,3[) the approximations 

of the  oscillator coefficients:  δ0  of rheology, δ for decrement and ω for circular 
frequency by use of  Γ - Euler function are obtained in the following forms: 

 0 1δ ≈ β  ,    1 (1 )
2

a αΓ − α ω
δ ≈     and    2 c

m
ω ≈  (27) 

The precision of expressions of values of the hereditary oscillator with the weak 
singular rheological element for the coefficients:  δ0 of rheology, δ for decrement and ω 
for circular frequency expressed by Γ - Euler function give us the conclusion, presented 
in reference [4], that  these expressions are with high steep of the precision like in the 
previous examples of the standard hereditary oscillators. 

4. LAGRANGE'S EQUATIONS OF THE SECOND KIND FOR THE HEREDITARY DISCRETE 
SYSTEMS  

Let us consider discrete mechanical systems composed of N material particles 
constrained by s ideal holonomic constraints expressed by  

 1 2 3( , ,... , ) 0Nf x x x tν =     ( 1, 2,3,...., )sν =  (28) 

where xi, (i=1,2,3,...3N) are Descartes' coordinates of the mechanical system material 
particles. The position of the material system as well as material particle configuration 
are defined by n = 3N − s generalized coordinates q1,q2,...,qn. The interaction between 
material particles, material bodies and is realized by K heological light elements in the 
system. The reaction of the rheological light elements are noted by Pk = Pk(y), in which 
y =(y1,y2,...,yK), yk, k = 1,2,...,K and yk = yk(q1,q2,...,qK). There, yk, k = 1,2,...,K are 
deformation of the rheological elements. Number K f the rheological elements is arbitrary 
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and it is possible that this number K is greater then number n of the degrees of the 
hereditary system K > n.  

The generalized equation of the hereditary discrete system is in the form: 

 
3

1 1
X ( ) ( ) 0

N K

i i i k k ik i
i k

m x t P y e x
= =

⎡ ⎤
− + δ =⎢ ⎥

⎣ ⎦
∑ ∑  (29) 

where eik = eik(x1,x2,...,x3N) Pk(yk) cosine of the rheological elements and their reaction 
directions in the Descartes' system of the coordinates; Xi(t) external forces components 
(projections) in the Descartes' system coordinates; yk(x1,x2,...,x3N) rheological coordinates of 
the  k -rheological element. By using the expression of the variations of the Descartes' 

coordinates through the generalized coordinates in the following forms 
1

n
i

i j
j j

xx q
q=

∂
δ = δ

∂∑  and 

taking into account that Lagrange's identities are in the forms: ,i i

j j

x x
q q

∂ ∂
=

∂ ∂
and 

i i

j j

x xd
dt q q

⎛ ⎞∂ ∂
=⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

the previous equation (29) is transformed into the following form: 

 
1 1

0
n K

j kj k j
j kj j

E Ed Q b P q
dt q q= =

⎡ ⎤∂ ∂
− − + δ =⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∑ ∑k k   (30)      

where coefficients bkj are defined by expressions 
3

1
( )

N
i

kj ik
i j

x
b q e

q=

∂
=

∂∑ , (j = 1,2,3,...,n). The 

kinetic energy Ek and the generalized forces Qj correspond to the generalized coordinates 

qj  in the forms: 
23

1 2

N
i i

i

m x
E

=
= ∑k  and   

3

1

N
i

j i
i j

x
Q X

q=

∂
=

∂∑   (j = 1,2,3,...,n). 

 Taking into account previous considerations and the independency of the generalized 
coordinates qj, j = 1,2,...,n and their variations δqj, (i = 1,2,3,...,n) from the basic 
generalized equation of system dynamics (30) we obtain the equations of the motion of 
the hereditary discrete system in the following form:      

 
1

, ( 1,2,..., )
K

kj k j
kj j

E Ed b P Q j n
dt q q =

∂ ∂
− + = =

∂ ∂ ∑k k  (31) 

which contain the generalized reactions of the hereditary elements in the forms: ΣK
k = 1bkjPk. 

These reactions are basic for founding Lagrange's equations in the analytical dynamics of 
the hereditary discrete systems. (For the classical discrete systems, Lagrange's equations 
don't contain like that reactions). For the elimination of these reactions from the previous 
system of equations it is possible to use one of the three previously defined and presented 
forms of the constitutive relation for stress-strain state of the used standard rheological 
hereditary elements. For obtaining Lagrange's equations from initial equations (31) is 
connected with possibility to solve these equations with respect to the equations of the 
reactions Pk of the hereditary elements.  
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4.1. THE UNIVERSAL FORM OF LAGRANGE'S EQUATIONS FOR HEREDITARY DISCRETE SYSTEMS   

Expressed in the equations (31) reactions Pk of the hereditary elements through (10) is 
not difficult to obtain Lagrange's equations in the integro-differential (relaxation) forms  

 
1

( ) ( ) ( ) , ( 1,2,..., )
tK

kj k k k k j
kj j

E Ed b c y t t y d Q j n
dt q q = −∞

⎡ ⎤∂ ∂
− + − ℜ − τ τ τ = =⎢ ⎥

∂ ∂ ⎢ ⎥⎣ ⎦
∑ ∫k k     (32) 

The universality of the obtained Lagrange's equations in the form (32) it is in the 
possibility to construct (build) these equations in the case of an arbitrary number K of 
rheological elements into discrete hereditary system. The history of the hereditary 
element loading in the time period t ∈ (−∞,0) before the start of  the considered and 
described hereditary discrete system motion is taken into account by integral members in 
the equations.  

 The initial conditions for solving the system of equations (32) are defined in the 
classical form by the generalized coordinate initial values and generalized velocities 
initial values:  
 0(0)j jq q=     0(0)j jq q=   (33) 

Let’s consider an example by the model of a vibroisolation system of an object with 
rheological foundation for the case with kinematics excitation as a suitable hereditary 
discrete system for application of the previous derived equations (Figure 1). For 
determining the position of the object two generalized coordinates are taken in the form of 
x(t) for object translation and ϕ(t) for object rotation. The number of rheological elements is 
K = 4 and number of freedom degrees is n = 2 and one kinematics excitation. ξ(t) by motion 
of the fundament of the object. Lagrange's equations in the relaxation form are: 

 

10  

20  
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Fig. 1. Model of a 

vibroisolation system 
of the object with 
rheological foundation 
for the case with 
kinematics excitation 

 

Fig. 2. a) Model presentation of the standard 
piezo-rheological hereditary element.; 
b) Model presentation of the pizo-
modified Maxwell's elasto-viskosic 
hereditary element;  
c) Model presentation of the pizo-
modified  Kelvin-Foight's visko-elastic 
hereditary  element;  
d) Model presentation of the  piezo-
modified  Burgers's hereditary element.

Fig. 3. Thermorheological 
pendulum 
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1 2 3 4 1 2 3 4 11 12( ) ( ) ( ) (2 2 ) ( ) [ ( ) ( ) ( ) ( )]
t

mx t c c c c x t c c c c a t t x t a d
−∞

+ + + + + + − − ϕ − ℜ − τ τ + ℜ − τ ϕ τ τ =∫   

 1 2 3 4 11( ) ( ) ( ) ( )
t

c c c c t t d
−∞

= + + + ξ − ℜ − τ ξ τ τ∫   (34.1) 

2 2
1 2 3 4 1 2 3 4 21 22( ) ( ) ( ) (2 2 ) ( ) [ ( ) ( ) ( ) ( )]

t
t c c c c a t c c c c ax t t x t a d

−∞

ϕ + + + + ϕ + + − − − ℜ − τ τ + ℜ − τ ϕ τ τ =∫J  

 1 2 3 4 21(2 2 ) ( ) ( ) ( )
t

c c c c a t t a d
−∞

= + − − ξ − ℜ − τ ξ τ τ∫  (34.2) 

where generalized kernel of the relaxation are in the following forms:  

11 1 1 2 2 3 3 4 4( ) [ ( ) ( ) ( ) ( )]t c t c t c t c tℜ − τ = ℜ − τ + ℜ − τ + ℜ − τ + ℜ − τ  

22 1 1 2 2 3 3 4 4( ) [4 ( ) ( ) ( ) 4 ( )]t c t c t c t c tℜ − τ = ℜ − τ + ℜ − τ + ℜ − τ + ℜ − τ  

12 21 1 1 2 2 3 3 4 4( ) ( ) [2 ( ) ( ) ( ) 2 ( )]t t c t c t c t c tℜ − τ = ℜ − τ = ℜ − τ + ℜ − τ − ℜ − τ − ℜ − τ  

4.2. DYNAMICALLY DEFINED HEREDITARY DISCRETE SYSTEMS  

From all previously considered theories of hereditary discrete systems and numerous 
examples as well as presented in the main key points hereditary discrete systems we must 
separate two groups of hereditary discrete systems on the basis of the possibilities to  
solve governing equations (31) with respect to rheological reactions Pk. By solving of the 
governing equations (31) with respect to rheological reactions Pk is possible under the 
following two conditions: 

1* Number K of the rheological elements must be less or equal to the number n of the 
degrees of the hereditary discrete system freedom, K ≤ n; 

2* Structure of the mechanical hereditary discrete system must be like that, that there 
is the  possibility of choices of the  generalized coordinate that is possible to obtain 
inequities with zero defined by   

 
3

1
( ) ( ) 0

N
i

kj ik
i j

x
b q e q

q=

∂
= ≠

∂∑  for K n≤  (35) 

These conditions are generalizations of the known conditions of the static defined 
mechanical system, applied widely for solving problems in the strength of materials.  

4.2.1. LAGRANGE'S EQUATIONS FOR THE HEREDITARY DISCRETE SYSTEMS WITH STANDARD 
RHEOLOGICAL ELEMENTS   

1* Case for K = n. Governing system equations (31) of the hereditary discrete system 
is possible presently in the matrix form: 

 ( ){ } { }jk j kb P L= −  (36) 
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where (bjk) is n×n matrix composed by elements bjk, {Pj} matrix column with elements Pj 

and {Lj} matrix column with elements j j
j j

E EdL Q
dt q q

∂ ∂
= − −

∂ ∂
k k . In the case that 

conditions (36) of the dynamical defined hereditary discrete system are satisfied and 
possess solvability with respect of the reactions Pk it is easy to obtain the following 
explicate solution for Pk: 

 
1

L ( , , ), ( 1, 2,3,...., )
n

k kP a q q t k K
ν=

ν ν
ν=

= − =∑  (37) 

Using differential equations – constitutive relations of the stress-strain state of 
rheological standard light elements (6) and solutions (37), from governing equations (31) 
it is easy to obtain equations in the Lagrange's form: 

 ( ) ( ) ( ) 0,
j n

k kj j k k k k
j 1 j j

E Ed d1 n a q Q n c y q cy q
dt dt q q

=

=

⎡ ⎤∂ ∂⎛ ⎞+ − − + + =⎢ ⎥⎜ ⎟ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦
∑ k k ( 1,2,3,...., )k n=  (38) 

The previous system of equations is a system of Lagrange's equations of the second 
kind containing derivatives of the third order, of the generalized coordinates, with respect 
to time. 

The initial conditions for the generalized coordinates for the case natural 
(nondeformed and unstressed) state of the rheological elements at initial moment of the 
system motion are defined by following expressions: 

0(0)k kq q=  0(0)k kq q=                             

 
1 0

( ) 0, ( 1,2,3,...., )
n

k k
t

E EdP a q Q k n
dt q qν ν

ν= ν ν =

⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪+ − − = =⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭
∑ k k  (39) 

and contain, in addition to classical cases, a second derivative of the generalized coordinate 
with respect to time at initial moment of the system motion: (0), ( 1,2,3,..., )kq k n= , 

2* Case for K < n. Governing system of equations (31) of the hereditary discrete 
system is separable into two groups: first contains K equations for which system 
determinate satisfies the following condition | bkj | ≠ 0 and by analogy with (36)-(37) it is 
easy to obtain the following: 

 
1

L ( , , ), ( 1,2,3,...., )
n

k kP a q q t k K
ν=

ν ν
ν=

= − =∑  (40) 

 For that group of equations  by using constitutive relations (6) for stress-strain 
rheological element  state and solutions (40) by analogy with (38) it is easy to construct 
modified Lagrange's equations of the second kind and with members of the third order  
derivatives with respect to time in the following form: 

1
1 ( ) ( ) ( ) 0,   ( 1, 2,3,...., )

K

k k k k k k
E Ed dn a q Q n c y q cy q k K

dt dt q q

ν=

ν ν
ν= ν ν

⎡ ⎤∂ ∂⎛ ⎞+ − − + + = =⎢ ⎥⎜ ⎟ ∂ ∂⎝ ⎠ ⎣ ⎦
∑ k k  (41) 
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 The remaining of the system governing equations (31) without equations transformed 
into system (41) with K equations, contain the rest of the n − K equations which are possible 
to transform into modified Lagrange's equations of the second kind expressed by: 

 
1

( )
K

j j
j j

E E E Ed dd q Q Q
dt q q dt q q

ν=

ν ν
ν= ν ν

⎡ ⎤∂ ∂ ∂ ∂
− − − − =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∑k k k k ,
( 1, 2,...., )j K K n= + +   (42) 

where  
1

k K

j kj k
k

d b a
=

ν ν
=

= ∑ . 

In this way, for dynamically defined rheological discrete systems in which the number 
of the contained rheological elements is less the number of the degrees of the system 
freedom, one part of equations is with the members of the second order and the rest are 
equations with members of the third order derivatives.  

In accordance with previous considerations and the conclusion pointed out for 
different hereditary system cases is right to derive conclusion that possibilities to obtain 
modified Lagrange's equations for the hereditary discrete system containing generalized 
hereditary elements with constitutive stress-strain relations in the form of the equations 
(3) exist.      

4.2.2. THE MODIFIED LAGRANGE'S EQUATIONS IN THE INTEGRODIFFERENTIAL FORM FOR 
HEREDITARY DISCRETE SYSTEMS WITH STANDARD RHEOLOGICAL ELEMENTS OF 

HEREDITARY SYSTEMS  

The construction of integro-differential equations in rheological forms is realized 
under the conditions of the dynamically defined hereditary discrete systems of which 
dynamics are described by (30). For that,we used expressions of Pk in the form (37) and 
rheological states of the rheological elements are described by (12) and for K = n 
Lagrange's equations in rheological forms can be written as:  

1
( )

n

k
E Eda q Q

dt q q

ν=

ν ν
ν= ν ν

⎡ ⎤∂ ∂
− − +⎢ ⎥∂ ∂⎣ ⎦

∑ k k     ( 1,2,3,..., )k n=  

 
1

( ) ( ) ( ) 0
t n

k k k k
E Edt a q Q d c y q

dt q q

ν=

ν ν
ν= ν ν−∞

⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪+ ℵ − τ − − τ + =⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭
∑∫ k k  (43) 

For the case K < n in the system (30), as in the case (38), (39) and (37) two groups of 
equations are obtained in the following forms: 

1
( )

K

k
E Eda q Q

dt q q

ν=

ν ν
ν= ν ν

⎡ ⎤∂ ∂
− − +⎢ ⎥∂ ∂⎣ ⎦

∑ k k             ( 1, 2,3,..., )k K=   

 
1

( ) ( ) ( ) 0
t K

k k k k
E Edt a q Q d c y q

dt q q

ν=

ν ν
ν= ν ν−∞

⎧ ⎫⎡ ⎤∂ ∂⎪ ⎪+ ℵ − τ − − τ + =⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎣ ⎦⎩ ⎭
∑∫ k k  (44)  

 
1

( )
K

k j
j j

E E E Ed dd q Q Q
dt q q dt q q

ν=

ν ν
ν= ν ν

⎡ ⎤∂ ∂ ∂ ∂
− − − − =⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∑k k k k  ( 1, 2,...., )j K K n= + +     (45) 
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For the systems with different forms (a number with differential and a number with 
integrodifferential forms) of the defined stress-strain constitutive relations of the 
rheological elements contained in the hereditary discrete mechanical system expressed by 
(6) and (10) in the case of the dynamically defined hereditary system of the generalized 
Lagrange's equation consists of equations in the forms (32), (38), (43) and (45).  

In the case that hereditary discrete system K > n is a part of the system of constitutive 
equations containing K − n equations of stress-strain states of hereditary elaments are in 
need of  being transformed into equations of  relaxational forms.  

4.3. LAGRANGE'S EQUATIONS FOR  HEREDITARY DISCRETE SYSTEMS  WITH VISCOSE 
(MAXWELL'S) ELEMENTS  

 Let’s consider a hereditary discrete system with n degrees of freedom which contains 
K < n rheological elements of Maxwell's type, with stress-strain states described by 
differential equations in  the following form: 

 ( )k k k k k kn P P n c y q+ =   1( 1,2,3,..., )k K=   (46)  

From the basic governing system of equations (31), for the first, a group of K 
equations for which the condition |bkj| ≠ 0 and by solving these equations explicit with 
reactions Pk of the viscose elements, and the expressions of these reactions Pk are 
expressed in the forms (40). By elimination of reactions Pk from the separated group of 
the equations for the governing system with the use of constitutive relations expressed by 
equations (46) it is easy to obtain the following groups of equations: 

   
1

1 ( ) ( ) 0
n

k k k k k
E Ed dn a q Q n c y q

dt dt q q

ν=

ν ν
ν= ν ν

⎧ ⎫∂ ∂⎛ ⎞+ − − + =⎨ ⎬⎜ ⎟ ∂ ∂⎝ ⎠ ⎩ ⎭
∑ k k , 1( 1,2,3,..., )k K=   (47)     

The remaining of the system governing equations (40) without equations transformed 
into system (47) with K equations, contain the rest of the n − K equations, which can be 
transformed into modified Lagrange's equations of the second kind as expressed by (42). 

In the special case when expression of the system kinetic energy Ek  and the 
generalized forces Qk explicit do not contain generalized coordinates qk and coefficients 
don't depend explicitly on time, akv(q), then equations (47) are integrable and it is easy to 
obtain K first integrals in the forms: 

  
1 10

1 ( ) ( ) 1 ( ) ( )
tn n

k k k k k k k k
Ed dn a q n c y q n a q Q d h

dt q d

ν= ν=

ν ν ν
ν= ν=ν

∂⎛ ⎞ ⎛ ⎞+ + = + τ τ +⎜ ⎟ ⎜ ⎟∂ τ⎝ ⎠ ⎝ ⎠
∑ ∑∫k  (48)         

1 2( 1, 2,...., )k K K n= + +  

where hk = const  constant of the integration.  
The generalized coordinates qk for which the conditions  ∂Ek / ∂qk = 0 are satisfied, and 

when the expression of the system kinetic energy Ek explicitly does not contain these  
generalized coordinates qk, are cyclic coordinates. In this way, under the corresponding  
constrictions, as in the case of the classical systems with cyclic coordinates, for the hereditary 
systems  with rheological  elements maxwell's types, the first integral appears and exists.  
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5.  THERMO-RHEOLOGICAL PENDULUM  

V. 1.  Light standard thermo-rheological hereditary element 

When standard hereditary element is modified by two temperatures TK(t) and TM(t), 
which are introduced by thermo-modification of visco-elastic properties by temperature 
TK(t), and by thermo-modification of elasto-viscosic  properties by temperature TM(t), 
than constitutive relation between stress and strain state  of the thermo-rheological 
hereditary element (see Figure 2, and Refs. [4, 10, 11]) is: 

 0( ) ( ) ( ) ( ) ( ) [ ( ) ]M KnP t P t nF t F t nc t c t+ + + = ρ + ρ − ρ            (49) 

in which (see Refs. [4] and [8-13]) 

     ( ) ( )M M M MF t c T t= α , ( ) ( )K K K KF t c T t= α                (50)       

are thermoelastic forces, and ρ(t) is rheological coordinate, cM ,cK are the coefficients of 
thermo-elastic rigidity, αM , αK are coefficients of thermo-elastic dilatations, n is time of 
relaxation, and c, c an instantaneous rigidity and a prolonged one of an element. 

Constitutive relation (49) of the thermo-rhelogical hereditary element from differen-
tial form we can rewrite in two integro-differential forms as in the previous chapters.  

V. 2.  Light standard piezo- and thermo-rheological hereditary element 

When the standard hereditary element is modified by two polarization voltages UK(t) 
and UM(t), which are introduced by piezo-modification of visco-elastic properties of  the 
subelement of piezoceramics, by UK(t) and by piezo-modification of elasto-viscosic 
properties by UM(t), and thermo-modified by two temperatures TK(t) and TM(t), than 
constitutive relation between stress and the strain state  of the piezo-rheological 
hereditary hybrid element is in the form (49) in which (see Figure 2. and  Refs. [4] and 
[8-13]) 

 ( ) ( ) ( )M UM UM M TM TM MF t c U t c T t= α + α     ( ) ( ) ( )K UK UK K TK TK KF t c U t c T t= α + α  (51) 

are thermoelastic forces, and ρ(t) is rheological coordinate, cTM, cTK are coefficients of 
thermo-elastic rigidity, αTM, αTK are coefficients of thermo-elastic dilatations, UKUM cc ,  
are coefficients of piezo-elastic rigidity, αUM, αUK are coefficients of piezo-elastic 
dilatations n is time of relaxation, and c, c an instantaneous rigidity and the prolonged 
one of an hybrid element. 

V.3. Pendulum with standard thermorheological hereditary element 

The thermo-rheological hereditary pendulum (Figure 3) has two degrees of freedom, 
one degree of motion freedom defined by angular coordinate ϑ and one degree of 
deformations freedom defined by changeable length of thread as a coordinate ρ(t).  

Let us compose the equations of the thermo-rheological pendulum dynamics (see 
Figure 3) with thread in which the standard thermo-rheological hereditary element with 
constitutive stress-strain relation (49) is incorporated. Now, by introducing force P(t) of 
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the extension of the thermo-rheological hereditary thread from constitutive relation (49) 
presented into integral form, the equations of the pendulum motion are in the forms: 

 
2

0

0

( ( )) cos ( ) ( ) (t - )

1 ( ) [ ( ) ( )] (t - ) ( )
( )

t

o

t

M M K

ct g t d
m

cF t F F d P t
m m c c

⎡ ⎤
ρ − ρ + ρ θ + θ + ρ − ρ τ ℜ τ τ =⎢ ⎥

⎢ ⎥⎣ ⎦

= − τ − τ ℜ τ τ
−

∫

∫

 (52.1) 

 2
0 0 0( ( )) 2( ( )) ( ) ( ( ))sint t t g tρ + ρ θ + ρ + ρ θρ + ρ + ρ θ = µ(t)(t)  (52.2) 

This system is a system with one integro differential and one differential equation of 
the thermo-rheological hereditary pendulum with motion in vertical plane.   

If the thermo-rheological pendulum is in the horizontal plane,  from the second 
differential equation of the previous system, we can obtain the relation between  the 
length of the pendulum thread and of the angular velocity in the following form:  

 
2

0

0

(0)
( ) (0)

( )
t

t
⎡ ⎤ρ + ρ

θ = θ ⎢ ⎥ρ + ρ⎣ ⎦
 (53) 

By introducing this previous expression (53) in the first equation of the system (52 
(for the case - horizontal plane) the following integro-differential equation for the 
pendulum length thread is obtained: 

  

[ ]

4
2 0

3
0 0

0

[ (0)]( ) [ (0)] ( ) ( ) (t - )
[ ( )]

1 ( ) ( ) ( ) (t - ) ( )
( )

t

t

M M K

ct t d
mt

cF t F F d P t
m m c c

⎡ ⎤ρ + ρ
ρ − θ + ρ − ρ τ ℜ τ τ =⎢ ⎥

ρ + ρ ⎢ ⎥⎣ ⎦

= − τ − τ ℜ τ τ
−

∫

∫
 (54) 

6. COVARIOAN TENSOR INTEGRO-DIFFERENTIAL EQUATIONS  OF HEREDITARY SYSTEMS  

We obtain the following system of equations in the covariant coordinates: 

 *Q Q P PH CDqa
dt

β

αβ α α α α= + + +     (55) 

1, 2,3,..., ; 3n n N Sα = = −  

where, by analyzing the members, we have the following expressions of the generalized 
fictive, active and reactive forces in the tensor covariant form  for the corresponding 
curvilinear gereralized covaqriant coordinates(see Refs. [5, 7, 10 and 11]) : 

 
1 1 0

I , ,
nN Nr r rdm r m q

dtq q q

β=ν= ν=
βν ν ν

α ν ν να β α
ν= ν= β=

⎛ ⎞⎛ ⎞∂ ∂ ∂
= − = − =⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

∑ ∑ ∑   

 ( ) Dqa q q q a
dt

β
β α γ δ

αβ γδ αβ⎡ ⎤− + Γ = −⎣ ⎦          (56)  
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 α = = −1 2 3 3, , ,..., ;n n N S    

       
1

Q F ( ),
N r

t
q

ν=
ν

α ν α
ν=

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

∑                          (57) 

 1
1 1

Q ( ,..., ), 0
SN

f
N

r
grad f r r

q

µ=ν=
ν

α µ ν µ α
ν= µ=

⎛ ⎞∂
= λ =⎜ ⎟⎜ ⎟∂⎝ ⎠

∑ ∑           (57*)      

        ( , )

( , )
1 1 1 ( , )

,
( )

j kk Kj NN
H

j k
j k j k

r
q

P t
ν

ν
ν ν+ α==ν=

α ν ν+
ν= = = ν ν+

⎧ ⎫⎛ ⎞∂
ρ⎪ ⎪⎜ ⎟⎜ ⎟∂⎪ ⎪⎝ ⎠= ⎨ ⎬

ρ⎪ ⎪
⎪ ⎪
⎩ ⎭

∑ ∑ ∑P
                    (58)                       

         ( )
( , )

( , )
1 1 1 ( , )

,j kc Cj NN
C

j c
j c j k

r
q

P t
ν

ν
ν ν+ α==ν=

α ν ν+
ν= = = ν ν+

⎧ ⎫⎛ ⎞∂
ρ⎪ ⎪⎜ ⎟⎜ ⎟∂⎪ ⎪⎝ ⎠= ⎨ ⎬

ρ⎪ ⎪
⎪ ⎪
⎩ ⎭

∑ ∑ ∑P            (59)                               

        *

1
Q R ( ),

N

T
rt
q

ν=
ν

α ν α
ν=

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

∑   (60) 

5. CONCLUDING REMARKS 

On the basis of the construction of Lagrange's mechanics of hereditary discrete sys-
tems, the classical mechanics principles are used. These principles are: the Principle of 
the work of forces along corresponding possible system displacements, as well as the 
Principle of dynamical equilibrium.  

By using the Principle of the work of system forces along the corresponding possible 
system displacements we obtain governing system equations of the hereditary discrete 
system dynamics. 

In this paper, the series of schemes for construction of Lagrange's equations for 
hereditary discrete mechanical systems with rheological interactions between bodies and 
material particles in the system are given, expressed by constitutive stress-strain relations 
in the three different forms: by differential equations and two forms by integro-
differential equations with resolvents as kernels of the relaxation and of kernel of 
rheology. A class of dynamically defined hereditary systems is defined and investigated. 
For this class of dynamically defined hereditary systems, it is possible to eliminate 
reactions of rheological elements and to obtain modified Lagrange's equations in 
differential and integrodifferential forms. In the case that stress-strain relations of 
hereditary elements can be expressed in all three forms, and also only in the forms by 
used relaxational kernels, it is possible to construct Lagrange's equations for every 
arbitrary type of hereditary systems. 

Also, a class of dynamically undefined hereditary systems is defined and considered basic. 
The initial conditions of hereditary system dynamics are very important, containing 

the history of rheological interactions of the system. Then, it is important to take into 
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account the stress-strain history of viscoelastic elements – interactions between hereditary 
system material particles. 

The analogy between hereditary interactions and reactive forces in the systems of the 
automatic control give possibility to extend theory of analytical dynamics of hereditary 
systems to mechanical systems with automatic control.  

A hereditary discrete system with n degrees of freedom which contains rheological 
elements of Maxwell's type, with stress-strain states described by differential equations is 
considered. 

For the description of properties of dynamics of a hereditary system by using 
relaxational or rheological kernel (resolvent), these kernels are expressed by exponential 
or fractional-exponential forms [1] . The descriptions of hereditary properties of the 
system by using differential forms (1) and integral form (2) and (3) with exponential 
kernels are equivalent. For the case of fractional-exponential forms of the kernel (2) and 
(3) in the integral form corresponding equivalent differential forms do not exist.  

The Lagrange's mechanics of hereditary systems is extended and generalized to 
thermo-rheological [4, 8] and piezo-rheological [4, 9] mechanical systems.  
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KONSTRUKCIJA LAGRANGE-OVE MEHANIKE  
DISKRETNIH NASLEDNIH SISTEMA 

Oleg Aleksandrovich Gorosko i Katica (Stevanović) Hedrih 

Istraživački rezultazi u oblasti naslednih diskretnih sistema, koje su dobili autori ovog rada, su 
uopšteni i predstavljeni u monografiji [4], koja sadrži prvu kompletnu predstavu annalitičke dinamike 
naslednih diskretnih sistema. Dve klase dinamički određenih i dinamički neodređenih sistema su 
definisane i razmotrene u svetlu određenih ograničenja. Glavni rezultati analitičke dinamike diskretnih 
naslednih sistema su provereni na novim primerima značajnim za inženjersku praksu.  

 Aproksimacije izraza za koeficijent prigušenja i odgovarajući dekrement, kao i za kružnu frekvenciju 
oscilovanja naslednog oscilatornog sistema su dobijene sa visokom tačnošću u prvoj i drugoj aproksimaciji.  

Analogija između nasledne interakcije i reaktivnih sila u sistemu automatskog upravljanja je 
otkrivena kao i mogućnost proširenja teorije analitičke dinamike diskretnih naslednih sistema na 
mehaničke sisteme sa automatskim upravljanjem.  

Lagrange-ova mehanika diskretnih naslednih sistema je proširena i uopštena na termo-
reološke [4, 8] i piezo-reološke [4, 9] diskretne sisteme, kao i na diskretne mehaničke sisteme sa 
puzećim standardnim lakim elementima. 

Ključne reči:  Nasledni sistem, reološki element, reološko i relaksaciono jezgro, standardni kali 
nasledni element, integro-diferencijalna jednačina, izvod necelog reda, materijalna 
tačka, reonomna koordinata, reološka koordinata, reološko klatno, kovarijantne 
coordinate, termo-reološki i piezo-reološki standardni nasledni laki element 


