
FACTA UNIVERSITATIS  
Series: Mechanics, Automatic Control and Robotics  Vol. 6, No 1, 2007, pp. 23 - 43 

 

THE RHEOLOGICAL-DYNAMICAL HARMONIC OSCILLATOR  
UDC 532.511(045)=111 

Dragan D. Milašinović 

Faculty of Civil Engineering, Subotica, Serbia 

Abstract. In this paper the rheological-dynamical theory of the analytical dynamics of 
discrete visco-elasto-plastic system is presented. The rheological-dynamical analogy 
(RDA) has been developed on the basis of mathematical-physical analogy between the 
rheological model and the discrete dynamical model with viscous damping and is 
aimed to be used for the analysis of inelastic deforming of materials and structures. In 
this presentation, the coupled initial conditions of the stress-strain state of the 
rheological visco-elasto-plastic model are applied for the study of discrete dynamics 
system. Mechanical systems that have their masses and elastic forces distributed, such 
as cables, rods, beams, plates, etc., rather than lumped together in concentrated masses 
by springs belong to this class of vibrations of continuous media. These systems consist 
of an infinitely larger number of particles, and hence require an infinitely large number 
of coordinates to specify their configurations. These notes give an example illustrating 
how discrete model can be derived from special limits of the continuum model using the 
principle of analogy. This technique is useful because discrete model is often much 
easier to deal with than continuum model, both conceptually and computationally. 
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1. INTRODUCTION 

Any system, discrete or continuous, capable of vibrating must have mass and stiff-
ness. Mass implies that once the system starts moving it will possess inertia which will 
make the system continue moving. On the other hand, stiffness implies that change in the 
configuration of the system due to some internal or external disturbance will be accompa-
nied by a change in potential energy. However, such a system cannot show vibration 
characteristics until it is disturbed from the position of equilibrium. A vibrating system 
would be conservative if its potential energy is interchangeable with the kinetic energy so 
that over any cycle of operation (at the end of which the configuration of the system is 
the same as it was at the beginning) the work done is zero.  

A non-conservative system implies gradual loss of total energy content with time 
through forces, which do not depend on a potential. Traditionally the energy dissipation 
in a system, caused by losses in the surrounding medium, feedback in the foundation soil, 
internal friction of the construction materials, hysteretic behavior of the members of the 
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system and the friction at the connections, is represented by an idealized viscous damping 
force, i.e. a force directly proportional to the velocity of the system. The external forces 
are generally induced by several factors such as the earthquake, wind, rotating machines 
and etc. When a linear analysis is used to predict the dynamic response of a structure, 
viscous damping is the only factor that takes account of the energy dissipation of the 
structure and it is well understood that the viscous damping coefficients are of major 
importance in the dynamic analysis. The structure mass and stiffness matrices remain 
constant during the analysis and they satisfy the well known orthogonality conditions, 
Clough and Penzien [1]. If the damping matrix also satisfies orthogonality, the incre-
mental equations of motion for a discretised multi-degree-of-freedom structure can be 
decoupled into n independent equations, one for each normal mode of the structure. It is 
equivalent to assuming that the normal modes of the damped system are identical to those 
of the undamped system; this is basically true for low values of damping. It is obvious 
that if the damping matrix is a linear combination of orthogonal matrices, such as mass 
and stiffness matrices, it will satisfy orthogonality.  

The strain induced in a purely elastic linear material is proportional to the stress that 
produces the deformation. When a linear visco-elastic material (hereditary medium) is 
subjected to time-dependent variations of stress and strain, the fundamental shear or 
volume deformation of the material is no longer related to stress by a simple constant of 
proportionality-the shear modulus or bulk modulus. Rather, the relation between stress 
and strain is most generally represented by a linear partial diffrential equation of arbitrary 
order. Mechanics of hereditary medium is presented in scientific literature by the array of 
monograpf: Reiner [10] and Goroshko and Hedrih (Stevanović) [2].  

Inelastic deforming of materials is based on the mathematical physical analogy 
between rheological model and dynamical model with viscous damping, the so-called 
RDA that was suggested in the monograph from Milašinović [4]. RDA modeling 
technique for material behavior of axially cyclically loaded rods has already been 
explained by Milašinović [5], where RDA was used to predict the buckling behavior of 
slender columns. In the second paper, Milašinović [6], the author demonstrates that RDA 
is also capable of  modeling the fatigue behavior. The efficient numerical implementation 
of RDA and its practical application was also studied by Milašinović [7] in the visco-
elasto-plastic behavior of metalic rods where the RDA loading function for Hencky’s 
theory is derived.  

The objective of the present paper is to explain the physical mechanism of viscous 
damping, which is based on analogy. In such an analysis, the structure is usually 
represented by a simple vibration model. Taking into account RDA, rheologic behavior 
of bar can only be characterized by a single parameter, i.e. the dynamic time of 
retardation TK

D = 1 / ω, or a characteristic time for which a wave at the velocity c takes to 
propagate a length of the bar l0. In the stage of visco-elasticity, the RDA model has the 
same phase angle as a simple single-degree-of-freedom spring mass system with damping 
in the steady state vibration and from that the viscous damping ratio is obtained.  

2. THE DISCRETE VISCO-ELASTO-PLASTIC RDA SYSTEM 

Many vibrating objects vibrate normally in a way that establishes standing waves in 
the object. A standing wave is formed, for instance, in a stretched flexible string when 
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one end is fixed and vibratory motion is imparted to other end. The points of a standing 
wave at which the amplitude is equal to zero are called its nodes; the points at which the 
amplitude reaches its maximum value are called antinodes. The distance between two 
adjacent nodes and between two adjacent antinodes are the same and equal to half the 
wave-length λ of the traveling waves. This distance is called the length of the standing 
wave: λst = λ / 2.  

We shall now consider the bar of Fig. 1a) of length l0 loaded by the axial force P(t), 
which retains its magnitude and direction as the bar deflects. Suppose that length of the 
bar under compressive critical load at the point of elasticity E is equal to the length of the 
standing wave (l0 = λst). In this  way we obtained a physical significance for the 
characteristic length l0. Let A be the constant cross section area of the uniform bar where 
the lateral dimensions remains small in comparison with the wavelength. In this case the 
radial motion of the bar (Poisson’s ratio effect) may be neglected and the bar may be re-
garded as “long” bar. The vibration of the bar of significant lateral dimensions is 
determined from a “corrected” theory given by Love [3].  

 

Fig. 1. Discrete visco-elasto-plastic RDA system 

Let y(x,t) be the longitudinal motion of the bar  

 ( , ) ( )y x t t x= ε  (1) 

The total strain ε(t) is modeled according to the principle of RDA by Milašinović [5] 
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where: 
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i is the level for visco-plastic yielding at any stage of dynamic equilibrium. φ* represents 
the visco-elastic creep coefficient of the material of the bar, see Milašinović [5]. TK

D 
represents a characteristic time (the dynamic time of retardation) for which a wave at the 
velocity c = √EH / ρ takes to propagate the distance l0. 

The total visco-elasto-plastic strain was solved theoretically on the harmonic excita-
tion σ(t) = σ0+σAsin(ωσt) by Milašinović [9]. The strain εh, under constant stress σ0 < σY, 
with initial conditions (4) is only visco-elastic strain 
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The cyclic visco-elasto-plastic steady strain is given by 
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The constant and variable components of cycle are σ0 and σA respectively, while σY is 
the yield stress. δ represents the relative frequency of the RDA model, δ = ωσ/ω, where 
ωσ

 = ωF. 
The RDA system (Fig. 1b) consists from a main mass M, which is periodically ex-

cited and its resonance amplitudes should be minimized by the influence of the material 
of the bar-like visco-elasto-plastic substance under cyclic strain. When gusts occur, the 
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cyclic stress causes cyclic visco-elasto-plastic strain to the supstance, which then absorbs 
energy. The motion y(l0,t) of the damper P is described by the equation similar to Eq. 2 
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According to the D’Alambert’s principle, the following equation could be written for 
the dynamic equilibrium of forces acting on the RDA system 
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The motion of the RDA system is described by the equation with the highest 
derivative of the fourth order with respect to time t 
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or 
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where: 
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A mechanical longitudinal wave propagates in an elastic solid metals at the finite 
velocity, ~5000m/s. Accordingly, the characteristic time TK

D to be small number, so that 
the terms, which have multiplication by (TK

D)2 become negligible. For these oscillatory 
RDA systems the third order differential equation with respect to time t may be 
composed 
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In the stage of visco-elasticity φvp
 = φ*, the Eq. 14 takes the form of  
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3. THE VISCO-ELASTIC RDA OSCILLATOR 

Damping is basically a dissipation of energy, which occurs in the damper P. Metallic 
dampers mainly consisting of low carbon steel. Two equivalent expressions for the 
critical (minimal) damping of the bar defined as mass and/or stiffness proportional can be 
obtained using by the basic RDA equations see Milašinović [8] 
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Thus the minimal viscous damping ratio of the RDA model is  

 min 1ξ =  (18) 

Owing to the visco-elastic nature of the material of the damper, the measure of phase 
angle between the applied stress and subsequent strain is more importantly 

 2tan
1

∗

∗

δ ⋅ϕ
α =

+ δ + ϕ
 (19) 

The representative computations of the previous equation are shown in Fig. 2. The 
curves on this figure have been computed for the values of creep coefficient: φ* = 0.5, 1, 
2, 3, 4, 5, and 6. 
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Fig. 2. Frequency dependence of the phase angle of the RDA model 

The RDA model has the same natural frequency as a simple single-degree-of-freedom 
spring mass system and because of that we can form a new single RDA system with one 
lumped element of mass (Fig. 3), where natural and relative frequencies are: 
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Fig. 3. – A new single RDA visco-elastic system with one lumped element of mass 

keq is the permanent stiffness 
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η is the mass ratio 

 1M
m
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m is mass of the damper. 
δ is the relative frequency of the RDA model 
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where 

 Fσω = ω  (25) 

Also, the RDA model has the same phase angle as a simple single-degree-of-freedom 
spring mass system with damping in the linear steady state vibration and from that we 
can form equality, from which yields the viscous damping ratio of single RDA system 
with one lumped element of mass 
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The viscous damping ratio, which is formulated using the principle of analogy, is a 
function of various relative parameters: φ*, η and δ. It is known that for the base isolation, 
the fundamental frequency of the whole structure is dominated by the natural frequency 
of the base isolator. Consequently, it is very important to evaluate the viscous damping 
ratio for the isolator, which is the function of mentioned parameters.  
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Fig. 4. Frequency (δ) dependence of the viscous damping ratio of single RDA system 
with one lumped element of mass for creep coefficient φ*=2 

The viscous damping ratio is shown in Fig. 4 for the creep coefficient φ* = 2, where 
all values are positive. Owing to the frequency dependence of the viscous damping ratio ξ 
it is useful to consider separately the situations arising when the ξ is positive (system is 
stable) and when it is negative. Negative damping ratio means that the complementary 
solution of the response would not die away (the system is unstable because of the factor 
eξ·ω·t). 

However, it may be important to analyze the dependence of the viscous damping ratio 
on the relative frequency δ* (Fig. 5), because this frequency is the  function of mass ratio η. 
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Fig. 5. Frequency (δ*) dependence of the viscous damping ratio of single RDA system 
with one lumped element of mass for creep coefficient φ*=2 
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The purpose of the energy dissipation devices is to increase the natural period of the 
structure so that the acceleration response of the structure is decreased during the gust. 
The effective period Teqd for the RDA system can be written as 
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where Teq is the natural period of the structure. 
The effective period ratio can be represented as 
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where T is the the period of the energy dissipation devices 
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The effective period ratios of the RDA system, shown in Fig. 6 are constants for all 
mass ratios while viscous damping ratios have positive values. However, the effective 
period ratio increases rapidly as the applied mass ratio increases. 
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Fig. 6. Frequency (δ*) dependence of the effective period ratio of single RDA system 
with one lumped element of mass for creep coefficient φ*=2 
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This time considering also a new single RDA system with one lumped element of 
mass with effective stiffness keq=k / (1+φ*) and effective damping ceq=ξ2√keq(m+M), 
under the harmonic excitation F(t)=FAsin(ωFt), we obtain the well known solution 
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The amplitude of the steady state response of the single RDA system with one lumped 
element of mass can be written in the form 
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The static deflection FA/keq is multiplied by the dynamic magnification factor 
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4. THE VERIFICATION OF RESULTS OF VISCO-ELASTIC RDA OSCILLATOR  
ON LOW CARBON STEEL BAR 

Extensive work in the several years has been done on analogy; see Milašinović [6] 
and [7]. The test material was low carbon steel. The low carbon steels are an economic 
yet effective solution for the seismic retrofit of highway bridges. These readily available 
materials have a yielding stress of 32 ksi (220.64Mpa). 
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The proportional stress (σP = 142MPa) or reaction-stress of the clamped bar under 
axially fatigue process is obtained using physical characteristics of low carbon steel only, 
like: specific heat, coefficient of linear thermal expansion and mass density. Elasticity 
stress (σE = 187MPa) of the bar under compression is obtained as Euler’s critical stress 
from which we have that elasticity stress also becomes dependent upon the dimensions of 
the bar (its length and diameter) and thus is no more a physical characteristics of the 
material only. In ductile materials like metals, some difference between the point of 
proportionality and the point of elasticity produce the deviation from perfect elasticity 
with dissipation of mechanical energy through quasi-viscous flow or visco-elastic creep. 
This is the reason of the drop in the stress-strain curve in the average σ-ε diagram with 
upper and lower-yield points, see Milašinović [7]. 

In order to clarify the influence the relative ratios: η = M/m, φ* and δ = TK
DωF 

(ωF = 2πfF) on the viscous damping ratio and the dynamic magnification factor, the steel 
bar was analyzed under four values of η (10, 100, 1000, 3683), φ* = 2 and excitation 
frequency, fF = 15Hz (δ=0.009114). Table 1 gives values of viscous damping ratios and 
dynamic magnification factors, calculated from Eqs. (26) and (35) for relative frequen-
cies varying from δ = 0.001 to δ = 100 and for the maximal mass ratio, η = 3683.  
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Fig. 7. The dependence of the viscous damping ratio on relative frequencies δ* 

Figure 7 gives variations of the viscous damping ratio on the relative frequency δ* for 
four values of η (10, 100, 1000, 3683). It can be seen from Fig. 7 that if the mass ratio is 
smaller, the viscous damping ratio will be larger and also that if the relative frequency is 
larger, the viscous damping ratio will be smaller. It is interesting to note that for 
η = 1000, positive viscous damping ratio decreasing from 0.006 to 0.004. This confirms 
similar experimental observations made on steel, which show 0.01>c / ccr>0.003. 
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Table 1. Values of viscous damping ratios and dynamic magnification factors 

δ=TK
DωF 

Prototype 
TK

D=0.0000967s 
fF=15Hz 

ωF=2πfF=94.25rad/s 
δ=0.009114 

δ*= δ√(1+φ*)(1+η) 
Prototype 
σP=142Mpa 

FA=(192π/4)142=40261N 
M=FA/g=4104kg 

η=M/m=4104/1.114=3683 
δ*=0.958141 

ξ D 

0,001 
0,002 
0,003 
0,004 
0,005 
0,006 
0,007 
0,008 
0,009 

0,00914 
0,01 
0,02 
0,03 
0,04 
0,05 
0,06 
0,07 
0,08 
0,09 
0,1 
0,2 
0,3 
0,4 
0,5 
0,6 
0,7 
0,8 
0,9 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
20 
30 
40 
50 
60 
70 
80 
90 

100  

0,105128 
0,210257 
0,315385 
0,420514 
0,525642 
0,630771 
0,735899 
0,841028 
0,946156 
0,958141 
1,051285 
2,10257 

3,153855 
4,20514 

5,256425 
6,30771 

7,358994 
8,410279 
9,461564 
10,51285 
21,0257 

31,53855 
42,0514 

52,56425 
63,0771 

73,58994 
84,10279 
94,61564 
105,1285 
210,257 

315,3855 
420,514 

525,6425 
630,771 

735,8994 
841,0279 
946,1564 
1051,285 
2102,57 

3153,855 
4205,14 

5256,425 
6307,71 

7358,994 
8410,279 
9461,564 
10512,85  

0,003136 
0,003031 
0,002855 
0,00261 

0,002295 
0,001909 
0,001454 
0,000928 
0,000332 
0,00026 

-0,00033 
-0,01084 
-0,02836 
-0,05287 
-0,08437 
-0,12284 
-0,16826 
-0,22063 
-0,27992 

-0,3461 
-1,38014 
-3,05892 
-5,31995 
-8,08388 
-11,2609 
-14,7574 
-18,4815 
-22,3477 
-26,2797 
-60,0721 
-78,8456 
-88,5288 
-93,8644 
-97,0414 
-99,0632 
-100,421 
-101,374 
-102,066 
-104,346 
-104,779 
-104,932 
-105,002 
-105,041 
-105,064 
-105,079 

-105,09 
-105,097  

1,011175 
1,046252 
1,110452 
1,214815 
1,38178 

1,660763 
2,18123 

3,416746 
9,542906 
12,20001 
9,505492 
0,292303 
0,111749 
0,059919 
0,037531 
0,025761 
0,018793 
0,01432 

0,011277 
0,009111 
0,002248 
0,000988 
0,000549 
0,000346 
0,000237 
0,000171 
0,000129 
0,000101 
8,09E-05 
1,96E-05 
8,99E-06 
5,21E-06 
3,41E-06 
2,4E-06 

1,78E-06 
1,38E-06 
1,09E-06 
8,88E-07 
2,25E-07 

1E-07 
5,65E-08 
3,62E-08 
2,51E-08 
1,85E-08 
1,41E-08 
1,12E-08 
9,05E-09  
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The dynamic magnification factors for the above four mass ratios are shown in Fig. 8. 
It is seen that all dynamic magnification factors increase with respect to relative 
frequencies 0.001<δ*≤1. Note, however, that all factors decreasing for negative values of 
ξ (δ*≥1). The negative values of ξ are examined only as a hypothetical case because the 
complementary solution of the response associated with negative viscous damping ratio 
would not die away. The system is unstable because of the factor eξ ·ω·t. 

0

1

2

3

0,001 0,01 0,1 1 10 100 1000

logδ*

D

M/m=10 M/m=100 M/m=1000 M/m=3683
 

Fig. 8. The dependence of the dynamic magnification factor on relative frequencies δ* 

The corresponding value for maximal mass ratio η = 3683 was D = 12.20, while for 
η = 1000 it is found that D = 37.00. Note however that the dynamic magnification factor 
has maximal value of D = 1113.76 for η = 10. In this case the relative frequency 
δ* = 0.999554 is very close to one, which is the case of resonance. Resonance occurs when 
the frequency of the excitation ωF is equal to the natural frequency of the RDA system  

 
(1 )(1 )

∗

∗

ω
ω =

+ ϕ + η
 

Finally it is useful to analyze the dependences of the viscous damping ratio (Fig. 9) 
and the dynamic magnification factor (Fig. 10) on the relative frequency δ of the RDA 
model, becouse this frequency is independent of mass ratio η.  
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Fig. 9. The dependence of the viscous damping ratio on relative frequencies δ* 
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Fig. 10. The dependence of the dynamic magnification factor on relative frequencies δ 

The  exemplary calculations for one degree of freedom visco-elastic RDA system are 
performed based on the formulas derived in the former chapter. Calculations are done for 
the harmonic excitation 
 0( ) sin( )A FF t F F t= + ω   
where F0 = σ0A, (σ0=EHε0) 

Solution under constant permanent force F0 has the form of  

 
2

2 0 0 0 0 0
0

0

( ) cos arctant
d

eqd d

y y y y F
y t y e t

ky
∗

∗ ∗
− ξω ⋅

∗ ∗

⎛ ⎞⎛ ⎞ ⎛ ⎞+ ξω + ξω
⎜ ⎟= + ω ⋅ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ω ω⎝ ⎠ ⎝ ⎠⎝ ⎠

 

The first part of the solution, the complementary, usually called the transient, will 
eventually die out. Also, the rate of decay and natural frequency of the system depend on 
the system parameters only, while the amplitude of vibration and phase angle are deter-
mined by the initial conditions. 
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Some values of parameters of a single RDA system with one lumped element of mass of 
steel bar appear in Table 1. the results of other parameters that must be used for computa-
tional results of longitudinal vibration are presented in Table 2. The bar is loaded with 
cyclic sinusoidal load in symmetrical cycle and frequency f = 15Hz (ωF = 2πf = 94.25rad/s).  

Table 2. The RDA model and single RDA system parameters 

Φ=19mm 
l0=500mm 
σ0=142MPa 
F0=(192π/4)x142 
=40261N 
k=EHA/l0=119.08 
MN/m 
m=ρAl0=1.114kg 
M=F0/g=4104kg 
ωF=2πfF=2π15= 
=94.25rad/s 

 
 

 
RDA model 

 

 
 Single RDA system 

Characteristic time TK
D=l0/√EH/ρ[s] 0.0000967 

Creep coefficient φ* 2.00 
 

Initial strain 
(displacement) 

ε0=σ0/EH 0.000676 y0=ε0l0=F0/k [m] 0.000338 

Initial strain rate 
(velocity) 

dε0/dt=σ0/λK= 
=ε0φ*/TK

D [1/s] 
13.98 dy0/dt=(dε0/dt)l0 

[m/s] 
6.99 

Mass ratio   η=M/m 3683 
Angular frequency ω=1/TK

D [1/s] 10341 ω*=ω/√(1+φ*)(1+η)  
[rad/s] 

98.365 

Relative frequency δ=ωFTK
D 0.009114 δ*=ωF/ω* 0.958141 

Viscous damping 
ratio 

ξ  1.00 ξ 0.00026 

Damped frequency  ωd
*= ω*√1- ξ2 98.365 

The solution with parameters from Table 2 takes the form of 

2

2 0 0
0

2
2 6.99 0.000338 0.00026 98.3650.000338 0.071

98.365

d

y y
y

m

∗

∗

⎛ ⎞+ ξω
+ =⎜ ⎟⎜ ⎟ω⎝ ⎠

+ ⋅ ⋅⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

* 0.00026 98.365 0.025575t t te e e−ξω ⋅ − ⋅ ⋅ − ⋅= =  

0 0

0

arctan
d

y y
y

∗

∗

⎛ ⎞+ ξω
=⎜ ⎟⎜ ⎟ω⎝ ⎠

6.99 0.000338 0.00026 98.365arctan 1.566
0.000338 98.365

rad+ ⋅ ⋅⎛ ⎞ =⎜ ⎟⋅⎝ ⎠
 

0
6

40261(1 ) (1 2) 0.000338 3 0.001
119.08 10

F m
k

∗+ ϕ = + = ⋅ =
⋅

 

0.025575( ) 0.071 cos(98.365 1.566) 0.001ty t e t− ⋅= ⋅ ⋅ − +  
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Fig. 11. The transient vibration amplitudes with permanent force F0 (0<t<0.4s) 

Figure 11 (0<t<0.4s) and Fig. 12 (80<t<1000s) display the transient vibration 
amplitudes. From the beginning (Fig. 11), the RDA oscillator moves periodically and 
then alight to a constant regime (Fig. 12). The complementary solution die out after 300s 
(98.365·300 = 29510rad). 
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Fig. 12. The transient vibration amplitudes with permanent force F0 (80<t<1000s) 

Let us consider the periodically force F(t) (FA=(192π / 4)x142=40261N), which is ap-
plied slowly  
 ( ) sin( )A FF t F t= ω  
where f=15Hz (ωF=2πf = 94.25rad/s). 

The solution of the RDA oscillator has the form of  
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 22 2 2

1 2( ) sin arctan
1(1 ) (2 )

A
F

eq

Fy t t
k

∗

∗∗ ∗

⎛ ⎞⎛ ⎞ξδ
= ω ⋅ −⎜ ⎟⎜ ⎟⎜ ⎟− δ⎝ ⎠⎝ ⎠− δ + ξδ

  

where 

 
2 2 2

2 2 2

(1 )

(1 ) (2 )
0.000338 3 0.0041 3 0.01237

(1 0.958141 ) (2 0.00026 0.958141)

AF
k

m

∗

∗ ∗

+ ϕ
=

− δ + ξδ

⋅
= ⋅ =

− + ⋅ ⋅

 

 2 2

2 2 0.00026 0.958141arctan arctan 0.00608
1 0.9581411

rad
∗

∗

⎛ ⎞ξδ ⋅ ⋅⎛ ⎞= =⎜ ⎟ ⎜ ⎟−⎝ ⎠− δ⎝ ⎠
 

Finally, the solution is 

 ( ) 0.01237 sin(94.24778 0.00608)y t t= ⋅ ⋅ −  

Figure 13 display the steady vibration amplitudes, which are found for three types of 
vibrations: the RDA visco-elastic, the RDA oscillator (elastic solution) and the RDA oscilla-
tor (visco-elastic solution). The RDA visco-elastic results are obtained by solving Eq. 6. 
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RDA oscillator: elastic solution RDA visco-elastic solution RDA oscillator: visco-elastic solution  
Fig. 13. Steady state response of forced longitudinal vibration of prototype 

The elastic solution according to the RDA oscillator has the maximal amplitude of 
0.00412m, which is greater for 12.2 (0.00412/0.000338=12.2) from maximal amplitude 
under constant force F0. It is in accordance with dynamic magnification factor D (see Fig. 
10, M/m = 3683). 

The RDA oscillator give the visco-elastic maximal amplitude of 0.01237m, which is 
greater for 12.2 (0.01237/0.001014=12.2) from maximal amplitude obtained using the 
RDA visco-elastic model (see Eq. 6). 
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5. VISCO-ELASTO-PLASTIC RDA OSCILLATOR 

The only difference to be noted for a bar that is elasically deformed and one that is 
inelastically deformed is the stress-strain relation for the material of the bar. Inelasticity 
theory would be greatly simplified if one function could be found to approximate the 
stress-strain diagram over both the elastic and inelastic range. This function may be 
obtained as isochronous octahedral shearing stress-octahedral shearing strain RDA 
diagram (see [7], Section 8). Since about 1997 (Milašinović [4]), mathematical-phisycal 
analogy between the visco-elasto-plastic rheological model and the dynamical model was 
proposed to an explicit form to predicting many different inelastic and time dependent 
problems related to prismatic bars, such as buckling, fatigue etc. 

According to the principle of analogy, the visco-elasto-plastic oscilator has the same 
solution as the visco-elastic one (see Chapter 3), if we chose  

 (1 ), 0,1, 2,...vp i i∗ϕ = ϕ + =  (36) 

where i is the level for visco-plastic yielding at any stage of dynamic equilibrium. 
Also, the forces: Fmax, FA and FY are not independent. The following expressions may 

be derived, for the known: FP, FE, F0 and φ* (see [7], Section 5.2) 

 ( )
max

(1 ) (1 )[ (1 ) 1]
(1 )

i P EF i F i iF
i i

∗ ∗ ∗

∗ ∗

+ ϕ + + ϕ + ϕ −
=

ϕ + ϕ
, P

Y E
FF F∗= +
ϕ

,  

 
( )

( ) 0 max
( )

max

2 i
i

i

F F
r

F
−

= , 
( )

( ) ( )
max

1
2

i
i i

A
rF F−

= . (37) 

In this way the RDA oscillator has the advantage that all the calculations of the strain-
to-stress type (which is the way usually needed in computer calculation) may be carried 
out explicitly, i.e., without the need for any step-by-step or iterative integration procedure 
in the loading steps. 

6. CONCLUSION 

In this paper the rheological-dynamical theory of the analytical dynamics of discrete 
visco-elasto-plastic system is presented. The coupled initial conditions of the stress-strain 
state of the rheological visco-elasto-plastic model are applied for the study of single RDA 
system. The motion of the RDA system is described by the equation with the highest 
derivative of the fourth order with respect to time t.  

In the case of linear visco-elasticity, RDA model has the same natural frequency as a 
simple single-degree-of-freedom spring mass system and because of that a new single 
RDA system with one lumped element of mass is formed. Also, the RDA model has the 
same phase angle as a simple single-degree-of-freedom spring mass system with damping 
in the linear steady state vibration and from that the viscous damping ratio of the RDA 
system is obtained. The viscous damping ratio is a function of various relative parameters 
of the RDA model like: creep coefficient φ*, mass ratio η and relative frequency δ. It is 
known that for the base isolation, the fundamental frequency of the whole structure is 
dominated by the natural frequency of the base isolator. Consequently, it is very impor-
tant to evaluate the viscous damping ratio for the isolator, which is the function of 
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mentioned relative parameters. The purpose of the energy dissipation devices is to 
increase the natural period of the structure so that the acceleration response of the 
structure is decreased during the gust. The effective period ratio increases rapidly as the 
applied mass ratio increases.  

The visco-elastic RDA oscillator is confirmed and validated by some of the published 
experimental data on the monotonic and the cyclic loading of mild-steel.  

While studying the discrete visco-elasto-plastic RDA system in Chapter 2, the fourth 
order differential equation with the small parameter before the highest derivative is given 
as a basic result. For such equations, as known according to A. I. Tykhonov theorems, the 
solution of singular equation does not always converge to initial. So we cannot approve 
that the third order differential equation describes the initial system correctly. Neverthe-
less, visco-elasto-plastic RDA oscillator has been generated from mathematical-phisycal 
analogy, through an elegant framework that bypasses most of the questions arising from 
the vibration of visco-elasto-plastic bodies. 
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REOLOŠKO-DINAMIČKI HARMONIJSKI OSCILATOR 

Dragan D. Milašinović 

U radu je predstavljena reološko-dinamička teorija analitičke dinamike diskretnih visko-elasto-
plastičnih sistema. Reološko-dinamička analogija (RDA) je razvijena na bazi matematičko-fizičke 
analogije između reološkog modela i diskretnog dinamičkog modela sa viskoznim prigušenjem sa 
ciljem da bude korištena u analizi neelastičnog deformisanja materijala i konstrukcija. U ovoj 
presentaciji, povezani početni uslovi naponsko-deformacijskog stanja reološkog visko-elasto-
plastičnog modela su primjenjeni u studiji diskretnog dinamičkog sistema. Mehanički sistemi kao 
što su kablovi, štapovi, grede, ploče i drugi, čije su mase i elastične sile raspoređeni različito od 
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oprugama spojenih koncentrisanih masa, spadaju u grupu vibracija kontinualnih sistema. Ovi 
sistemi imaju beskonačno veliki broj djelića i zahtjevaju beskonačno veliki broj koordinata za 
specificiranje njihove konfiguracije. Ovaj tekst daje primjer i ilustruje način kako diskretan model 
može biti izveden, korištenjem principa analogije, iz specifičnih granica kontinualnog modela. Ova 
tehnika je korisna jer diskretan model u konceptualnom i proračunskom smislu često je mnogo 
jednostavniji za analizu od kontinualnog modela. 

Ključne reči:  RDA analogija, RDA harmonijski oscilator, viskozno relativno prigušenje 


