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Abstract. The value of the semi-major axis a, and the value of the semi-minor axis b 
are the geometrical characteristics of the reference ellipsoid. The other important 
characteristic is the normal gravity g, which represents the magnitude of the gradient 
of the gravity potential with the ellipsoid as an equipotential surface. 
This paper presents the fundamental criterion for estimation of accuracy of the reference 
ellipsoid, which stems from the Newton's second law. It has been proved, by the analysis 
of the motion of particle along a meridian of the reference ellipsoid, that the algebraic 
sum of works of gravitational attraction force and centrifugal force, excited by rotational 
ellipsoid around its axis, equals to zero. This is an indispensable term that the direction of 
gravity vector is everywhere perpendicular to the ellipsoid surface as an equipotential 
surface. This is what makes this criterion reliable and enables the obtaining of the 
quantitative evaluation of the ellipsoid's accuracy. Applying this criterion for estimation 
of accuracy of the ellipsoid, defined according to the Geodetic Reference System 1980 
(GRS80), it can be concluded that the ellipsoid's semi-minor axis contains an error of 
about 599 m. 
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1. INTRODUCTION 

The reference ellipsoid is an ellipsoid of revolution, which would be obtained by 
rotational an ellipse around its minor axis. It is determined by four constants (Moritz, 
1980), and the IUGG has chosen the following ones  

a - equatorial radius, semi-major axis,  
GM - geocentric gravitational constant,  
J2 - dynamic form factor and  
ω - angular velocity of the Earth  
The other geometric constant, semi-minor axis b, is obtained by the following formula  

 21 eab −= , (1) 
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where is e first eccentricity. Therefore, the reference ellipsoid is defined as a pure 
geometrical figure. The corresponding reference potential (the Somigliana-Pizzetti 
reference potential) has been determined from the condition that reference ellipsoid 
should be an equipotential surface of the reference gravity potential (Heiskanen and 
Moritz, 1967). The question of the ellipsoid's accuracy is raised, and primarily of the 
accuracy of the value of its semi-minor axis. It can't be verified by a survey along a 
meridian, since it is hard to estimate for every geodesic arc, to what extent it represents 
the Earth as a whole (Jeffreys, 1976). 

The reliable criterion for estimation of the reference ellipsoid accuracy should be 
obtained by physics. In this paper it has done by Newton's second law. 

2. THE DEFINITION OF THE FUNDAMENTAL CRITERION 

Let the particle of the unit mass move in the nonresistant medium along a fictional 
ideal smooth groove PQE (Fig. 1) along the meridian of the reference ellipsoid, with the 
set initial relative velocity v0. Applying the Newton's second law, the motion of the 
particle is described by the equation 

 wFga += *   (2) 

where g* is the vector of gravitational attraction, and Fw is the groove reaction. 
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Fig. 1. Relative motion of the particle along a meridian 

Absolute acceleration a is equal to vector sum of the transfer acceleration at, relative 
acceleration ar and the Coriolis acceleration ac, so the following equation is obtained  

 wcrt Fgaaa +=++ *  (3) 

and this can be written in the form 

 ctwr aaFga −−+= *  (4) 

or in the form  

 ctwr FFFga +++= *  (5) 
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where Ft is the transfer inertial force (centrifugal force) and Fc is the Coriolis inertial 
force. Three scalar equations correspond to vectorial Eq. (5); one of them defines the 
relative motion of the particle in the tangential direction, whose unit vector is T. 
Considering that vectors Fw and Fc, and the vector sum of vectors g* and Ft, are all 
perpendicular to the tangential direction, by projecting Eq. (5) onto that direction, one 
obtains that the relative tangential acceleration arT equals to zero, that is 

 .0=
dt

dvr  (6) 

where vr is the relative velocity intensity. 
Taking the dot product of Eq. (5), by the vector of the particle's elementary relative 

displacement dr, one obtains the equation 
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where is, on the left-hand-side of Eq. (7), the kinetic energy of the particle's relative 
motion, Ekr = vr

2 / 2, and on the right-hand-side are the works of the forces g*, Fw, Ft and 
Fc, along the particle's elementary displacement. Since the relative velocity of a particle is 
of the constant intensity, then there is no change of the relative kinetic energy, and works 
of the constraint reaction Fw and the Coriolis force Fc are then equal to zero, since those 
forces are perpendicular to the direction of the particle's elementary displacement. Thus, 
using Eq. (7), the following equation is obtained  

 
* ( )( ) 0.tFgdA dA+ =  (8) 

The work of the centrifugal force can be written in the analytical form if the force Ft 
and elementary relative displacement dr are expressed in terms of projection onto the 
radial direction r0 and the direction c0 which is perpendicular to r0 (Fig. 1), namely in the 
form 
 2 2 2

0 0sin sin cost r r= ⋅ ω ⋅ θ ⋅ + ⋅ ω ⋅ θ ⋅ θ ⋅F r c  (9) 
and 
 0 0 ,d dr r d= ⋅ + ⋅ θ⋅r r c  (10) 

where r0 and c0 are the unit vectors, and ω is the angular velocity of the Earth's rotation. 
By the dot product of these vectors, the following equation is obtained 

 (F ) 2 2 2 2sin sin cos .t
tdA d r dr r d= ⋅ = ⋅ω ⋅ θ ⋅ + ⋅ω ⋅ θ ⋅ θ⋅ θF r  (11) 

The work of the centrifugal force, Eq. (11), can be written as total differential, and the 
work of the gravitational attraction as differential of the gravitational potential dU, so that 
the Eq. (8) becomes 

 
2 2 2sin 0.
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The Eq. (12) consists of only actual performed works, so that it expresses the fact that 
the sum of centrifugal and gravitational potential is constant. From the definition of work 
as a dot product of the force vector and the vector of the elementary displacement, the 
work can be understood as a product of force intensity and the projection of elementary 
displacement ds = |dr| onto force direction (Fig. 2), so the actual work of the gravitational 
attraction can be written in the form  

 
*( ) * *

1singdA g ds g dh= − ⋅ ε ⋅ = − ⋅  (13) 
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Fig. 2. Increments of meridian 

The flux of the force g* (Raskovic, 1956) along NSQN +  paths, is equal to the sum of 
actual work along QK  path and works along NSKN +  paths  

 
*( ) * cos cos sin .gdA g QK g KN g NS∗ ∗= − ⋅ ψ ⋅ − ⋅ ψ ⋅ + ⋅ ψ ⋅  (14) 

Since the work of the force g* along KS  path is equal to zero, then it can be 
expressed by  

 0 0(KN NS ) cos KN sin NS 0.g r c g g∗ ∗ ∗⋅ + ⋅ = − ⋅ ψ ⋅ + ⋅ ψ ⋅ =  (15) 

The total work of the force g* along increment dr = QN  is equal to the sum of actual 
work along QK  path and fictitious work along KN  path, so that the Eq. (14) can be 
written in the form  

 
*(g ) * cos sindA g dr g r d∗= − ⋅ ψ ⋅ + ⋅ ψ ⋅ ⋅ θ  (16) 

Increment QN  is about double as large as increment QK  because the same ratio 
exists between angles χ and ε. Based on the Eq. (15), it can be concluded that the 
fictitious work occurs in two forms with the different signs but the same values.  

The equation of an ellipse in the Cartesian coordinate system states 



  The Fundamental Criterion for Estimation of the Reference Ellipsoid Accuracy   183 

 ,1
22

=⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛

b
z

a
x  (17) 

and using spherical coordinates (x = r ⋅ sinθ  and z = r ⋅ cosθ), the equation of the ellipse 
is obtained in the form 
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Eq. (11) expresses flux of the force Ft along NSQN +  paths. It can be proved that is 
the second term, on the right-hand-side of Eq. (11), the fictitious work. The Eq. (18) can 
be written in the form 

 
2 2 2

2
2 2 2 2 2sin 1 b a b

r a b a b
θ = − ⋅ +

− −
 (19) 

and by substituting Eq. (19) into Eq. (11), the following equation is obtained 

 
2 2 2 2 2

( ) 2 2
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By differentiation of Eq. (18) one obtains the equation 
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and by substituting Eq. (21) into Eq. (20), the following equation is obtained 

 ( )
2 2

2 2 2 2
2 2 sin cos sin cos .tF adA r dr r d r d

a b
⋅ω

= ⋅ ⋅ − ⋅ω ⋅ θ⋅ θ⋅ θ + ⋅ω ⋅ θ ⋅ θ ⋅ θ
−

 (22) 

The first term in Eq. (22) is the actual work, and another two terms are fictitious 
works of the force Ft. The total work of this force is equal to the sum of actual work and 
the fictitious work. Considering that the Eq. (8) gives the relation between actual works, 
as well as fictitious works, of the forces Ft and g*, and using the Eqs. (16) and (22), one 
obtains the following two equations  

 2 2 sin cos sin 0r d g r d∗− ⋅ω ⋅ θ⋅ θ⋅ θ + ⋅ ψ ⋅ ⋅ θ =  (23) 
and  
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The Eq. (24) represents the sum of actual works and fictitious works of centrifugal 
force and gravitational attraction force along increments of meridian. By integration of 
Eq. (24) within limits from position P to position Q (Fig. 1) where angle θ  changes from 
zero to θ, and radius r changes from b to r, one obtains the equation 

 
( ) ( )2 2 2 2

2 2
2 2
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2
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− ∫ ∫  (25) 

The first integral in Eq. (25) can be solved using Eq. (18), to obtain 
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and using Eq. (19), then Eq. (25) can be written in the form  
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The first term in Eq. (27) represents the centrifugal potential in position Q. It could be 
taken that is cos ψ ≈ 1 because the highest value of the angle ψ is less than 0.10. If the 
particle is moving from the point P at the pole to the point E at the equator, then in Eq. 
(27) the substitution should be made θ = π / 2 and r = a, to give  
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The Eq. (28) should be satisfied if the reference ellipsoid is accurate. If it is not, then 
the sum of the total works of the centrifugal force and the gravitational attraction force 
shall not be equal to zero and shall represent the error of the ellipsoid ∆A, that is 
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The Eq. (29) represents the fundamental criterion for estimation of the reference 
ellipsoid accuracy.  
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3. THE APPLICATION OF THE FUNDAMENTAL CRITERION 

The fundamental criterion will be applied for the estimation of the accuracy of GRS80 
ellipsoid whose semi-axes are a = 6378137 m, b = 6356752.3142 m and the gravity is 
determined according to the Gravity Formula 1980, which reads  

 ( )2 2 29.780327[1 0.0053024 sin 0.0000058 sin 2 ] / ,g m s= + ⋅ φ − ⋅ φ  (30) 

where φ is the geodetic latitude. 
The value of integral in Eq. (29) will be computed using the relationship between 

gravitational attraction g* and height h. In that sense, the angle ∠POE = π / 2 will be 
divided to n equal parts ∆θ, where one will obtain n approximately equal segments on the 
portion PQE of the ellipse (Fig. 3). The positions of these segments determine by the 
(n+1) points at their ends. For each point the magnitude of the radius vector r can be 
computed based on Eq. (18), and then the height of the particle's rise during the relative 
motion, as the difference of r and of the semi-minor axis b 

 .brh −≈  (31) 
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Fig. 3. Relevant variables for determination of gravitational attraction 

The angle χ (Fig.2) between the vector g and radial direction can be computed by the 
equation 

 1 ,d rtg
r d

χ =
θ

 (32) 

and then based on Eq. (21), the equation is obtained 
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For each of the points whose position is determined by angle θ, the geodetic latitude 
can be obtained according to formula 

 2φ = π − θ + χ  (34) 
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The magnitude of gravity can be computed according to Eq. (30), and of centrifugal 
force according to formula 

 2sintF r= ⋅ θ⋅ω  (35) 

where is Earth's angular velocity ω = 0.000072921 rad / s. 
The magnitude of gravitational attraction is determined according to the cosine theorem  

 2* 2 2 cos .t tg g F g F= + + ⋅ ⋅ ⋅ φ  (36) 

The graph of gravitational attraction g* against height h has the shape shown in Figure 4. 
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Fig. 4. Gravitational attraction versus height 

The value of integral in Eq. (29) is proportional to the area under the graph, which 
amounts 210065 Nm. It is approximate equal to the area of a trapeze, namely 

 ,35.210066
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where gp
* is the gravitational attraction at the pole, and ge

* at the equator. These values are 
computed according to Eq. (36) and they amount to gp

* = 9.832186206 N and ge
* = 

9.814242566 N. The remaining part at the right-hand-side of Eq. (29) represents the 
centrifugal force work and it amounts to 215955.28 Nm. The algebraic sum of these 
works according to Eq. (29) represents the error of the ellipsoid which is 5888.66 Nm. 
The ellipsoid error wouldn't be significantly less even under the consideration of the 
gravitational attraction to be unchangeable with the maximum value gp

* = 9.832186206 N, 
in which case it would be 5697 Nm. The centrifugal force work weakly depends on the 
possible error in the value of semi-minor axis b, considering the Eq. (29), so it can be 
taken that the calculated value of this work can be considered as approximately accurate, 
while the value of the gravitational attraction force work is directly dependent on 
accuracy of the semi-axis b. 

In order for ellipsoid to be accurate, values of these works must be equal, namely 
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If one assumes that values of a, gp
* and ge

* are accurate, then from Eq. (38) one obtains 
that value of semi-minor axis b should amount to 6356153 m, what is smaller than the 
value obtained according to the model GRS80 of about 599 m. 

4. CONCLUSION 

The fundamental criterion for the estimation of accuracy of the reference ellipsoid is 
reliable criterion because it appears from Newton's second law. This is an indispensable 
term that the direction of gravity is everywhere perpendicular to the ellipsoid surface as 
an equipotential surface. Applying this criterion for estimation of accuracy of the 
ellipsoid defined according to the Geodetic Reference System 1980, it can be concluded 
that the ellipsoid's semi-minor axis contains an error of about 599 m.  
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OSNOVNI KRITERIJUM ZA OCENU TAČNOSTI 
REFERENTNOG ELIPSOIDA 

Bogoljub Marjanović 

Veličina veće poluose a, i veličina manje poluose b su geometrijske karakteristike referentnog 
elipsoida. Druga bitna karakteristika je normalna gravitacija g, koja pretstavlja intenzitet 
gradijenta gravitacionog potencijala na ekvipotencijalnoj površini elipsoida. 

U ovom radu je pretstavljen osnovni kriterijum za odredjivanje tačnosti referentnog elipsoida koji 
proističe is drugog Njutnovog zakona. Analizom kretanja materijalne tačke, duž meridijana 
referentnog elipsoida, je dokazano da je algebarski zbir radova sile gravitacionog privlačenja i 
centrifugalne sile, nastale obrtanjem elipsoida oko njegove ose, jednak nuli. Ovo je neophodan uslov 
da pravac vektora gravitacije bude svuda upravan na površinu elipsoida kao ekvipotencijalnu 
površinu. Zato je ovaj kriterijum pouzdan i omogućava da se dobije kvantitativna ocena tačnosti 
elipsoida. Primenjujući ovaj kriterijum za ocenu tačnosti elipsoida definisanog prema the Geodetic 
Reference System 1980 (GRS80), može se zaključiti da manja poluosa elipsoida sadrži grešku od oko 
599 m. 

Ključne reči: referentni elipsoid, manja poluosa, gravitaciono privlačenje, GRS80 


