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Abstract. Short Main idea of the phase plane method applied to the optimal control in 
nonlinear dynamical systems with triggers of a coupled singularities, and with one degree of 
freedom, is reconsidered. Paper presents a short review of the author's previous published 
results containing series of the special cases of the optimal control in nonlinear dynamical 
systems with trigger of coupled singularities important for engineering applications.  
This paper analyses the controllability of motion of conservative or nonconservative 
nonlinear dynamical systems in which triggers of coupled singularities exist or appear. It is 
shown that the phase plane method is useful for the analysis of nonlinear dynamics of 
conservative and nonconservative systems with one degree of freedom of control strategies 
and also shows the way it can be used for controlling the relative motion in rheonomic 
systems having equivalent scleronomic conservative or nonconservative system.   
For the system with one generalized coordinate described by nonlinear differential equation of 
nonlinear dynamics with triggers of coupled singularities, the functions of system potential 
energy and conservative force must satisfy some conditions defined by a Theorem on the 
existence of a trigger of coupled singularities and the separatrix in the form of number eight. 
Task of the defined dynamical conservative system optimal control is: by using controlling 
force acting to the system, transfer initial state of the nonlinear dynamics of the system into the 
final terminate state of the nonlinear dynamics in the minimal time for that optimal control task. 
Some research results of fascinating nonlinear dynamics of a heavy material particle 
along circles with coupled rotations with many different properties of nonlinear dynamics 
and optimal control of this dynamics are presented. A visualizations of nonlinear 
dynamical processes in such rheonomic systems were made. 
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I. INTRODUCTION  

The controllability of motion of dynamical systems in which exist or appear triggers 
of coupled singularities is in the focus of our attention. It is shown that the phase plane 
method is useful for the analysis of nonlinear dynamics of systems with one degree of 
freedom control strategies.  

The differential equation of the nonlinear dynamics of a system with possibilities of 
the trigger of the coupled singularities existence  is in the basic  and general  form of: 

0)()](,[ =+ xfxFkgx&& where x is generalized coordinate and in the special cases in same 
time relative coordinate. For that case when in the system existed a trigger of the coupled 
singularities, than the functions f (x), F (x) and g[k, F(x)] must satisfy some conditions 
defined by a Theorem on the existence of a trigger of the coupled singularities and the 
separatrix in the form of number eight. 

Task of the defined dynamical system optimal control is: By using controlling force 
)(~ tu  acting to the system, transfer initial kinetic state of the nonlinear dynamics of the 

system defined by x1(0) = α and x2(0) = β into the  final or terminate kinetic state of the 
nonlinear dynamics defined by x1(T) = γ and x2(T) = χ, where T is minimal time for that 
optimal control task.  

In an engineering system [5], [7], [8], [10], [11], [16], [17], [18] with mass deviation 
properties to the axes of rotation, in the gravitation field, where complex coupled rotation 
motion exists, in the case of some kinetic parameter values, the phenomenon of bifurca-
tion equilibrium position (see Ref. [1], [2], [3], [6], [9], [12]) or appearance of two new 
relative dynamic stable equilibrium positions in relation to precession rotation motion are 
nonlinear properties of such system. 

 In such systems with the change of some kinetic parameters of the system, the proc-
ess of losing stability of one static equilibrium position is followed with appearing two 
close stable dynamical equilibrium positions (see Ref. [1], [2], [3], [4], [6], [9], [12]). 
Also, these two new appeared singularities with the previous stable position, which lost 
its stability, make a trigger of coupled singularities.  

Trigger of coupled singularities, with corresponding choice of kinetic parameters of 
the system dynamics, which degenerates into one threefold (triple) singular point, corre-
sponds to stable equilibrium position. Coupled singularities existence is coupled with 
existence of two types of homoclinic orbits–separatrix trajectories: new appeared, second 
homoclinic orbit in the form of number eight, which appear with bifurcation of equilib-
rium position, inside of previous homoclinic orbit, whose shape is deformed in the form 
of one pair of symmetric "waves".  

Homoclinic orbit coupled with trigger of coupled singularities is in the form of number 
"eight". Such trigger of coupled singularities is a characteristic nonlinear phenomenon of 
dynamical systems, which is the source of sensitive dependence of the system dynamics 
behavior with respect to a small change of initial conditions in the vicinity of these coupled 
singularities. In such system, under the action of the pure periodic excitation, behavior of 
system dynamics with stochastic-like and chaotic-like processes appears. 

In one of classical monographs [1] by A. A. Andronov, A. A. Witt and S. E. Hajkin, 
which has a great number of editions, some classical examples of nonlinear systems with 
one degree of freedom of oscillatory motion and their phase portraits except general the-
ory of nonlinear oscillations are presented, and such examples can also be found in books 
by J. J. Stoker [23] as well as by D.P. Rašković [22]. Especially in monograph by 
Guckenheimer, J. and Holmes, Ph. [3], results of research on nonlinear systems and 
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properties of various kinds of bifurcations are pointed out. A series of monographs by 
Mitropolyskiy, Yu. A [21] deals with theory, methods and problems of asymptotic theory 
of non-steady nonlinear oscillations of nonlinear systems and trigger of coupled 
singularities in the resonant range. 

Control of dynamics in such system is very important for engineering applications. This 
paper analyses the controllability of motion of dynamical systems in which exist or appear 
triggers of coupled singularities. S series of the separate tasks earlier published is presented 
(see Refs. [7], [13], [14], [15]). It is shown that the phase plane method is useful for the 
analysis of nonlinear dynamics of systems with one degree of freedom control strategies 
and also shoes the way it can be used for controlling the relative motion in rheonomic sys-
tems having equivalent scleronomic conservative or nonconservative system. 

In monographs (see  [25])  V. Vujičić gave a modification of the analytical mechanics 
of rheonomic systems, with the aim to include the influence of nonstationary constraints 
into the laws of motion. In his approach, rheonomic coordinate is chosen as a function 
derived from rheonomic constraints. On this basis, an extended system of Lagrangian 
equations was formulated with an additional equation corresponding to rheonomic 
coordinate. In the paper by Vujičić and Hedrih [26] the rheonomic constraints general-
ized force in the extension of the Lagrange's system of differential equations of motion of 
the first and the second kind is introduced.  In the paper by K. S. Hedrih [19] the power 
of the rheonomic constraints change is introduced.  

A series of papers [4-19], by author of this paper, presents results of original research 
on nonlinear dynamics of mechanical systems with properties of periodic exchanges, 
which have application in engineering systems. In the papers [9, 10] some results and 
new knowledge about rheonomic nonlinear systems, which have equivalent holonomic 
scleronomic conservative nonlinear system are presented. Paper [9] considered a class of 
nonlinear systems with coupled rotation motions into system with two degrees of mobil-
ity, but with one degree of freedom of motion defines one generalized coordinate, and 
one degree of motility that is defined by rheonomic coordinate linearly depending on 
time. For such special class of rheonomic nonlinear systems, an equivalent holonomic 
scleronomic conservative nonlinear system and equivalent kinetic and potential energy 
are defined. Theorem of existence of relative equilibrium positions in such a class of 
rheonomic conservative systems by using equivalent holonomic conservative system is 
defined, as well as proven [4, 6]. Theorem of existence of homoclinic orbits in the form 
of number eight and trigger of coupled singularities in the phase portrait of nonlinear 
dynamics of relative motions in the class rheonomic system is defined and proven.  

 Like basic properties of linear oscillatory system with one and more degrees of 
oscillatory freedom are the own frequencies of discreet material particle system who have 
linear oscillatory motion, also for nonlinear system with one degree of oscillatory free-
dom we may consider phase portrait with singularity structure, which gives nonlinear 
dynamic's properties of system in phase plane. Therefore for nonlinear dynamic systems 
and their subsystems it's important to study a structure of phase portraits, their stability as 
well as their transformations and transformations of phase trajectories which we obtained 
changing any parameters of systems. Author defines a trigger of coupled singularities 
theorem and existence of homoclinic orbits and their transformation shaped by number 
eight, as well as their application on systems relevant for technical practice in hers article 
[4, 6]. Also she constructs phase portraits and particularly considers phenomena of homo-
clinic orbits transformations and their disintegration, appearance and disappearance 
homoclinic orbits shaped by number eight, like a trigger of coupled singularities. 
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II. THEOREM ON THE EXISTENCE OF A TRIGGER OF THE COUPLED SINGULARITIES AND  
THE SEPARATRIX IN THE FORM OF NUMBER EIGHT IN THE CONSERVATIVE SYSTEM  

By using nonlinear dynamic analysis of systems with described nonlinear phenome-
non of the trigger of coupled singularities and corresponding families of phase portraits 
and potential energies (see Refs. [1], [4], [6]) as well as the corresponding experimental 
investigations of such nonlinear dynamics in mechanical engineering systems with cou-
pled rotation motions ([5], [13]) it was easy to define and to prove the theorem of the 
existence of a trigger of coupled singularities in nonlinear dynamical systems with 
periodical structure, previous published in the Reference [4]. 

 

Theorem 1*: In the system whose dynamics can be described with the use of non-linear 
differential equation in the form:  

 0)()](,[ =+ xfxFkgx&&  (1) 

and whose potential energy is in the form: 

 ( )∫ ==
x

xFkmdxxfxFkgm
0

)](,[)](,[ GE  (2) 

in which the functions f (x) and g (x) are: 

 ∫=
x

dxxfxF
0

)()(   and  ∫=
x

dxxkgxkG
0

),(),(  (3) 

and satisfy the following conditions: 
)()( xfxf −−   ),(),( 0 xkgnTxkg =+   

)()( 0 xfnTxf =+   ),(),( xkgxkg =−  
( ) 00 =f  )....,(),(,0)](,[ 3221 kkkkkforxFkg r ∪∈=  (4) 

0)( =sxf , 0sTxs = , ,...4,3,2,1=s  00 rTxxr ±±= , ,...4,3,2,1,0=r
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0

0
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)....,(),(,0)](,[ 3221 kkkkkforxFkg ∪∉≠  
and both functions f (x) and g (x) have one maximum or minimum in the interval between 
two zero roots: 

a* for parameters values )...,,(),( 3221 kkkkk ∪∉ outside of the intervals ),,(),( 3221 kkkk ∪  the 
trigger of singularities in the local area does not exist. 

b* for parameters values )...,,(),( 3221 kkkkk ∪∈ inside of the intervals ),,(),( 3221 kkkk ∪  
the series of triggers of coupled singularities in the local domains exist. 

The proof of defined theorem and details are published in the References [4] and [6].  
Then, the trigger of coupled singularities exists in the phase portrait in the intervals 

defined by: ⎟
⎠

⎞
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Integral energy of the system described by (1) is:  

 consttxFkGxxFkGx =+=+ ))]((,[2)](,[2 0
2
0

2 &&  (5) 
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Equation of homoclinic orbit in the form number "eight" trough homoclinic point 
(0,0) is: 
 consthFkGxFkGx hc ===+ 0

2 )]0(,[2)](,[2&  (6) 

for ).....,(),(,0)](,[ 3221 kkkkkforxFkg r ∪∈= in which the functions F(x) and G(k,x) are 
in the form (3) and satisfy the  conditions (4). 

Equation of homoclinic orbit other form in the continuous closed form trough 
homoklinic point (xs,0) is: 

 consthxFkGxFkGx scs ==±=+ 0
2 )](,[2)](,[2&  (7) 

III. LINEARIZED APPROXIMATION 

Now, let us consider special cases of the dynamics described by defined nonlinear 
differential equation (1) in the vicinity of the equilibrium positions. For beginning we 
consider small oscillations around stable and also unstable equilibrium positions 
correspond  to the stable and unstable saddle type singularities coupled in ones set with 
trigger of three coupled singularities.  

By use the cases considered in the previous theorem of the trigger of the existence of 
the coupled singularities in the set of the trigger of the coupled singularities, we can start 
with this nonlinear differential equation (1) in the case when one stable singular point 
center type exists in the phase plane and correspond to stable equilibrium position.   
a* for parameters values )...,,(),( 3221 kkkkk ∪∉  outside of the intervals )...,,(),( 3221 kkkk ∪  
the trigger of singularities in the local area does not exist. Only a singular point center 
type exists. Then for small vibrations in the vicinity of this singular point it is easy to 
obtain right and acceptable linearized differential equation in the form: 

  02 =ω+ xx&&  (8) 
where own (eigen) circular frequency of the small oscillations is expressed in the 
following form: 

 ( ) 0)()](,[][
)(

)](,[

0

22 >
⎭
⎬
⎫

⎩
⎨
⎧

′+
∂

∂
=ω

=x

xfxFkgxf
xF

xFkg     (9) 

and taking into account properties of the functions considered in the previous theorem we 
can write simplest expression: 0)}0()]0(,[{2 >′=ω fFkg .This is condition for no existence 
of the trigger of coupled singularities. 

b* for parameters values )...,,(),( 3221 kkkkk ∪∈ inside of the intervals )...,,(),( 3221 kkkk ∪  
the series of triggers of coupled singularities in the local domains exist. This trigger of 
coupled singularities contains one unstable singular point saddle type and two stable 
points center types.  

Then, for small perturbations in the vicinity of this unstable singular saddle point it is 
easy to obtain an unacceptable linearized differential equation for long time period of the 
motion. In the vicinity of the unstable saddle point corresponding to unstable equilibrium 
position linearized equation takes the following form:  
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 02 =− xkx&&  (10) 
where 
 0)}0()]0(,[{2 >′−= fFkgk  (11) 

In the vicinity of the two corresponding stable singular points of centre type,  
corresponding to stable equilibrium positions, linearized equation is in the form  (8)  where 

 0)()](,[)]([
)(
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=ω

±= rxx
r xfxFkgxf

xF
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and taking into account properties of the functions considered in the previous theorem 1*  
for the case of the trigger of coupled singularities existence, we can write simplest 
expression: 
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∂
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r xf

xF
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for the own (eigen) circular frequencies of the small oscillations of the two stable 
equilibrium positions.  

IV. OPTIMAL CONTROL OF NONLINEAR DYNAMICS IN THE CONSERVATIVE SYSTEM 

For optimal control of the nonlinear dynamics of this considered system defined by 
nonlinear differential equation (1) we can introduce two phase coordinate in the space 
state x1 and x2, and by the differential equation second order  (1), we can introduce two 
nonlinear differential equations first order  in the following form: 

 21 xx =&  
 )()](,[ 112 xfxFkgx −=&  (14) 

with initial conditions x1(0) = α and  x2(0) = β. 
 Task of the defined dynamical system optimal control is: By using controlling force )(~ tu  

acting to the system, transfer initial state of the nonlinear dynamics of the system defined by 
x1(0) = α and x2(0) = β into the final terminate state of the nonlinear dynamics defined by 
x1(T) = γ and x2(T) = χ, where T is minimal time for that optimal control task. Than, we can 
write two new nonlinear differential equations of the first order for optimal control task in the 
following form: 
 21 xx =&  
 )(~)()](,[ 112 tuxfxFkgx ±−=&  (15) 

with initial conditions state in the form  

 α=)0(1x  and  β=)0(2x . (16) 

and with final terminate conditions in the form  

 γ=)(1 Tx  and  χ=)(2 Tx ,  (17) 

where T is time necessary for this motion.  



 Phase Plane Method Applied to Optimal Control in Nonlinear Dynamical Systems... 77 

Pontrijagin's maximum principle (see Refs. [25] and [14]) is used. For minimization 
of the time T to the previous system dynamics defined by nonlinear differential equations 
(15), we add to these equations the following functional  

 ∫ ⋅=
T

dt
0

1I  (18) 

as a criterion of the optimality – time minimization, or "criterion of quality" of the motion 
control,  with addition in the form of the controlling force )(~ tu  constraints in the form: 

 00
~)(~~ utuu +≤≤− . (19) 

The concept of controllability of motion (or system dynamics) implies the possibility 
that the mechanical system motion (or dynamics) is realized according to a given pro-
gram under the excitation of special generalized forces. Motion or dynamics controlling 
force )(~ tu is here considered as generalized force of controllability corresponding to 
generalized coordinate of the system. The phrase "system motion or system dynamics 
control" implies the process of realizing a given or programming motion or dynamics. 
Programs can be of a great variety. This study includes the program of the pathways and 
the program of velocities. For the motion upon the derived manifolds it is also necessary 
to know and take into consideration the relations of their generation. 

Formulation of the Theorem 2* (see Ref. [25]) gives the following explanation: "The 
mechanical system motion or dynamics is controllable according to the program given in 
advance if there are such controlling forces of such magnitude, depending upon the 
program parameters, which are by their absolute value greater than other respective 
active forces if the controlling force direct the motion opposite to the motion direction 
under the influence of the other forces".  

Concept of optimal motion of system dynamics implies here motion or dynamics of 
the mechanical systems whose particular attributes have extreme values with respect to 
some dynamics parameters.   

Now, let's determine the controlling force )(~ tu  that can control the dynamics of the 
system of accordance with defined control tasks (15)-(19).  

The problem of optimal controllable dynamics is to find dynamic parameters that is, 
those forces that translate a controllable mechanical system dynamics described by 
system differential equation (1) from initial state [x1(0) = α, x2(0) = β] to final terminate 
state of the nonlinear dynamics defined by [x1(T) = γ, x2(T) = χ], where T is minimal time, 
so that functional (18) achieve its extreme value.  

It is possible criterion of the optimal control of dynamics to write in the following way:  

 ∫ −−Η=
T

dtxpxp
0

2211 ][~
&&I  (20) 

or in the forms: 

  ∫ ±−−−=
T

dtuxfxFkgtpxtpupp,xx
0

11212121 }~)()](,[){()(]~,,,[~ HI  (20.a) 

This previous functional (20.a) is for the case with unspecific interval of time. As the 
one of the boundary of time interval is in the integral of functional, then it is necessary to 
take into account noisochroous variations of the functional.  
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On this basis we can to write: 
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Optimal dynamics is defined by solving the following system of differential equations 
with corresponding additional conditions of the optimal control of motion: 
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 By using theory presented in Ref. [25], as well as previous obtained conditions of the 
optimal control of motions, we can write the following Hamilton functional in the form: 

 }~)()](,[){()(1]~,,,[ 112212121 uxfxFkgtpxtpupp,xx ±−++=H  (23) 

Second pair of the canonical differential equations is: 
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or  
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and  
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First integral of the system of optimal control of the system dynamics 

 0)()](,[ 0 =±+ uxfxFkgx&&  (26) 

we can obtain by following form: 
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Taking into account expression (2) for the system potential energy and corresponding 
initial condition: t = 0  x(0) = x0  0)0( xx && = , it is possible to write the previous integral  
(27) of energy in the following form 

 0)( 00 =−±−+− xxFpp 0k0k EEEE  (28) 

Then, we have a set of two phase trajectories with different initial points, first through  
the initial condition point x1(0) = α and x2(0) = β, and second through final terminate 
condition point x1(T) = γ and x2(T) = χ corresponding to the final and terminate dynamic 
state of the system and with force with alternative directions: 

 0)( 00 =−+−+− xxFpp 0k0k EEEE  (29) 

 0)(0 =−−−+− TpTpT xxFEEEE kk  (30) 
or 
 0)(~2)](,[2)](,[2 000

2
0

2 =−+−+− xxuxFkxFkxx GG&&  (29.a) 

 0)(~2)](,[2)](,[2 0
22 =−−−+− TTT xxuxFkxFkxx GG&&  (30.a) 

Previous defined trajectories by equations (29.a)-(20a) must be with last one common 
point – cross section representative point ),(1 CC xxN &  in the phase plane of dynamical state 
as a cross section of the previous trajectories, first through  the initial condition point 
x1(0) = α and x2(0) = β, and second through final terminate condition point x1(T) = γ and 
x2(T) = χ  correspond to the final terminate dynamic state of the system and with force 
with alternative directions: If this cross section is real, control of the motion is possible  
and system is controllable, if this cross section does not exist, control of this motion is not 
possible. As the trajectories are in the case if the conservative mechanical system are 
curves of the constant energy then for optimal control of motion with respect to the time 
period minimization, then optimal control is with constant energy. We must  find con-
stant energy curve - trajectory passing through the initial phase state of system dynamics 
and canal phase state of the system dynamics.  

 We have case of control by using a force with constant value by with change of the 
direction (bing-bang solution). In this system, the control force occurs linearly and in 
accordance with maximum principle, attains its upper and/or lowed bounds in the general 
case. Solution of the task is by solving basic system of differential equations and 
corresponding particular solutions which contain the state of the defined dynamics in the 
initial moment and in the final terminate moment of time T. At moment tC we must 
change the control force direction. 

In the considered case the dynamics of the system is described by nonlinear 
differential equations, but it is possible to solve the problem in analytical form.  

Now, for obtaining phase coordinate of the cross section between phase trajectories 
),,( CC xxC &  we use two phase trajectories through this point and for different direction of 

the control force by which we can find moment of time in which it is necessary to change 
controlling force direction. For that reason we can write that both phase trajectories 
contain this phase dynamical state point: 
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Phase coordinates of the dynamic state ),( CC xxC & in which it is optimal to change 
direction of the optimal control force are in the form: 
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 Optimal time period T for transfer nonlinear system from one state dynamics 
),( 00 xxC &  along one phase trajectory to the other ),( TT xxC &  along other phase trajectory 

successive passing through common state ),( CC xxC &  on the both phase trajectories which 
correspond to cases with different control motion force direction, we can obtain as sum of 
the times TOC and TCT as times of the motion of the system  phase representative point 
along one first and second trajectory.  
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Optimal time period Topt for transfer nonlinear system from one state dynamics 
),( 000 xxN &  along one phase trajectory to the other ),( TTT xxN &  along other phase trajectory 

successive passing through common state ),( CC xxC &  is 

 

∫

∫

−±+−
+

+
−+−

=

=+=

T

C

C

x

x TTT

x

x

CTCopt

xxuxFkxFkx

dx

xxuxFkxFkx

dx

TTT

)(2)](,[2)](,[2

)(2)](,[2)](,[2

0
2

000
2
0

0

0

GG

GG

&

m&

 (36) 

 
c3 x( ) 0.8 x 0+( )⋅

3 cos 2 0⋅( ) cos 2 x⋅( )−( )⋅ cos 0( ) cos x( )−( )−[ ]
2

+:=
Lambda

3
4

:=

c4 x( ) 0.8 x 0+( )⋅
3 cos 2 0⋅( ) cos 2 x⋅( )−( )⋅ cos 0( ) cos x( )−( )−[ ]

2
+−:=

ca3 x( ) 0.8− x 2.58−( )⋅
3 cos 2 2.58⋅( ) cos 2 x⋅( )−( )⋅ cos 2.58( ) cos x( )−( )−[ ]

2
+:=

Lambda
3
4

:=

ca4 x( ) 0.8− x 2.58−( )⋅
3 cos 2 2.58⋅( ) cos 2 x⋅( )−( )⋅ cos 2.58( ) cos x( )−( )−[ ]

2
+−:=   
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Fig. 1. a*  Potential energy curves for two cases of the basic system loaded by  control 
force with opposite directions.  b* Phase trajectories for the basic nonlinear 
discrete system dynamics loaded by control forces with opposite directions. 
Graphical presentation of the cross sections between two trajectories for the cases 
of the control force opposite directions. In this example there is one cross section 
between corresponding trajectories and between initial dynamical state and 
terminate – final dynamic state.  

For solution of the problem it is necessary to find cross section ),,( CCOCC xxTt &=  
(mutual phase dynamic state) between previous phase trajectories in which the control force 
changes direction. Initial branch of the phase trajectory contains the representative point 

),,,0( 000 xxt &= and final branch of the phase trajectory contains the point  ),,( TTT xxTt &= .  
By using phase trajectories of the nonlinear dynamics we can find the time moment 

TC in which we must change control force direction and final minimal time for optimal 
control motion. Graphical presentation is presented in Figure 1 and 2.  

In Figure 1. a* potential energy curves for two cases of the basic system loaded by  
control force with opposite directions are presented.   

In Figure 1. b* the phase trajectories for the basic nonlinear discrete system dynamics 
loaded by control forces with opposite directions are presented. Graphical presentation of 
the cross sections between two trajectories for the cases of the control force opposite 
directions is visible. In this example there is one cross section between corresponding 
trajectories and between initial dynamical state and terminate – final dynamic state.  

In Figure 2. a* and b* two examples of the phase trajectories for the basic nonlinear discrete 
system dynamics loaded by control forces with opposite directions are presented. Graphical 
presentation of the cross sections between two trajectories for the cases of the control force 
opposite directions is visible. In both examples there are two cross section between correspond-
ing trajectories and between initial dynamical state and terminate – final dynamic state. 

 
a x( ) 0.08 x 2.58+( )⋅

cos 2 2.58⋅( ) cos 2 x⋅( )−( ) cos 2.58( ) cos x( )−( )−[ ]
2

+:= Lambda=1/4 

a1 x( ) 0.08 x 2.58+( )⋅
cos 2 2.58⋅( ) cos 2 x⋅( )−( ) cos 2.58( ) cos x( )−( )−[ ]

2
+−:=

aa1 x( ) 0.08− x 2.58−( )⋅
cos 2 2.58⋅( ) cos 2 x⋅( )−( ) cos 2.58( ) cos x( )−( )−[ ]

2
+:= Lambda=1/4 

aa2 x( ) 0.08− x 2.58−( )⋅
cos 2 2.58⋅( ) cos 2 x⋅( )−( ) cos 2.58( ) cos x( )−( )−[ ]

2
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Fig. 2. Phase trajectories for the basic nonlinear discrete system dynamics loaded by 
control forces with opposite directions. Graphical presentation of the cross sections 
between two trajectories for the cases of the control force opposite directions. In 
both examples there are two cross section between corresponding trajectories and 
between initial dynamical state and terminate – final dynamic state.  

 
If in the system dynamics a trigger of coupled singularities exists and appear and 

disappear with parameter k change, then it is necessary to investigate position of the 
dynamical state correspond to phase representative point ),,( CCOCC xxTt &= . If this state is 
near or in the vicinity of the unstable saddle points, or in the vicinity of the homoclinic 
orbits in the form of the number eight then it is necessary to investigate other possibilities 
for the change direction of the control motion force far of this critical area. It is neces-
sary, because dynamical state in the vicinity of the homoclinic unstable points is very 
sensitive to the small change of the initial conditions and system can lose stability, and 
with this optimal control of the system is not possible. Then, there are other possibilities 
to use two steps in the optimal control of motion using previous method. By chosing a 
transition dynamical state between initial and final dynamical state it is necessary to dis-
tant outside from critical dynamical state close to unstable saddle point on the homoclinic 
orbit in the form of number eight.  

This investigation shows us that it is necessary to investigate for first basic conserva-
tive nonlinear system and properties and after that possibilities for optimal motion control 
according to the present conditions of the optimal control of motion.  

V. THEOREM ON THE EXISTENCE (APPEARANCE) OF A TRIGGER OF THE COUPLED  
SINGULARITIES AND THE SEPARATRIX IN THE FORM OF "OPEN SPIRAL NUMBER EIGHT" IN 

THE SYSTEM WITH TURBULENT DAMPING 

Theorem 2. In the system with turbulent damping, whose dynamics can be described 
with the use of non-linear differential equation in the form:  

 ,0)()](,[||2 =+δ+ xfxFkgxxx &&&&  (37) 
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and whose potential energy is in the form (2) in which the functions  f (x) and g (x) are in 
the form (3) and satisfy the conditions (4) and both functions  f (x) and g (x) have one 
maximum or minimum in the interval between two zero roots: 
a* for parameters values )...,,(),( 3221 kkkkk ∪∉  outside of the intervals (k1,k2) ∪ (k2,k3)...,  the 
trigger of coupled singularities in the local area does not exist. 
b* for parameters values )...,,(),( 3221 kkkkk ∪∈  inside of the intervals (k1,k2) ∪ (k2,k3)..., the 
series of triggers of coupled singularities in the local domains exist, as well as corresponding 
homoclinic orbit - the separatrix in the form of "open spiral number eight". 

The proof of defined theorem 2  and details are published in the References [4] and 
[6].  

For the system with turbulent damping [23], whose dynamics can be described with 
the use of non-linear differential equation in the form (37), we can solve phase 
trajectories by integrating previous equation by introducing following notation: vx =& : 

 )()](,[24 2
2

xfxFkgv
dx
dv

−=δ±  (38) 

and after integration we obtain: 

 0)](,[8)](,[2 4
2,1

4

0

42 =+−+ δδ±δ ∫ xx
x

x eCdxexFkGexFkGv mm  (39) 

where integral constant is in the following form:  
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xx 4

0

4
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2
0

4
2,1

0

00 )](,[8))]((,[2 m&  (40) 

depending on initial condition of motions. 
Equation of homoclinic orbit in the form "open spiral number eight" trough homoclinic 

point (0,0) is: 

 0)]0(,[2)](,[8)](,[2 44

0

42 =−−+ δδ±δ ∫ xx
x

x eFkGdxexFkGexFkGv mm  (41) 

where constant of integration is:  

 )}0(,[2{2,1 FkGC −=   for  )....,(),(,0)](,[ 3221 kkkkkforxFkg r ∪∈=  (42) 

Equation of homoclinic orbit other form in the continuous closed form trough 
homoklinic point )0,( sx  is: 

  0)](,[8)](,[2 4
2,1

4

0

42 =+−+ δδ±δ ∫ xx
x

x eCdxexFkGexFkGv mm  (43) 

where is:  
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VI. OPTIMAL CONTROL OF NONLINEAR DYNAMICS IN THE NO CONSERVATIVE SYSTEM 

For optimal control of the nonlinear dynamics of this considered no conservative 
system defined by nonlinear differential equation (37), we can introduce two phase 
coordinate in the space dynamic state x1 and x2, and by the differential equation second 
order, we can introduce two nonlinear differential equations first order in the following 
form (for details see Ref.  [15]): 
 21 xx =&  
 )()](,[||2 11222 xfxFkgxxx −δ−=&  (45) 

with initial conditions x1(0) = α and x2(0) = β. 
Task of the defined dynamical system optimal control is: By using controlling force 
)(~ tu  acting to the system, transfer initial state of the nonlinear dynamics of the system 

defined by x1(0) = α and x2(0) = β into the final state of the nonlinear dynamics defined by 
x1(T) = γ and x2(T) = χ, where T is minimal time for that optimal control task. Than we can 
write two new nonlinear differential equations first order for optimal control task in the 
following form: 
 21 xx =&  
 )(~)()](,[||2 11222 tuxfxFkgxxx ±−δ−=&  (46) 

with initial conditions state in the form (16) and with final conditions in the form (17), 
where T is time necessary for this motion.  

Pontrijagin's maximum principle (see Ref. [15]) is used. For minimization of the time 
T to the previous system dynamics defined by nonlinear differential equations (37) we 
add to these equations the following functional in the form (18)as a criterion of the 
optimality – time minimization, or "criterion of quality" of the moticontrol, with addition 
in the form of the controlling force )(~ tu constraints in the form (19): 00

~)(~~ utuu +≤≤− .  
It is possible to write the criterion of the optimal control of dynamics in the previous 

used formulation (20):  

 ∫ ±−δ−−−=
T

dttuxfxFkgxxtpxtpupp,xx
0

1122212121 )}(~)()](,[||2){()(]~,,,[~ HI  (47)          

This previous functional (47) is for the case with unspecific interval of time. As the 
one of the boundary of time interval is in the integral of functional, then it is necessary to 
take into account noisochroous  variations of the functional.  

On this basic we can to write: 
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  (48) 

In this case optimal control dynamics is defined by solving the corresponding  system 
of differential equations with corresponding additional conditions of the optimal control 
of motion as in previous considered case defined by system (22). 
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 By using theory from Ref. [25] and [15], as well as previous obtained conditions (22) 
of the optimal control of motions, we can write the following Hamilton functional in the 
form: 

 { })(~)()](,[||2)()(1]~,,,[ 11222212121 tuxfxFkgxxtpxtpupp,xx ±−δ−++=H    (49) 

Second pair of the canonical differential equations from system of equations  (22) is: 
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For the system with turbulent damping loaded by control force, whose dynamics can 
be described with the use system of non-linear differential equations in the form (46),  
equations of the phase trajectories by integrating previous system of differential 
equations by introducing following notation: vx =& . Then, we obtain: 

 0
2

2
~2)()](,[24 uxfxFkgv

dx
dv

±−=δ±  (52) 

and after integration we obtain the following equations of the phase trajectories: 

 ( ) ( ) 0~
2
1],[8],[2 0

4
2,1

4

0

42 =
δ

+δ−+ δδ±δ ∫ ueCdxexFkGexFkGv xx
x

x mmm  (53) 

where constant of integration is:  
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00 udxexFkGetxFkGxeC x
x

xx m& m  (54) 

depending on initial condition of motions. 
Previous defined trajectories must be with last one common point – cross section  

representative point ),(1 CC xxN &  in the phase plane of dynamical state as a cross section 
of the previous trajectories. First through the initial condition point x1(0) = α and 
x2(0) = β, and second through final condition point x1(T) = γ and x2(T) = χ  correspond to 
the final dynamic state of the system and for the force with alternative directions. If this 
cross section is real, defined optimal control of the motion is possible  and system is 
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controllable, if this cross section not exists control of this motion, in the defined 
conditions, is not possible. As the phase trajectories, in the case of the corresponding 
conservative mechanical system are constant energy curves of the system, then for 
optimal control of motion with respect to the time period minimization, then optimal 
control is with constant energy. We must to fined constant energy curve, trajectory 
passing through the initial phase dynamic state of the system dynamics and final 
terminate phase state of the system dynamics.  

 We have case of control by using a control force with constant value but by with 
change of the direction (bing-bang solution). In this system loaded by the control force 
occurs linearly and in accordance with maximum principle, attains its upper and/or lowed 
bounds in the general case. Solution of the task is by solving basic system of differential 
equations and corresponding particular solutions which contain the dynamic state of the 
defined dynamics in the initial moment and in the final terminate moment of time T. At 
moment tC we must change the control force direction. 

In the considered case the dynamics of the system is described by nonlinear 
differential equations, but it is  possible to solve the problem in analytical form.  

 Now, for obtaining phase coordinate of the cross section between phase trajectories 
),( CC xxC & , we use two phase trajectories through this point and for different direction of 

the control force by which we can find moment of time in which it is necessary to change 
controlling force direction. For that reason, we can write that both phase trajectories 
contain this phase dynamical state point ),( CC xxC & , and we can consider two cases. 

I* First case 

Conditions are: 
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where integral constants are in the forms: 
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Phase coordinates of the dynamic state ),( CC xxC & in which it is optimal to change 
direction of the optimal control force are in the form: 
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 (57) 



 Phase Plane Method Applied to Optimal Control in Nonlinear Dynamical Systems... 87 

0
4

002,1
4

0

4 ~
2
1),()](,[8)](,[2)( uexxCdxexFkGexFkGxxv C

C

C xx
xx

x
CCC δ

−−δ+−±== δδ±δ ∫ mm &&  (58) 

 Optimal time period T for transfer of nonlinear system from one state of dynamics 
),( 000 xxN &  along one phase trajectory to the other, ),( TTT xxN & , along other phase 

trajectory successive passing through common state ),( CC xxC &  on both phase trajectories 
which correspond to cases with different control motion force direction, we can obtain as 
sum of times TOC and TCT as times of the motion of the system phase representative point 
along the first and the second trajectory. Optimal time period Topt for transfer of nonlinear 
system from one, initial, state dynamics ),( 000 xxN &  along one phase trajectory to the 
other final dynamic state ),( TTT xxN &  along other phase trajectory successive passing 
through common state ),( CC xxC &  is obtained in the form: 
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 (59) 

 For solution of the problem it is necessary to find cross section ),,( CCOCC xxTt &=  
(mutual phase dynamic state) between previous phase trajectories in which the control 
force changes direction. Initial branch of the phase trajectory contains the representative 
point ),,,0( 000 xxt &= and final branch of the phase trajectory contains the point  

),,( TTT xxTt &= . By using phase trajectories of the nonlinear dynamics we can find the 
time moment CT  in which we must change control force direction and final minimal time 
for optimal control motion: 

II* Second case 

Conditions are: 
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where integral constants are in the forms: 
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In this second case both phase coordinates of the dynamic state ),( CC xxC &  in which it 
is optimal to change direction of the optimal control force are not possible to obtain in 
explicit form: 
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If previous system of equations (620-(63) then in this case optimal control of motion 
under defined conditions and by obtained alternative control force is possible. In the case 
that previous system of equations (620-(53) haven't real cross section, then optimal 
control is not possible with alternation of the controlling force with constant intensity 
through one change of the control force direction. Then we can reconsider task of the 
optimal control by a few component tasks of the optimal control.  

Optimal time period T for transfer nonlinear system from one state dynamics 
),( 000 xxN &  along one phase trajectory to the other ),( TTT xxN &  along other phase trajectory 

successive passing through common state ),( CC xxC &  on the both phase trajectories which 
correspond to cases with different control motion force direction, we can obtain as sum of 
the times TOC and TCT as times of the motion of the system  phase representative point along 
one first and second trajectory.  
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Optimal time period Topt for transfer nonlinear system from one state dynamics 
),( 000 xxN & along one phase trajectory to the other ),( TTT xxN &  along other phase 

trajectory successive passing through common state ),( CC xxC &  is CTCopt TTT += 0 . 
Optimal control of the nonlinear dynamics of a considered conservative and 

nonconservative nonlinear systems with dynamics described by ordinary differential 
equations is studied by using variational method combined with the phase plane method. 
Phase trajectories portraits for transformation under the influence of the control force and 
comparison with basic nonlinear system dynamics are pointed out.  
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VII. NONLINEAR DYNAMICS OF A HEAVY MATERIAL PARTICLE ALONG CIRCLE WHICH 
ROTATES AND OPTIMAL CONTROL 

VII.1. Motion of the heavy material particle along circles  

As example, we will consider a discrete system (see Fig. 1.) of a heavy material 
particle with mass m along a circle which rotates around the skewly positioned, (angle α 
to the horizontal direction), axis oriented by unit vector n

r , and in the case that the 
eccentricity is or not equal to zero ( 0=e  or 0≠e ).   

Relative position of the material particle along the circle with radius l  is determined 
by angle ϕ as a generalized coordinate. The rheonomic coordinate θ = Ωt, is the angle of 
circle's rotation around the axis oriented by the unit vector n

r . 
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Fig. 3. Motion of the heavy material particle along a circle, which  rotates about a fixed 
axis. Simple model of the nonlinear dynamics. Phase portrait of basic model 
nonlinear dynamics (from Ref. [7]). 

Using the notation in Fig. 1., the rate of potential energy change Ep , expressed by 
generalized coordinate ϕ and rheonomic coordinate θ, and expression of  kinetic energy 
Ek of the system presented in the published Reference [7],  and introducing the following 
notation  

 ,
2
sin  and    ,sin  , 2

2 lll
& α

=Ω=ε
Ω

α
=λΩ=θ

geg
rez   (66) 

the differential equation of the relative motion of the heavy material particle we can write 
in the following form: 

 tctg ΩϕαλΩ=ϕεΩ−ϕϕ−λΩ+ϕ coscoscossin)cos( 222&&  (67) 

From extended Lagrange's system equation for rheonomic coordinate θ (see Refs. [25, 
26, 9, 101]), we can obtain the expression of the couple Mθ corresponding to the 
rheonomic coordinate in the following form: 

 
⎭
⎬
⎫

⎩
⎨
⎧ ϕ+εαθ+Ωϕ+ε=θ )sin(cossin])sin[( 22

l
l

g
dt
dmM  (68) 
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VII.2. Linearized Approximation 

Now, let us consider special cases of the heavy material particle dynamics in the case 
that the eccentricity e  is equal to zero. For beginning we consider small oscillations 
around stable relative position, correspond to the stable relative equilibrium positions of 
the homogenous differential equation (67) for the cases: 1* λ > 1, ϕ = 0, e = 0 and 
2* λ < 1, ϕ = ±arccos λ, e = 0, and when ctg α is small. 

1* For the case that λ > 1 we study small oscillations around stable relative equilib-
rium position ϕ = 0, by using corresponding linearization of the differential equation in 
the form of:   

 tctg ΩαλΩ≈ϕ−λΩ+ϕ cos)1( 22&&               (69) 

when we take that approximation are:  sin ϕ ≈ ϕ + ... and  cos ϕ ≈ 1 + ... we can conclude 
that these small oscillations around ϕ = 0 for λ > 1 are simple forced two frequency 
oscillations with following frequencies: "own" frequency 1−λΩ≈ω and forced 
frequency Ω with amplitudes depending of initial conditions and of the forced excitation 
amplitude Ω2λ ctg α as function of the axis angle α and that ctg α is small. We can 
conclude that in this case the resonance regime is possible when Ω = Ωrez and for λ = 2, 
then λ > 1, and that angular velocity of the circle is critical. But, this conclusion is 
opposite with the assumption that oscillations are with small amplitude. In that case 
linearization is not correct.  

2* For the case when λ < 1 we study small oscillations around the stable relative 
equilibrium position ϕs = ±arccos λ by applying corresponding linearization of the 
differential equation, we make change of the generalized coordinate ϕ by following 
ϕs + ϕ. After linearization we obtain the following linearized equation: 

 
tctgtctg

ΩαλΩ≈ϕ
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω

λ−

αλ
+λ−Ω+ϕ coscos

1
1)1( 2

2

22&&  (70) 

This linearized equation is of Mathieu-Hill type. From this linearized differential 
equation we can conclude that these small oscillations around ϕs = ±arccos λ for λ < 1  
are not simple forced two frequency oscillations, but are of type of the Mathieu paramet-
ric and forced oscillations. In this case we can point out possibilities of appearance of 
parametric resonance. In the first linearized approximation, around the relative equilib-
rium position ϕs = ±arccos λ for λ < 1 small oscillations are described by Mathieu's 
oscillator

 
with circular frequency and parameters:  

,)1( 2λ−Ω=ω 21~
λ−=λ and ,~1~ 2 λ=αλ−λ=γ hctg τ = Ωt, and external forced excita-

tion amplitude h = λ ctg α and frequency equal to the angular velocity of the rotation of the 
circle.  For detail see Reference [20] Mathieu's differential equation or Floquet, Annales de 
l'Ecole Normale, 1883. On the basis of these references we can write ϕ(t) = Aeμtp1(t) + Be−μtp2(t), 
where A and B are integral constants; μ is characteristic exponent and pi(t), i = 1,2 are periodic 
functions with period 2π depending of parameters: λ

~  and γ~ . Main and principal problem is 
investigation of the stability of solutions (see Refs. [21], [22] and [23]). By Ince and Strutt 
[22], the domains of stability and unstability graphically are presented in the form of Ince-
Strutt's stability cart for different values of the parameters λ

~  and γ~ .  
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VII.3. Optimal control of nonlinear dynamics 

For control of motion of considered nonlinear system we consider one parameter 
control by one generalized force corresponding to the generalized system coordinate. For 
optimal control of the nonlinear dynamics of this system defined by nonlinear differential 
equation (71), we can introduce two phase coordinates in the state space x1 and x2, and by 
the differential equation second order we can introduce two nonlinear differential 
equations of first order in the following form: 

 

00

11112

2121

~)(~~
)(coscoscossin)cos(

)(    ;    ;    

utuu
tuxctgxxxx

tvxxxx

≤≤−
+τα+ε+−λ−=

τ==ϕ==
&

&

 (71) 

with initial conditions are: x1(0) =  ϕ(0) = ϕ0 and 
Ω
ϕ

== 0
2 )0()0( vx . 

Task of the defined dynamical system optimal control is: By using controlling force 
)(~ tu acting on the system, the transfer from the initial state of the nonlinear dynamics of 

the system defined by x1(0) = x01 and x2(0) = x02 into the final terminate state of the 
nonlinear dynamics defined by x1(T) = xT1 and x2(T) = xT2, where T is minimal time for 
that optimal control task should be performed then we can write two new  nonlinear 
differential equations of first order for the optimal control task in the form (11) and initial 
conditions and final conditions. 

As in the previous cases for minimization of time T the Pontrijagin's maximum 
principle is used. 

Concept of optimal motion of system dynamics implies here motion or dynamics of 
the mechanical systems whose particular attributes have extreme values with respect to 
some of the parameters dynamics.   

Now, let's determine the controlling force )(~ tu  that can control the dynamics of the 
system of accordance with defined control task.  

By using theory, we can write the following Hamilton function in the form: 
 )](coscoscossin)cos([1 1111221 tuxctgxxxpxp +τα+ε+−λ−++=Η  (72) 

optimal dynamics are described by system of equations (22). We have case of control by 
using a force with constant value by with change of the direction (bing-bang solution). In 
this system, the control force occurs linearly and in accordance with maximum principle, 
attains its upper and/or lowed bounds in the general case. Solution of the task is by 
solving basic system of differential equations (71) and corresponding particular solutions 
which contain the state of the defined dynamics in the initial moment and in the final 
moment of time T. At moment tC we must change the control force direction. 

In the considered case the dynamics of the system is described by nonlinear 
differential equations, and is not possible to solve the problem in analytical form. But, it 
is convenient to use phase plane methods for qualitative analysis by using the basic 
scleronomic holonomic conservative system corresponding to rheonomic and forced 
excited system (see Refs. [9], [10]). By follow representative point in the phase plane 
along phase trajectories and transformation of the structure of phase portrait by using 
control force it is possible to learn about nonlinear dynamics in the optimal control 
dynamics. Families of the constant energy curves of the system are also a tool to learn the 
properties of controllability of the nonlinear system.  
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Fig. 4. Potential energy curves (a*) for different system parameters, phase trajectories 
(b*, c*) for the corresponding basic nonlinear discrete system dynamics (see 
Fig. 3. a*) of the heavy material particle with mass m along circle which rotates 
around skewly positioned, with angle α = 900 to the horizon, axis oriented by the 
unit vector n

r , and for case that  the eccentricity is equal to zero e = 0. Different 
values of the system parameters and for control basic system with control force 
(right size). Transformation of the structure of phase portrait by control force 
(right size). The system parameters λ and Ω are varied in the Figures. Phase 
trajectories (d*) for the corresponding basic nonlinear discrete system dynamic 
which rotates around skewly positioned, with angle α ≠ 0 to the horizon. 

For the control of the relative motion of the heavy material particle along circle which 
rotates about a fixed axis by the regime of the corresponding number of rotations in one and 
in opposite direction we can use phase plane methods and visualization of the numerical 
MahCad experiment. Visualization of the phase portrait of the basic holonomic scleronomic 
conservative system gives us information about existence of a trigger of coupled 
singularities as well as an homoclinic orbit in the form of number eight, see Figure 3. b*. 
Also we can see in Fig. 4, that the structure of the phase portrait changes under the 
influence and excitation of the control force.  In Figure 4, potential energy curves (a*) for 
different system parameters are presented as well as, phase trajectories (b*, c*) for the 
corresponding basic nonlinear discrete system dynamics (see Fig. 3. a*) of the heavy 
material particle with mass m along circle which rotates around skewly positioned, with 
angle α = 900 to the horizon, axis oriented by the unit vector n

r , and for case that  the 
eccentricity is equal to zero e = 0. Different values of the system parameters and for control 
basic system with control force (right size). Transformation of the structure of phase portrait 
by control force (right size). The system parameters λ and Ω are varied in the Figures. 
Phase trajectories (d*) for the corresponding basic nonlinear discrete system dynamic which 
rotates around skewly positioned, with angle α ≠ 0 to the horizon, 
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Equations of the phase trajectories passing trough initial point state (t0 = 0, x01, x02) 
and final point state (tT = T, xT1, xT2) for the considered case and for horizontal rotation 
axis of the system are in the form:                      

)(2)sin(sin2)2cos2(cos
2
1)cos(cos2 0110011011011

2
022 xxuxxxxxxxx −±−ε+−−−λ+±=  

)(2)sin(sin2)2cos2(cos
2
1)cos(cos2 110111111

2
22 TTTTT xxuxxxxxxxx −−ε+−−−λ+±= m  (73) 

For solution of the problem it is necessary to find cross section (tC = TC , xC1, xC2) 
(mutual phase state) between previous phase trajectories in which the control force changes 
direction. Initial branch of the phase trajectory contains the representative point (t0 = 0, x01, x02), 
and final branch of the phase trajectory contains the point  (tT = T, xT1, xT2). 

By using phase trajectories of the nonlinear dynamics we can find the time moment 
TC in which we must change control force direction and final minimal time for optimal 
control motion: 
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 VIII. ON RHEONOMIC SYSTEMS WITH EQUIVALENT HOLONOMIC CONSERVATIVE SYSTEMS 
APPLIED TO THE NONLINEAR DYNAMICS OF THE WATT'S REGULATOR 

Equivalent holonomic scleronomic conservative system to the special class of the 
rheonomic system is considered in the References [9] and [10]. A  numerical experiment, 
phase portraits and homoclinic orbits of a Watt's regulator nonlinear dynamics are 
presented in this same References. These system is possible to use for the optimal control 
examples of the previous general cases of the optimal control.  

For example of a rheonomic system, with equivalent holonomic scleronomic 
conservative system, we shall consider the model of a mechanism of a Watt's regulator 
(see Fig. 5. a*), or two heavy material particles, moving along corresponding 
symmetrically connected circles that rotate around vertical axis with constant angular 
velocity. Ω in the gravitational field.  

Kinetic and potential energy of simplified mechanisms of Watt's regulator, which 
rotate around vertical axis with constant angular velocity Ω, in the gravitational field are: 

 
⎥
⎥
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⎤

⎢
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛ ϕ+θ+ϕ=

2
222)( sin
l

&&l
amsist

kE      and     )cos1(2)( ϕ−= lmgsist
pE  (75) 

where ϕ is generalized coordinate, q0 = θ = Ωt rheonomic coordinate, m masses of the 
balls - the material particles, l  and a constructive parameters. For holonomic scler-
onomic conservative system equivalent to a rheonomic system, which is a mechanism of 
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a Watt's regulator, kinetic and potential energy in the sense of the definitions in the 
References [9] and [10] we can write: 

 22)(~
ϕ= &lmsist

kE   and  
2

22)( sin)cos1(2~
⎟
⎠
⎞

⎜
⎝
⎛ ϕ+Ω−ϕ−=
l

ll
ammgsist

pE  (76) 

By introducing the following notations Ω=θ& , 
2Ω

=λ
l

g , 
l

a
=ε  we can write the 

following differential equations of the relative balls motion: 

 0]cossin)cos[(2 =ϕε−ϕϕ−λΩ+ϕ&&  (77) 

Integral of energy of equivalent holonomic scleronomic conservative system to the 
rheonomic system, which is a mechanism of Watt's regulator is: 

 ]})sin()sin[()cos(cos2{ 2
0

2
0

22
0

2 ϕλ+ε−ϕλ+ε−ϕ−ϕλΩ+ϕ=ϕ &&  (78) 

where 0ϕ and 0ϕ&  are initial conditions of the relative balls motion. 
First integral of the considered Watt's regulator nonlinear system dynamics of optimal  

control activated by control force described by differential equation  

 0]cossin)cos[( 0
2 =±ϕε−ϕϕ−λΩ+ϕ u&&  (79) 

type of (26), we can obtain by following form: 

    )(~2]})sin()sin[()cos(cos2{ 00
2

0
2

0
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0
2 ϕ−ϕ±ϕλ+ε−ϕλ+ε−ϕ−ϕλΩ+ϕ=ϕ u&&  (80) 
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Fig. 5. Numerical simulations and graphical presentations. Potential energy graphs of the 

equivalent holonomic scleronomic conservative system to the rheonomic system 
(a* the mechanisms of the Watt's regulator) for different system kinetic 
parameters: b* ;2;2,1;1;8,0;5,0;4,0;2,0;0;2,0 +++++++=ε=λ  

 
Last equation (80) is equation of the phase trajectory of the considered Watt's 

regulator nonlinear system dynamics loaded by control force with alternative directions 
and next procedure for optimal control task is  defined in IV by equations  (29)–(36), for 
the  special case of the function  

2
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IX.  CONCLUDING REMARKS 

We can conclude that it is very suitable for investigations of nonlinear properties of 
the motion of the special class of rheonomic systems with rheonomic coordinate linearly 
dependent of the time in the form q0 = Ωt to use corresponding equivalent holonomic, 
scleronomic conservative system and corresponding phase portraits of this system for 
optimal control. By using example of mechanisms of Watt's regulator published in Refer-
ences [9] and [10], we show that is possible to apply phase portraits for optimal control in 
the nonlinear systems with nonlinear motion properties and different forms of homoclinic 
orbits, as well as the bifurcations of the relative rest positions in the considered class of 
the rheonomic systems and the transformation of the homoclinic orbits. We investigate 
existence and nonexistence of homoclinic orbits in the shape of the number eight for differ-
ent values of the system kinetic parameters: eccentricity ε and velocity of the support 
rotation Ω(λ) and optimal control in the systems with trigger of coupled singularities.  

For such special class of rheonomic nonlinear systems, the equivalent holonomic conserva-
tive nonlinear system and equivalent kinetic and potential energies are  on the form (76). 

In Figure 6. phase trajectories for a corresponding basic discrete system nonlinear 
dynamics (see Fig. 5. a*) of a heavy material particle with mass m along circle which 
rotates around skewly positioned axis, with angle α to the horizon,  axis oriented by unit 
vector ,n

r
and for case that eccentricity equal zero e = 0 are presented. Phase portraits are 

presented for different values of the system parameters and for control system with con-
trol force. Transformation of the structure of phase portrait by control force is visible. 
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Fig. 6. Phase trajectories for a corresponding basic discrete system nonlinear dynamics 

(see Fig. 5. a*) of a heavy material particle with mass m along circle which 
rotates around skewly positioned axis, with angle α to the horizon,  axis oriented 
by unit vector ,n

r
and for case that eccentricity equal zero e = 0. Different values 

of the system parameters and for control system with control force. 
Transformation of the structure of phase portrait by control force. 

In Figure 7. influences of the control force and control force direction to potential en-
ergy curves and to the phase portraits are presented. Potential energy curves and phase 
trajectories for a corresponding basic discrete system nonlinear dynamics (see Fig. 5. a*) 
of a heavy material particle with mass m along circle which rotates around skewly posi-
tioned axis, with angle α to the horizon, axis oriented by unit vector ,n

r
and for case that 

eccentricity equal zero e = 0 are pointed out to be visible. Phase portraits are presented 
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for different values of the system parameters and for control system with control force. 
Transformation of the structure of phase portrait by control force in one and opposite 
direction is pointed out to be visible.  
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Fig. 7. Influence of the control force and control force direction to Potential energy 

curves and to the phase portraits. Potential energy curves and phase trajectories for 
a corresponding basic discrete system nonlinear dynamics (see Fig. 5. a*) of a 
heavy material particle with mass m along circle which rotates around skewly 
positioned axis, with angle α to the horizon,  axis oriented by unit vector ,n

r
and 

for case that eccentricity equal zero e = 0. Different values of the system 
parameters and for control system with control force. Transformation of the 
structure of phase portrait by control force in one and opposite direction.  
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METODA FAZNE RAVNI U PRIMENI NA OPTIMALNO 
UPRAVLJANJE U NELINEARNIM DINAMIČKIM SISTEMIMA 

SA TRIGEROM SPREGNUTIH SINGULARITETA 

Katica R.  (Stevanović) Hedrih 

Glavna ideja metode fazne ravni u primeni na optimalno upravljanje u nelinearnim dinamičkim 
sistemima sa trigerom spregnutih singulariteta i sa jednim stepenom slobode kretanja je ponovo 
razmotrena. Članak sadrži objedinjen pregled autorovih ranije publikovanih rezultata serije 
specijalnih slučajeva optimalnog upravljanja u nelinearnim dinamičkim sistemima sa trigerom 
spregnutih singulariteta koji su značajni za inženjerske primene.  

U radu se analizira upravljivost kretanjem konzervativnih, kao i nekonzervativnih nelinearnih 
dinamičkih sistema sa trigerim singulariteta u odgovarajućoj faznoj ravni. Pokazano je da je metoda 
fazne ravni upotrebljiva i prigodna za analizu upravljačkih strategija nelinearne dinamike i 
konzervativnih i nekonzervativnih sistema sa jednim stepenom slobode kretanja i sa trigerom spregnutih 
singulariteta, a takođe i kao put za upravljanje relativnim kretanjem u reonomnim sistemima koji imaju 
ekvivalentni scleronomni conzervativni ili nekonzervativni szstem.  

Za sistem, koji je opisam sa jednom generalisanom koordinatom i nelinearnom diferencijalnom 
jednačinom sa trigerom spregnutih singulariteta fnkcija potencijalne energije i konzervativne sile moraju 
zadovoljavati određene uslove definisane teoremom o postojanju trigera spregnutih singulariteta i 
separatrise u obliku broja osam. Zadatak definisanog optimalnog upravljanja konzervativnim sistemom 
je sledeći: koristeći destvo sile upravljanja na nelinearni sistem, isti prevesti iz posmatranog stanja 
nelinearne dinamike u definisano stanje nelinearne dinamike kroz protek minimalnog vremena, kao 
kriterijum optimalnog upravljanja. 

Neki istraživački rezultati "čudesne" nelinearne dinamike teške materijalne tačke duž krugova 
sa spregnutim rotacijama sa više različitih svojstava nelinearne dinamike kao i optimalno 
upravljanje tim dinamikama su takođe prikazani. Vizuelizacija nelinearnih dinamičkih procesa u 
takvim reonomnim sistemima su predstavljene. 

Ključne reči:  Metoda fazne ravni, optimalno upravljanje,nelinearna dinamika, konzervativni 
sistem, nekonzervativni system, fazni portret u ravni, trigger spregnutih singulariteta, 
teorema o trigeru spregnutih singulariteta, spregnute rotacije, teška materijalna 
tačka, homoklinička tačka, homoklinička orbita, bifurkacija, raslojavanje orbite, 
separatrisa u obliku broja osam 
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